summaryrefslogtreecommitdiff
path: root/libraries/template-haskell/Language/Haskell/TH/Lib/Internal.hs
blob: 989e8168ba9ac1faa5795b1af30d7baca924eaad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
-- |
-- Language.Haskell.TH.Lib.Internal exposes some additional functionality that
-- is used internally in GHC's integration with Template Haskell. This is not a
-- part of the public API, and as such, there are no API guarantees for this
-- module from version to version.

-- Why do we have both Language.Haskell.TH.Lib.Internal and
-- Language.Haskell.TH.Lib? Ultimately, it's because the functions in the
-- former (which are tailored for GHC's use) need different type signatures
-- than the ones in the latter. Syncing up the Internal type signatures would
-- involve a massive amount of breaking changes, so for the time being, we
-- relegate as many changes as we can to just the Internal module, where it
-- is safe to break things.

module Language.Haskell.TH.Lib.Internal where

import Language.Haskell.TH.Syntax hiding (Role, InjectivityAnn)
import qualified Language.Haskell.TH.Syntax as TH
import Control.Monad( liftM, liftM2 )
import Data.Word( Word8 )
import Prelude

----------------------------------------------------------
-- * Type synonyms
----------------------------------------------------------

type InfoQ               = Q Info
type PatQ                = Q Pat
type FieldPatQ           = Q FieldPat
type ExpQ                = Q Exp
type TExpQ a             = Q (TExp a)
type DecQ                = Q Dec
type DecsQ               = Q [Dec]
type ConQ                = Q Con
type TypeQ               = Q Type
type KindQ               = Q Kind
type TyVarBndrQ          = Q TyVarBndr
type TyLitQ              = Q TyLit
type CxtQ                = Q Cxt
type PredQ               = Q Pred
type DerivClauseQ        = Q DerivClause
type MatchQ              = Q Match
type ClauseQ             = Q Clause
type BodyQ               = Q Body
type GuardQ              = Q Guard
type StmtQ               = Q Stmt
type RangeQ              = Q Range
type SourceStrictnessQ   = Q SourceStrictness
type SourceUnpackednessQ = Q SourceUnpackedness
type BangQ               = Q Bang
type BangTypeQ           = Q BangType
type VarBangTypeQ        = Q VarBangType
type StrictTypeQ         = Q StrictType
type VarStrictTypeQ      = Q VarStrictType
type FieldExpQ           = Q FieldExp
type RuleBndrQ           = Q RuleBndr
type TySynEqnQ           = Q TySynEqn
type PatSynDirQ          = Q PatSynDir
type PatSynArgsQ         = Q PatSynArgs
type FamilyResultSigQ    = Q FamilyResultSig
type DerivStrategyQ      = Q DerivStrategy

-- must be defined here for DsMeta to find it
type Role                = TH.Role
type InjectivityAnn      = TH.InjectivityAnn

----------------------------------------------------------
-- * Lowercase pattern syntax functions
----------------------------------------------------------

intPrimL    :: Integer -> Lit
intPrimL    = IntPrimL
wordPrimL    :: Integer -> Lit
wordPrimL    = WordPrimL
floatPrimL  :: Rational -> Lit
floatPrimL  = FloatPrimL
doublePrimL :: Rational -> Lit
doublePrimL = DoublePrimL
integerL    :: Integer -> Lit
integerL    = IntegerL
charL       :: Char -> Lit
charL       = CharL
charPrimL   :: Char -> Lit
charPrimL   = CharPrimL
stringL     :: String -> Lit
stringL     = StringL
stringPrimL :: [Word8] -> Lit
stringPrimL = StringPrimL
rationalL   :: Rational -> Lit
rationalL   = RationalL

litP :: Lit -> PatQ
litP l = return (LitP l)

varP :: Name -> PatQ
varP v = return (VarP v)

tupP :: [PatQ] -> PatQ
tupP ps = do { ps1 <- sequence ps; return (TupP ps1)}

unboxedTupP :: [PatQ] -> PatQ
unboxedTupP ps = do { ps1 <- sequence ps; return (UnboxedTupP ps1)}

unboxedSumP :: PatQ -> SumAlt -> SumArity -> PatQ
unboxedSumP p alt arity = do { p1 <- p; return (UnboxedSumP p1 alt arity) }

conP :: Name -> [PatQ] -> PatQ
conP n ps = do ps' <- sequence ps
               return (ConP n ps')
infixP :: PatQ -> Name -> PatQ -> PatQ
infixP p1 n p2 = do p1' <- p1
                    p2' <- p2
                    return (InfixP p1' n p2')
uInfixP :: PatQ -> Name -> PatQ -> PatQ
uInfixP p1 n p2 = do p1' <- p1
                     p2' <- p2
                     return (UInfixP p1' n p2')
parensP :: PatQ -> PatQ
parensP p = do p' <- p
               return (ParensP p')

tildeP :: PatQ -> PatQ
tildeP p = do p' <- p
              return (TildeP p')
bangP :: PatQ -> PatQ
bangP p = do p' <- p
             return (BangP p')
asP :: Name -> PatQ -> PatQ
asP n p = do p' <- p
             return (AsP n p')
wildP :: PatQ
wildP = return WildP
recP :: Name -> [FieldPatQ] -> PatQ
recP n fps = do fps' <- sequence fps
                return (RecP n fps')
listP :: [PatQ] -> PatQ
listP ps = do ps' <- sequence ps
              return (ListP ps')
sigP :: PatQ -> TypeQ -> PatQ
sigP p t = do p' <- p
              t' <- t
              return (SigP p' t')
viewP :: ExpQ -> PatQ -> PatQ
viewP e p = do e' <- e
               p' <- p
               return (ViewP e' p')

fieldPat :: Name -> PatQ -> FieldPatQ
fieldPat n p = do p' <- p
                  return (n, p')


-------------------------------------------------------------------------------
-- *   Stmt

bindS :: PatQ -> ExpQ -> StmtQ
bindS p e = liftM2 BindS p e

letS :: [DecQ] -> StmtQ
letS ds = do { ds1 <- sequence ds; return (LetS ds1) }

noBindS :: ExpQ -> StmtQ
noBindS e = do { e1 <- e; return (NoBindS e1) }

parS :: [[StmtQ]] -> StmtQ
parS sss = do { sss1 <- mapM sequence sss; return (ParS sss1) }

recS :: [StmtQ] -> StmtQ
recS ss = do { ss1 <- sequence ss; return (RecS ss1) }

-------------------------------------------------------------------------------
-- *   Range

fromR :: ExpQ -> RangeQ
fromR x = do { a <- x; return (FromR a) }

fromThenR :: ExpQ -> ExpQ -> RangeQ
fromThenR x y = do { a <- x; b <- y; return (FromThenR a b) }

fromToR :: ExpQ -> ExpQ -> RangeQ
fromToR x y = do { a <- x; b <- y; return (FromToR a b) }

fromThenToR :: ExpQ -> ExpQ -> ExpQ -> RangeQ
fromThenToR x y z = do { a <- x; b <- y; c <- z;
                         return (FromThenToR a b c) }
-------------------------------------------------------------------------------
-- *   Body

normalB :: ExpQ -> BodyQ
normalB e = do { e1 <- e; return (NormalB e1) }

guardedB :: [Q (Guard,Exp)] -> BodyQ
guardedB ges = do { ges' <- sequence ges; return (GuardedB ges') }

-------------------------------------------------------------------------------
-- *   Guard

normalG :: ExpQ -> GuardQ
normalG e = do { e1 <- e; return (NormalG e1) }

normalGE :: ExpQ -> ExpQ -> Q (Guard, Exp)
normalGE g e = do { g1 <- g; e1 <- e; return (NormalG g1, e1) }

patG :: [StmtQ] -> GuardQ
patG ss = do { ss' <- sequence ss; return (PatG ss') }

patGE :: [StmtQ] -> ExpQ -> Q (Guard, Exp)
patGE ss e = do { ss' <- sequence ss;
                  e'  <- e;
                  return (PatG ss', e') }

-------------------------------------------------------------------------------
-- *   Match and Clause

-- | Use with 'caseE'
match :: PatQ -> BodyQ -> [DecQ] -> MatchQ
match p rhs ds = do { p' <- p;
                      r' <- rhs;
                      ds' <- sequence ds;
                      return (Match p' r' ds') }

-- | Use with 'funD'
clause :: [PatQ] -> BodyQ -> [DecQ] -> ClauseQ
clause ps r ds = do { ps' <- sequence ps;
                      r' <- r;
                      ds' <- sequence ds;
                      return (Clause ps' r' ds') }


---------------------------------------------------------------------------
-- *   Exp

-- | Dynamically binding a variable (unhygenic)
dyn :: String -> ExpQ
dyn s = return (VarE (mkName s))

varE :: Name -> ExpQ
varE s = return (VarE s)

conE :: Name -> ExpQ
conE s =  return (ConE s)

litE :: Lit -> ExpQ
litE c = return (LitE c)

appE :: ExpQ -> ExpQ -> ExpQ
appE x y = do { a <- x; b <- y; return (AppE a b)}

appTypeE :: ExpQ -> TypeQ -> ExpQ
appTypeE x t = do { a <- x; s <- t; return (AppTypeE a s) }

parensE :: ExpQ -> ExpQ
parensE x = do { x' <- x; return (ParensE x') }

uInfixE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
uInfixE x s y = do { x' <- x; s' <- s; y' <- y;
                     return (UInfixE x' s' y') }

infixE :: Maybe ExpQ -> ExpQ -> Maybe ExpQ -> ExpQ
infixE (Just x) s (Just y) = do { a <- x; s' <- s; b <- y;
                                  return (InfixE (Just a) s' (Just b))}
infixE Nothing  s (Just y) = do { s' <- s; b <- y;
                                  return (InfixE Nothing s' (Just b))}
infixE (Just x) s Nothing  = do { a <- x; s' <- s;
                                  return (InfixE (Just a) s' Nothing)}
infixE Nothing  s Nothing  = do { s' <- s; return (InfixE Nothing s' Nothing) }

infixApp :: ExpQ -> ExpQ -> ExpQ -> ExpQ
infixApp x y z = infixE (Just x) y (Just z)
sectionL :: ExpQ -> ExpQ -> ExpQ
sectionL x y = infixE (Just x) y Nothing
sectionR :: ExpQ -> ExpQ -> ExpQ
sectionR x y = infixE Nothing x (Just y)

lamE :: [PatQ] -> ExpQ -> ExpQ
lamE ps e = do ps' <- sequence ps
               e' <- e
               return (LamE ps' e')

-- | Single-arg lambda
lam1E :: PatQ -> ExpQ -> ExpQ
lam1E p e = lamE [p] e

lamCaseE :: [MatchQ] -> ExpQ
lamCaseE ms = sequence ms >>= return . LamCaseE

tupE :: [ExpQ] -> ExpQ
tupE es = do { es1 <- sequence es; return (TupE es1)}

unboxedTupE :: [ExpQ] -> ExpQ
unboxedTupE es = do { es1 <- sequence es; return (UnboxedTupE es1)}

unboxedSumE :: ExpQ -> SumAlt -> SumArity -> ExpQ
unboxedSumE e alt arity = do { e1 <- e; return (UnboxedSumE e1 alt arity) }

condE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
condE x y z =  do { a <- x; b <- y; c <- z; return (CondE a b c)}

multiIfE :: [Q (Guard, Exp)] -> ExpQ
multiIfE alts = sequence alts >>= return . MultiIfE

letE :: [DecQ] -> ExpQ -> ExpQ
letE ds e = do { ds2 <- sequence ds; e2 <- e; return (LetE ds2 e2) }

caseE :: ExpQ -> [MatchQ] -> ExpQ
caseE e ms = do { e1 <- e; ms1 <- sequence ms; return (CaseE e1 ms1) }

doE :: [StmtQ] -> ExpQ
doE ss = do { ss1 <- sequence ss; return (DoE ss1) }

mdoE :: [StmtQ] -> ExpQ
mdoE ss = do { ss1 <- sequence ss; return (MDoE ss1) }

compE :: [StmtQ] -> ExpQ
compE ss = do { ss1 <- sequence ss; return (CompE ss1) }

arithSeqE :: RangeQ -> ExpQ
arithSeqE r = do { r' <- r; return (ArithSeqE r') }

listE :: [ExpQ] -> ExpQ
listE es = do { es1 <- sequence es; return (ListE es1) }

sigE :: ExpQ -> TypeQ -> ExpQ
sigE e t = do { e1 <- e; t1 <- t; return (SigE e1 t1) }

recConE :: Name -> [Q (Name,Exp)] -> ExpQ
recConE c fs = do { flds <- sequence fs; return (RecConE c flds) }

recUpdE :: ExpQ -> [Q (Name,Exp)] -> ExpQ
recUpdE e fs = do { e1 <- e; flds <- sequence fs; return (RecUpdE e1 flds) }

stringE :: String -> ExpQ
stringE = litE . stringL

fieldExp :: Name -> ExpQ -> Q (Name, Exp)
fieldExp s e = do { e' <- e; return (s,e') }

-- | @staticE x = [| static x |]@
staticE :: ExpQ -> ExpQ
staticE = fmap StaticE

unboundVarE :: Name -> ExpQ
unboundVarE s = return (UnboundVarE s)

labelE :: String -> ExpQ
labelE s = return (LabelE s)

implicitParamVarE :: String -> ExpQ
implicitParamVarE n = return (ImplicitParamVarE n)

-- ** 'arithSeqE' Shortcuts
fromE :: ExpQ -> ExpQ
fromE x = do { a <- x; return (ArithSeqE (FromR a)) }

fromThenE :: ExpQ -> ExpQ -> ExpQ
fromThenE x y = do { a <- x; b <- y; return (ArithSeqE (FromThenR a b)) }

fromToE :: ExpQ -> ExpQ -> ExpQ
fromToE x y = do { a <- x; b <- y; return (ArithSeqE (FromToR a b)) }

fromThenToE :: ExpQ -> ExpQ -> ExpQ -> ExpQ
fromThenToE x y z = do { a <- x; b <- y; c <- z;
                         return (ArithSeqE (FromThenToR a b c)) }


-------------------------------------------------------------------------------
-- *   Dec

valD :: PatQ -> BodyQ -> [DecQ] -> DecQ
valD p b ds =
  do { p' <- p
     ; ds' <- sequence ds
     ; b' <- b
     ; return (ValD p' b' ds')
     }

funD :: Name -> [ClauseQ] -> DecQ
funD nm cs =
 do { cs1 <- sequence cs
    ; return (FunD nm cs1)
    }

tySynD :: Name -> [TyVarBndrQ] -> TypeQ -> DecQ
tySynD tc tvs rhs =
  do { tvs1 <- sequenceA tvs
     ; rhs1 <- rhs
     ; return (TySynD tc tvs1 rhs1)
     }

dataD :: CxtQ -> Name -> [TyVarBndrQ] -> Maybe KindQ -> [ConQ]
      -> [DerivClauseQ] -> DecQ
dataD ctxt tc tvs ksig cons derivs =
  do
    ctxt1   <- ctxt
    tvs1    <- sequenceA tvs
    ksig1   <- sequenceA ksig
    cons1   <- sequence cons
    derivs1 <- sequence derivs
    return (DataD ctxt1 tc tvs1 ksig1 cons1 derivs1)

newtypeD :: CxtQ -> Name -> [TyVarBndrQ] -> Maybe KindQ -> ConQ
         -> [DerivClauseQ] -> DecQ
newtypeD ctxt tc tvs ksig con derivs =
  do
    ctxt1   <- ctxt
    tvs1    <- sequenceA tvs
    ksig1   <- sequenceA ksig
    con1    <- con
    derivs1 <- sequence derivs
    return (NewtypeD ctxt1 tc tvs1 ksig1 con1 derivs1)

classD :: CxtQ -> Name -> [TyVarBndrQ] -> [FunDep] -> [DecQ] -> DecQ
classD ctxt cls tvs fds decs =
  do
    tvs1  <- sequenceA tvs
    decs1 <- sequenceA decs
    ctxt1 <- ctxt
    return $ ClassD ctxt1 cls tvs1 fds decs1

instanceD :: CxtQ -> TypeQ -> [DecQ] -> DecQ
instanceD = instanceWithOverlapD Nothing

instanceWithOverlapD :: Maybe Overlap -> CxtQ -> TypeQ -> [DecQ] -> DecQ
instanceWithOverlapD o ctxt ty decs =
  do
    ctxt1 <- ctxt
    decs1 <- sequence decs
    ty1   <- ty
    return $ InstanceD o ctxt1 ty1 decs1



sigD :: Name -> TypeQ -> DecQ
sigD fun ty = liftM (SigD fun) $ ty

forImpD :: Callconv -> Safety -> String -> Name -> TypeQ -> DecQ
forImpD cc s str n ty
 = do ty' <- ty
      return $ ForeignD (ImportF cc s str n ty')

infixLD :: Int -> Name -> DecQ
infixLD prec nm = return (InfixD (Fixity prec InfixL) nm)

infixRD :: Int -> Name -> DecQ
infixRD prec nm = return (InfixD (Fixity prec InfixR) nm)

infixND :: Int -> Name -> DecQ
infixND prec nm = return (InfixD (Fixity prec InfixN) nm)

pragInlD :: Name -> Inline -> RuleMatch -> Phases -> DecQ
pragInlD name inline rm phases
  = return $ PragmaD $ InlineP name inline rm phases

pragSpecD :: Name -> TypeQ -> Phases -> DecQ
pragSpecD n ty phases
  = do
      ty1    <- ty
      return $ PragmaD $ SpecialiseP n ty1 Nothing phases

pragSpecInlD :: Name -> TypeQ -> Inline -> Phases -> DecQ
pragSpecInlD n ty inline phases
  = do
      ty1    <- ty
      return $ PragmaD $ SpecialiseP n ty1 (Just inline) phases

pragSpecInstD :: TypeQ -> DecQ
pragSpecInstD ty
  = do
      ty1    <- ty
      return $ PragmaD $ SpecialiseInstP ty1

pragRuleD :: String -> [RuleBndrQ] -> ExpQ -> ExpQ -> Phases -> DecQ
pragRuleD n bndrs lhs rhs phases
  = do
      bndrs1 <- sequence bndrs
      lhs1   <- lhs
      rhs1   <- rhs
      return $ PragmaD $ RuleP n bndrs1 lhs1 rhs1 phases

pragAnnD :: AnnTarget -> ExpQ -> DecQ
pragAnnD target expr
  = do
      exp1 <- expr
      return $ PragmaD $ AnnP target exp1

pragLineD :: Int -> String -> DecQ
pragLineD line file = return $ PragmaD $ LineP line file

pragCompleteD :: [Name] -> Maybe Name -> DecQ
pragCompleteD cls mty = return $ PragmaD $ CompleteP cls mty

dataInstD :: CxtQ -> Name -> [TypeQ] -> Maybe KindQ -> [ConQ]
          -> [DerivClauseQ] -> DecQ
dataInstD ctxt tc tys ksig cons derivs =
  do
    ctxt1   <- ctxt
    tys1    <- sequenceA tys
    ksig1   <- sequenceA ksig
    cons1   <- sequenceA cons
    derivs1 <- sequenceA derivs
    return (DataInstD ctxt1 tc tys1 ksig1 cons1 derivs1)

newtypeInstD :: CxtQ -> Name -> [TypeQ] -> Maybe KindQ -> ConQ
             -> [DerivClauseQ] -> DecQ
newtypeInstD ctxt tc tys ksig con derivs =
  do
    ctxt1   <- ctxt
    tys1    <- sequenceA tys
    ksig1   <- sequenceA ksig
    con1    <- con
    derivs1 <- sequence derivs
    return (NewtypeInstD ctxt1 tc tys1 ksig1 con1 derivs1)

tySynInstD :: Name -> TySynEqnQ -> DecQ
tySynInstD tc eqn =
  do
    eqn1 <- eqn
    return (TySynInstD tc eqn1)

dataFamilyD :: Name -> [TyVarBndrQ] -> Maybe KindQ -> DecQ
dataFamilyD tc tvs kind =
  do tvs'  <- sequenceA tvs
     kind' <- sequenceA kind
     return $ DataFamilyD tc tvs' kind'

openTypeFamilyD :: Name -> [TyVarBndrQ] -> FamilyResultSigQ
                -> Maybe InjectivityAnn -> DecQ
openTypeFamilyD tc tvs res inj =
  do tvs' <- sequenceA tvs
     res' <- res
     return $ OpenTypeFamilyD (TypeFamilyHead tc tvs' res' inj)

closedTypeFamilyD :: Name -> [TyVarBndrQ] -> FamilyResultSigQ
                  -> Maybe InjectivityAnn -> [TySynEqnQ] -> DecQ
closedTypeFamilyD tc tvs result injectivity eqns =
  do tvs1    <- sequenceA tvs
     result1 <- result
     eqns1   <- sequenceA eqns
     return (ClosedTypeFamilyD (TypeFamilyHead tc tvs1 result1 injectivity) eqns1)

roleAnnotD :: Name -> [Role] -> DecQ
roleAnnotD name roles = return $ RoleAnnotD name roles

standaloneDerivD :: CxtQ -> TypeQ -> DecQ
standaloneDerivD = standaloneDerivWithStrategyD Nothing

standaloneDerivWithStrategyD :: Maybe DerivStrategyQ -> CxtQ -> TypeQ -> DecQ
standaloneDerivWithStrategyD mdsq ctxtq tyq =
  do
    mds  <- sequenceA mdsq
    ctxt <- ctxtq
    ty   <- tyq
    return $ StandaloneDerivD mds ctxt ty

defaultSigD :: Name -> TypeQ -> DecQ
defaultSigD n tyq =
  do
    ty <- tyq
    return $ DefaultSigD n ty

-- | Pattern synonym declaration
patSynD :: Name -> PatSynArgsQ -> PatSynDirQ -> PatQ -> DecQ
patSynD name args dir pat = do
  args'    <- args
  dir'     <- dir
  pat'     <- pat
  return (PatSynD name args' dir' pat')

-- | Pattern synonym type signature
patSynSigD :: Name -> TypeQ -> DecQ
patSynSigD nm ty =
  do ty' <- ty
     return $ PatSynSigD nm ty'

-- | Implicit parameter binding declaration. Can only be used in let
-- and where clauses which consist entirely of implicit bindings.
implicitParamBindD :: String -> ExpQ -> DecQ
implicitParamBindD n e =
  do
    e' <- e
    return $ ImplicitParamBindD n e'

tySynEqn :: [TypeQ] -> TypeQ -> TySynEqnQ
tySynEqn lhs rhs =
  do
    lhs1 <- sequence lhs
    rhs1 <- rhs
    return (TySynEqn lhs1 rhs1)

cxt :: [PredQ] -> CxtQ
cxt = sequence

derivClause :: Maybe DerivStrategyQ -> [PredQ] -> DerivClauseQ
derivClause mds p = do mds' <- sequenceA mds
                       p'   <- cxt p
                       return $ DerivClause mds' p'

stockStrategy :: DerivStrategyQ
stockStrategy = pure StockStrategy

anyclassStrategy :: DerivStrategyQ
anyclassStrategy = pure AnyclassStrategy

newtypeStrategy :: DerivStrategyQ
newtypeStrategy = pure NewtypeStrategy

viaStrategy :: TypeQ -> DerivStrategyQ
viaStrategy = fmap ViaStrategy

normalC :: Name -> [BangTypeQ] -> ConQ
normalC con strtys = liftM (NormalC con) $ sequence strtys

recC :: Name -> [VarBangTypeQ] -> ConQ
recC con varstrtys = liftM (RecC con) $ sequence varstrtys

infixC :: Q (Bang, Type) -> Name -> Q (Bang, Type) -> ConQ
infixC st1 con st2 = do st1' <- st1
                        st2' <- st2
                        return $ InfixC st1' con st2'

forallC :: [TyVarBndrQ] -> CxtQ -> ConQ -> ConQ
forallC ns ctxt con = do
  ns'   <- sequenceA ns
  ctxt' <- ctxt
  con'  <- con
  pure $ ForallC ns' ctxt' con'

gadtC :: [Name] -> [StrictTypeQ] -> TypeQ -> ConQ
gadtC cons strtys ty = liftM2 (GadtC cons) (sequence strtys) ty

recGadtC :: [Name] -> [VarStrictTypeQ] -> TypeQ -> ConQ
recGadtC cons varstrtys ty = liftM2 (RecGadtC cons) (sequence varstrtys) ty

-------------------------------------------------------------------------------
-- *   Type

forallT :: [TyVarBndrQ] -> CxtQ -> TypeQ -> TypeQ
forallT tvars ctxt ty = do
    tvars1 <- sequenceA tvars
    ctxt1  <- ctxt
    ty1    <- ty
    return $ ForallT tvars1 ctxt1 ty1

varT :: Name -> TypeQ
varT = return . VarT

conT :: Name -> TypeQ
conT = return . ConT

infixT :: TypeQ -> Name -> TypeQ -> TypeQ
infixT t1 n t2 = do t1' <- t1
                    t2' <- t2
                    return (InfixT t1' n t2')

uInfixT :: TypeQ -> Name -> TypeQ -> TypeQ
uInfixT t1 n t2 = do t1' <- t1
                     t2' <- t2
                     return (UInfixT t1' n t2')

parensT :: TypeQ -> TypeQ
parensT t = do t' <- t
               return (ParensT t')

appT :: TypeQ -> TypeQ -> TypeQ
appT t1 t2 = do
           t1' <- t1
           t2' <- t2
           return $ AppT t1' t2'

arrowT :: TypeQ
arrowT = return ArrowT

listT :: TypeQ
listT = return ListT

litT :: TyLitQ -> TypeQ
litT l = fmap LitT l

tupleT :: Int -> TypeQ
tupleT i = return (TupleT i)

unboxedTupleT :: Int -> TypeQ
unboxedTupleT i = return (UnboxedTupleT i)

unboxedSumT :: SumArity -> TypeQ
unboxedSumT arity = return (UnboxedSumT arity)

sigT :: TypeQ -> KindQ -> TypeQ
sigT t k
  = do
      t' <- t
      k' <- k
      return $ SigT t' k'

equalityT :: TypeQ
equalityT = return EqualityT

wildCardT :: TypeQ
wildCardT = return WildCardT

implicitParamT :: String -> TypeQ -> TypeQ
implicitParamT n t
  = do
      t' <- t
      return $ ImplicitParamT n t'

{-# DEPRECATED classP "As of template-haskell-2.10, constraint predicates (Pred) are just types (Type), in keeping with ConstraintKinds. Please use 'conT' and 'appT'." #-}
classP :: Name -> [Q Type] -> Q Pred
classP cla tys
  = do
      tysl <- sequence tys
      return (foldl AppT (ConT cla) tysl)

{-# DEPRECATED equalP "As of template-haskell-2.10, constraint predicates (Pred) are just types (Type), in keeping with ConstraintKinds. Please see 'equalityT'." #-}
equalP :: TypeQ -> TypeQ -> PredQ
equalP tleft tright
  = do
      tleft1  <- tleft
      tright1 <- tright
      eqT <- equalityT
      return (foldl AppT eqT [tleft1, tright1])

promotedT :: Name -> TypeQ
promotedT = return . PromotedT

promotedTupleT :: Int -> TypeQ
promotedTupleT i = return (PromotedTupleT i)

promotedNilT :: TypeQ
promotedNilT = return PromotedNilT

promotedConsT :: TypeQ
promotedConsT = return PromotedConsT

noSourceUnpackedness, sourceNoUnpack, sourceUnpack :: SourceUnpackednessQ
noSourceUnpackedness = return NoSourceUnpackedness
sourceNoUnpack       = return SourceNoUnpack
sourceUnpack         = return SourceUnpack

noSourceStrictness, sourceLazy, sourceStrict :: SourceStrictnessQ
noSourceStrictness = return NoSourceStrictness
sourceLazy         = return SourceLazy
sourceStrict       = return SourceStrict

{-# DEPRECATED isStrict
    ["Use 'bang'. See https://ghc.haskell.org/trac/ghc/wiki/Migration/8.0. ",
     "Example usage: 'bang noSourceUnpackedness sourceStrict'"] #-}
{-# DEPRECATED notStrict
    ["Use 'bang'. See https://ghc.haskell.org/trac/ghc/wiki/Migration/8.0. ",
     "Example usage: 'bang noSourceUnpackedness noSourceStrictness'"] #-}
{-# DEPRECATED unpacked
    ["Use 'bang'. See https://ghc.haskell.org/trac/ghc/wiki/Migration/8.0. ",
     "Example usage: 'bang sourceUnpack sourceStrict'"] #-}
isStrict, notStrict, unpacked :: Q Strict
isStrict = bang noSourceUnpackedness sourceStrict
notStrict = bang noSourceUnpackedness noSourceStrictness
unpacked = bang sourceUnpack sourceStrict

bang :: SourceUnpackednessQ -> SourceStrictnessQ -> BangQ
bang u s = do u' <- u
              s' <- s
              return (Bang u' s')

bangType :: BangQ -> TypeQ -> BangTypeQ
bangType = liftM2 (,)

varBangType :: Name -> BangTypeQ -> VarBangTypeQ
varBangType v bt = do (b, t) <- bt
                      return (v, b, t)

{-# DEPRECATED strictType
               "As of @template-haskell-2.11.0.0@, 'StrictType' has been replaced by 'BangType'. Please use 'bangType' instead." #-}
strictType :: Q Strict -> TypeQ -> StrictTypeQ
strictType = bangType

{-# DEPRECATED varStrictType
               "As of @template-haskell-2.11.0.0@, 'VarStrictType' has been replaced by 'VarBangType'. Please use 'varBangType' instead." #-}
varStrictType :: Name -> StrictTypeQ -> VarStrictTypeQ
varStrictType = varBangType

-- * Type Literals

numTyLit :: Integer -> TyLitQ
numTyLit n = if n >= 0 then return (NumTyLit n)
                       else fail ("Negative type-level number: " ++ show n)

strTyLit :: String -> TyLitQ
strTyLit s = return (StrTyLit s)

-------------------------------------------------------------------------------
-- *   Kind

plainTV :: Name -> TyVarBndrQ
plainTV = pure . PlainTV

kindedTV :: Name -> KindQ -> TyVarBndrQ
kindedTV n = fmap (KindedTV n)

varK :: Name -> Kind
varK = VarT

conK :: Name -> Kind
conK = ConT

tupleK :: Int -> Kind
tupleK = TupleT

arrowK :: Kind
arrowK = ArrowT

listK :: Kind
listK = ListT

appK :: Kind -> Kind -> Kind
appK = AppT

starK :: KindQ
starK = pure StarT

constraintK :: KindQ
constraintK = pure ConstraintT

-------------------------------------------------------------------------------
-- *   Type family result

noSig :: FamilyResultSigQ
noSig = pure NoSig

kindSig :: KindQ -> FamilyResultSigQ
kindSig = fmap KindSig

tyVarSig :: TyVarBndrQ -> FamilyResultSigQ
tyVarSig = fmap TyVarSig

-------------------------------------------------------------------------------
-- *   Injectivity annotation

injectivityAnn :: Name -> [Name] -> InjectivityAnn
injectivityAnn = TH.InjectivityAnn

-------------------------------------------------------------------------------
-- *   Role

nominalR, representationalR, phantomR, inferR :: Role
nominalR          = NominalR
representationalR = RepresentationalR
phantomR          = PhantomR
inferR            = InferR

-------------------------------------------------------------------------------
-- *   Callconv

cCall, stdCall, cApi, prim, javaScript :: Callconv
cCall      = CCall
stdCall    = StdCall
cApi       = CApi
prim       = Prim
javaScript = JavaScript

-------------------------------------------------------------------------------
-- *   Safety

unsafe, safe, interruptible :: Safety
unsafe = Unsafe
safe = Safe
interruptible = Interruptible

-------------------------------------------------------------------------------
-- *   FunDep

funDep :: [Name] -> [Name] -> FunDep
funDep = FunDep

-------------------------------------------------------------------------------
-- *   RuleBndr
ruleVar :: Name -> RuleBndrQ
ruleVar = return . RuleVar

typedRuleVar :: Name -> TypeQ -> RuleBndrQ
typedRuleVar n ty = ty >>= return . TypedRuleVar n

-------------------------------------------------------------------------------
-- *   AnnTarget
valueAnnotation :: Name -> AnnTarget
valueAnnotation = ValueAnnotation

typeAnnotation :: Name -> AnnTarget
typeAnnotation = TypeAnnotation

moduleAnnotation :: AnnTarget
moduleAnnotation = ModuleAnnotation

-------------------------------------------------------------------------------
-- * Pattern Synonyms (sub constructs)

unidir, implBidir :: PatSynDirQ
unidir    = return Unidir
implBidir = return ImplBidir

explBidir :: [ClauseQ] -> PatSynDirQ
explBidir cls = do
  cls' <- sequence cls
  return (ExplBidir cls')

prefixPatSyn :: [Name] -> PatSynArgsQ
prefixPatSyn args = return $ PrefixPatSyn args

recordPatSyn :: [Name] -> PatSynArgsQ
recordPatSyn sels = return $ RecordPatSyn sels

infixPatSyn :: Name -> Name -> PatSynArgsQ
infixPatSyn arg1 arg2 = return $ InfixPatSyn arg1 arg2

--------------------------------------------------------------
-- * Useful helper function

appsE :: [ExpQ] -> ExpQ
appsE [] = error "appsE []"
appsE [x] = x
appsE (x:y:zs) = appsE ( (appE x y) : zs )

-- | Return the Module at the place of splicing.  Can be used as an
-- input for 'reifyModule'.
thisModule :: Q Module
thisModule = do
  loc <- location
  return $ Module (mkPkgName $ loc_package loc) (mkModName $ loc_module loc)