summaryrefslogtreecommitdiff
path: root/libraries/template-haskell/Language/Haskell/TH/Syntax.hs
blob: c36568acf4bdb9b5d59b2ff6eb83851ee3501ead (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
{-# LANGUAGE CPP, DeriveDataTypeable,
             DeriveGeneric, FlexibleInstances, DefaultSignatures,
             RankNTypes, RoleAnnotations, ScopedTypeVariables,
             MagicHash, KindSignatures, PolyKinds, TypeApplications, DataKinds,
             GADTs, UnboxedTuples, UnboxedSums, TypeInType,
             Trustworthy, DeriveFunctor #-}

{-# OPTIONS_GHC -fno-warn-inline-rule-shadowing #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Language.Haskell.Syntax
-- Copyright   :  (c) The University of Glasgow 2003
-- License     :  BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  experimental
-- Portability :  portable
--
-- Abstract syntax definitions for Template Haskell.
--
-----------------------------------------------------------------------------

module Language.Haskell.TH.Syntax
    ( module Language.Haskell.TH.Syntax
      -- * Language extensions
    , module Language.Haskell.TH.LanguageExtensions
    , ForeignSrcLang(..)
    ) where

import Data.Data hiding (Fixity(..))
import Data.Typeable
import Data.IORef
import System.IO.Unsafe ( unsafePerformIO )
import GHC.IO.Unsafe    ( unsafeDupableInterleaveIO )
import Control.Monad (liftM)
import Control.Monad.IO.Class (MonadIO (..))
import Control.Monad.Fix (MonadFix (..))
import Control.Applicative (liftA2)
import Control.Exception (BlockedIndefinitelyOnMVar (..), catch, throwIO)
import Control.Exception.Base (FixIOException (..))
import Control.Concurrent.MVar (newEmptyMVar, readMVar, putMVar)
import System.IO        ( hPutStrLn, stderr )
import Data.Char        ( isAlpha, isAlphaNum, isUpper, ord )
import Data.Int
import Data.List.NonEmpty ( NonEmpty(..) )
import Data.Void        ( Void, absurd )
import Data.Word
import Data.Ratio
import GHC.CString      ( unpackCString# )
import GHC.Generics     ( Generic )
import GHC.Types        ( Int(..), Word(..), Char(..), Double(..), Float(..),
                          TYPE, RuntimeRep(..) )
import GHC.Prim         ( Int#, Word#, Char#, Double#, Float#, Addr# )
import GHC.Ptr          ( Ptr, plusPtr )
import GHC.Lexeme       ( startsVarSym, startsVarId )
import GHC.ForeignSrcLang.Type
import Language.Haskell.TH.LanguageExtensions
import Numeric.Natural
import Prelude
import Foreign.ForeignPtr
import Foreign.C.String
import Foreign.C.Types
import Data.List (foldl')

#if __GLASGOW_HASKELL__ >= 901
import GHC.Types ( Levity(..) )
#endif

-----------------------------------------------------
--
--              The Quasi class
--
-----------------------------------------------------

class (MonadIO m, MonadFail m) => Quasi m where
  qNewName :: String -> m Name
        -- ^ Fresh names

        -- Error reporting and recovery
  qReport  :: Bool -> String -> m ()    -- ^ Report an error (True) or warning (False)
                                        -- ...but carry on; use 'fail' to stop
  qRecover :: m a -- ^ the error handler
           -> m a -- ^ action which may fail
           -> m a               -- ^ Recover from the monadic 'fail'

        -- Inspect the type-checker's environment
  qLookupName :: Bool -> String -> m (Maybe Name)
       -- True <=> type namespace, False <=> value namespace
  qReify          :: Name -> m Info
  qReifyFixity    :: Name -> m (Maybe Fixity)
  qReifyType      :: Name -> m Type
  qReifyInstances :: Name -> [Type] -> m [Dec]
       -- Is (n tys) an instance?
       -- Returns list of matching instance Decs
       --    (with empty sub-Decs)
       -- Works for classes and type functions
  qReifyRoles         :: Name -> m [Role]
  qReifyAnnotations   :: Data a => AnnLookup -> m [a]
  qReifyModule        :: Module -> m ModuleInfo
  qReifyConStrictness :: Name -> m [DecidedStrictness]

  qLocation :: m Loc

  qRunIO :: IO a -> m a
  qRunIO = liftIO
  -- ^ Input/output (dangerous)

  qAddDependentFile :: FilePath -> m ()

  qAddTempFile :: String -> m FilePath

  qAddTopDecls :: [Dec] -> m ()

  qAddForeignFilePath :: ForeignSrcLang -> String -> m ()

  qAddModFinalizer :: Q () -> m ()

  qAddCorePlugin :: String -> m ()

  qGetQ :: Typeable a => m (Maybe a)

  qPutQ :: Typeable a => a -> m ()

  qIsExtEnabled :: Extension -> m Bool
  qExtsEnabled :: m [Extension]

  qPutDoc :: DocLoc -> String -> m ()
  qGetDoc :: DocLoc -> m (Maybe String)

-----------------------------------------------------
--      The IO instance of Quasi
--
--  This instance is used only when running a Q
--  computation in the IO monad, usually just to
--  print the result.  There is no interesting
--  type environment, so reification isn't going to
--  work.
--
-----------------------------------------------------

instance Quasi IO where
  qNewName = newNameIO

  qReport True  msg = hPutStrLn stderr ("Template Haskell error: " ++ msg)
  qReport False msg = hPutStrLn stderr ("Template Haskell error: " ++ msg)

  qLookupName _ _       = badIO "lookupName"
  qReify _              = badIO "reify"
  qReifyFixity _        = badIO "reifyFixity"
  qReifyType _          = badIO "reifyFixity"
  qReifyInstances _ _   = badIO "reifyInstances"
  qReifyRoles _         = badIO "reifyRoles"
  qReifyAnnotations _   = badIO "reifyAnnotations"
  qReifyModule _        = badIO "reifyModule"
  qReifyConStrictness _ = badIO "reifyConStrictness"
  qLocation             = badIO "currentLocation"
  qRecover _ _          = badIO "recover" -- Maybe we could fix this?
  qAddDependentFile _   = badIO "addDependentFile"
  qAddTempFile _        = badIO "addTempFile"
  qAddTopDecls _        = badIO "addTopDecls"
  qAddForeignFilePath _ _ = badIO "addForeignFilePath"
  qAddModFinalizer _    = badIO "addModFinalizer"
  qAddCorePlugin _      = badIO "addCorePlugin"
  qGetQ                 = badIO "getQ"
  qPutQ _               = badIO "putQ"
  qIsExtEnabled _       = badIO "isExtEnabled"
  qExtsEnabled          = badIO "extsEnabled"
  qPutDoc _ _           = badIO "putDoc"
  qGetDoc _             = badIO "getDoc"

instance Quote IO where
  newName = newNameIO

newNameIO :: String -> IO Name
newNameIO s = do { n <- atomicModifyIORef' counter (\x -> (x + 1, x))
                 ; pure (mkNameU s n) }

badIO :: String -> IO a
badIO op = do   { qReport True ("Can't do `" ++ op ++ "' in the IO monad")
                ; fail "Template Haskell failure" }

-- Global variable to generate unique symbols
counter :: IORef Uniq
{-# NOINLINE counter #-}
counter = unsafePerformIO (newIORef 0)


-----------------------------------------------------
--
--              The Q monad
--
-----------------------------------------------------

newtype Q a = Q { unQ :: forall m. Quasi m => m a }

-- \"Runs\" the 'Q' monad. Normal users of Template Haskell
-- should not need this function, as the splice brackets @$( ... )@
-- are the usual way of running a 'Q' computation.
--
-- This function is primarily used in GHC internals, and for debugging
-- splices by running them in 'IO'.
--
-- Note that many functions in 'Q', such as 'reify' and other compiler
-- queries, are not supported when running 'Q' in 'IO'; these operations
-- simply fail at runtime. Indeed, the only operations guaranteed to succeed
-- are 'newName', 'runIO', 'reportError' and 'reportWarning'.
runQ :: Quasi m => Q a -> m a
runQ (Q m) = m

instance Monad Q where
  Q m >>= k  = Q (m >>= \x -> unQ (k x))
  (>>) = (*>)

instance MonadFail Q where
  fail s     = report True s >> Q (fail "Q monad failure")

instance Functor Q where
  fmap f (Q x) = Q (fmap f x)

instance Applicative Q where
  pure x = Q (pure x)
  Q f <*> Q x = Q (f <*> x)
  Q m *> Q n = Q (m *> n)

-- | @since 2.17.0.0
instance Semigroup a => Semigroup (Q a) where
  (<>) = liftA2 (<>)

-- | @since 2.17.0.0
instance Monoid a => Monoid (Q a) where
  mempty = pure mempty

-- | If the function passed to 'mfix' inspects its argument,
-- the resulting action will throw a 'FixIOException'.
--
-- @since 2.17.0.0
instance MonadFix Q where
  -- We use the same blackholing approach as in fixIO.
  -- See Note [Blackholing in fixIO] in System.IO in base.
  mfix k = do
    m <- runIO newEmptyMVar
    ans <- runIO (unsafeDupableInterleaveIO
             (readMVar m `catch` \BlockedIndefinitelyOnMVar ->
                                    throwIO FixIOException))
    result <- k ans
    runIO (putMVar m result)
    return result


-----------------------------------------------------
--
--              The Quote class
--
-----------------------------------------------------



-- | The 'Quote' class implements the minimal interface which is necessary for
-- desugaring quotations.
--
-- * The @Monad m@ superclass is needed to stitch together the different
-- AST fragments.
-- * 'newName' is used when desugaring binding structures such as lambdas
-- to generate fresh names.
--
-- Therefore the type of an untyped quotation in GHC is `Quote m => m Exp`
--
-- For many years the type of a quotation was fixed to be `Q Exp` but by
-- more precisely specifying the minimal interface it enables the `Exp` to
-- be extracted purely from the quotation without interacting with `Q`.
class Monad m => Quote m where
  {- |
  Generate a fresh name, which cannot be captured.

  For example, this:

  @f = $(do
    nm1 <- newName \"x\"
    let nm2 = 'mkName' \"x\"
    return ('LamE' ['VarP' nm1] (LamE [VarP nm2] ('VarE' nm1)))
   )@

  will produce the splice

  >f = \x0 -> \x -> x0

  In particular, the occurrence @VarE nm1@ refers to the binding @VarP nm1@,
  and is not captured by the binding @VarP nm2@.

  Although names generated by @newName@ cannot /be captured/, they can
  /capture/ other names. For example, this:

  >g = $(do
  >  nm1 <- newName "x"
  >  let nm2 = mkName "x"
  >  return (LamE [VarP nm2] (LamE [VarP nm1] (VarE nm2)))
  > )

  will produce the splice

  >g = \x -> \x0 -> x0

  since the occurrence @VarE nm2@ is captured by the innermost binding
  of @x@, namely @VarP nm1@.
  -}
  newName :: String -> m Name

instance Quote Q where
  newName s = Q (qNewName s)

-----------------------------------------------------
--
--              The TExp type
--
-----------------------------------------------------

type role TExp nominal   -- See Note [Role of TExp]
newtype TExp (a :: TYPE (r :: RuntimeRep)) = TExp
  { unType :: Exp -- ^ Underlying untyped Template Haskell expression
  }
-- ^ Represents an expression which has type @a@. Built on top of 'Exp', typed
-- expressions allow for type-safe splicing via:
--
--   - typed quotes, written as @[|| ... ||]@ where @...@ is an expression; if
--     that expression has type @a@, then the quotation has type
--     @'Q' ('TExp' a)@
--
--   - typed splices inside of typed quotes, written as @$$(...)@ where @...@
--     is an arbitrary expression of type @'Q' ('TExp' a)@
--
-- Traditional expression quotes and splices let us construct ill-typed
-- expressions:
--
-- >>> fmap ppr $ runQ [| True == $( [| "foo" |] ) |]
-- GHC.Types.True GHC.Classes.== "foo"
-- >>> GHC.Types.True GHC.Classes.== "foo"
-- <interactive> error:
--     • Couldn't match expected type ‘Bool’ with actual type ‘[Char]’
--     • In the second argument of ‘(==)’, namely ‘"foo"’
--       In the expression: True == "foo"
--       In an equation for ‘it’: it = True == "foo"
--
-- With typed expressions, the type error occurs when /constructing/ the
-- Template Haskell expression:
--
-- >>> fmap ppr $ runQ [|| True == $$( [|| "foo" ||] ) ||]
-- <interactive> error:
--     • Couldn't match type ‘[Char]’ with ‘Bool’
--       Expected type: Q (TExp Bool)
--         Actual type: Q (TExp [Char])
--     • In the Template Haskell quotation [|| "foo" ||]
--       In the expression: [|| "foo" ||]
--       In the Template Haskell splice $$([|| "foo" ||])
--
-- Representation-polymorphic since /template-haskell-2.16.0.0/.

-- | Discard the type annotation and produce a plain Template Haskell
-- expression
--
-- Representation-polymorphic since /template-haskell-2.16.0.0/.
unTypeQ :: forall (r :: RuntimeRep) (a :: TYPE r) m . Quote m => m (TExp a) -> m Exp
unTypeQ m = do { TExp e <- m
               ; return e }

-- | Annotate the Template Haskell expression with a type
--
-- This is unsafe because GHC cannot check for you that the expression
-- really does have the type you claim it has.
--
-- Representation-polymorphic since /template-haskell-2.16.0.0/.
unsafeTExpCoerce :: forall (r :: RuntimeRep) (a :: TYPE r) m .
                      Quote m => m Exp -> m (TExp a)
unsafeTExpCoerce m = do { e <- m
                        ; return (TExp e) }

{- Note [Role of TExp]
~~~~~~~~~~~~~~~~~~~~~~
TExp's argument must have a nominal role, not phantom as would
be inferred (#8459).  Consider

  e :: TExp Age
  e = MkAge 3

  foo = $(coerce e) + 4::Int

The splice will evaluate to (MkAge 3) and you can't add that to
4::Int. So you can't coerce a (TExp Age) to a (TExp Int). -}

-- Code constructor

type role Code representational nominal   -- See Note [Role of TExp]
newtype Code m (a :: TYPE (r :: RuntimeRep)) = Code
  { examineCode :: m (TExp a) -- ^ Underlying monadic value
  }

-- | Unsafely convert an untyped code representation into a typed code
-- representation.
unsafeCodeCoerce :: forall (r :: RuntimeRep) (a :: TYPE r) m .
                      Quote m => m Exp -> Code m a
unsafeCodeCoerce m = Code (unsafeTExpCoerce m)

-- | Lift a monadic action producing code into the typed 'Code'
-- representation
liftCode :: forall (r :: RuntimeRep) (a :: TYPE r) m . m (TExp a) -> Code m a
liftCode = Code

-- | Extract the untyped representation from the typed representation
unTypeCode :: forall (r :: RuntimeRep) (a :: TYPE r) m . Quote m
           => Code m a -> m Exp
unTypeCode = unTypeQ . examineCode

-- | Modify the ambient monad used during code generation. For example, you
-- can use `hoistCode` to handle a state effect:
-- @
--  handleState :: Code (StateT Int Q) a -> Code Q a
--  handleState = hoistCode (flip runState 0)
-- @
hoistCode :: forall m n (r :: RuntimeRep) (a :: TYPE r) . Monad m
          => (forall x . m x -> n x) -> Code m a -> Code n a
hoistCode f (Code a) = Code (f a)


-- | Variant of (>>=) which allows effectful computations to be injected
-- into code generation.
bindCode :: forall m a (r :: RuntimeRep) (b :: TYPE r) . Monad m
         => m a -> (a -> Code m b) -> Code m b
bindCode q k = liftCode (q >>= examineCode . k)

-- | Variant of (>>) which allows effectful computations to be injected
-- into code generation.
bindCode_ :: forall m a (r :: RuntimeRep) (b :: TYPE r) . Monad m
          => m a -> Code m b -> Code m b
bindCode_ q c = liftCode ( q >> examineCode c)

-- | A useful combinator for embedding monadic actions into 'Code'
-- @
-- myCode :: ... => Code m a
-- myCode = joinCode $ do
--   x <- someSideEffect
--   return (makeCodeWith x)
-- @
joinCode :: forall m (r :: RuntimeRep) (a :: TYPE r) . Monad m
         => m (Code m a) -> Code m a
joinCode = flip bindCode id

----------------------------------------------------
-- Packaged versions for the programmer, hiding the Quasi-ness


-- | Report an error (True) or warning (False),
-- but carry on; use 'fail' to stop.
report  :: Bool -> String -> Q ()
report b s = Q (qReport b s)
{-# DEPRECATED report "Use reportError or reportWarning instead" #-} -- deprecated in 7.6

-- | Report an error to the user, but allow the current splice's computation to carry on. To abort the computation, use 'fail'.
reportError :: String -> Q ()
reportError = report True

-- | Report a warning to the user, and carry on.
reportWarning :: String -> Q ()
reportWarning = report False

-- | Recover from errors raised by 'reportError' or 'fail'.
recover :: Q a -- ^ handler to invoke on failure
        -> Q a -- ^ computation to run
        -> Q a
recover (Q r) (Q m) = Q (qRecover r m)

-- We don't export lookupName; the Bool isn't a great API
-- Instead we export lookupTypeName, lookupValueName
lookupName :: Bool -> String -> Q (Maybe Name)
lookupName ns s = Q (qLookupName ns s)

-- | Look up the given name in the (type namespace of the) current splice's scope. See "Language.Haskell.TH.Syntax#namelookup" for more details.
lookupTypeName :: String -> Q (Maybe Name)
lookupTypeName  s = Q (qLookupName True s)

-- | Look up the given name in the (value namespace of the) current splice's scope. See "Language.Haskell.TH.Syntax#namelookup" for more details.
lookupValueName :: String -> Q (Maybe Name)
lookupValueName s = Q (qLookupName False s)

{-
Note [Name lookup]
~~~~~~~~~~~~~~~~~~
-}
{- $namelookup #namelookup#
The functions 'lookupTypeName' and 'lookupValueName' provide
a way to query the current splice's context for what names
are in scope. The function 'lookupTypeName' queries the type
namespace, whereas 'lookupValueName' queries the value namespace,
but the functions are otherwise identical.

A call @lookupValueName s@ will check if there is a value
with name @s@ in scope at the current splice's location. If
there is, the @Name@ of this value is returned;
if not, then @Nothing@ is returned.

The returned name cannot be \"captured\".
For example:

> f = "global"
> g = $( do
>          Just nm <- lookupValueName "f"
>          [| let f = "local" in $( varE nm ) |]

In this case, @g = \"global\"@; the call to @lookupValueName@
returned the global @f@, and this name was /not/ captured by
the local definition of @f@.

The lookup is performed in the context of the /top-level/ splice
being run. For example:

> f = "global"
> g = $( [| let f = "local" in
>            $(do
>                Just nm <- lookupValueName "f"
>                varE nm
>             ) |] )

Again in this example, @g = \"global\"@, because the call to
@lookupValueName@ queries the context of the outer-most @$(...)@.

Operators should be queried without any surrounding parentheses, like so:

> lookupValueName "+"

Qualified names are also supported, like so:

> lookupValueName "Prelude.+"
> lookupValueName "Prelude.map"

-}


{- | 'reify' looks up information about the 'Name'. It will fail with
a compile error if the 'Name' is not visible. A 'Name' is visible if it is
imported or defined in a prior top-level declaration group. See the
documentation for 'newDeclarationGroup' for more details.

It is sometimes useful to construct the argument name using 'lookupTypeName' or 'lookupValueName'
to ensure that we are reifying from the right namespace. For instance, in this context:

> data D = D

which @D@ does @reify (mkName \"D\")@ return information about? (Answer: @D@-the-type, but don't rely on it.)
To ensure we get information about @D@-the-value, use 'lookupValueName':

> do
>   Just nm <- lookupValueName "D"
>   reify nm

and to get information about @D@-the-type, use 'lookupTypeName'.
-}
reify :: Name -> Q Info
reify v = Q (qReify v)

{- | @reifyFixity nm@ attempts to find a fixity declaration for @nm@. For
example, if the function @foo@ has the fixity declaration @infixr 7 foo@, then
@reifyFixity 'foo@ would return @'Just' ('Fixity' 7 'InfixR')@. If the function
@bar@ does not have a fixity declaration, then @reifyFixity 'bar@ returns
'Nothing', so you may assume @bar@ has 'defaultFixity'.
-}
reifyFixity :: Name -> Q (Maybe Fixity)
reifyFixity nm = Q (qReifyFixity nm)

{- | @reifyType nm@ attempts to find the type or kind of @nm@. For example,
@reifyType 'not@   returns @Bool -> Bool@, and
@reifyType ''Bool@ returns @Type@.
This works even if there's no explicit signature and the type or kind is inferred.
-}
reifyType :: Name -> Q Type
reifyType nm = Q (qReifyType nm)

{- | Template Haskell is capable of reifying information about types and
terms defined in previous declaration groups. Top-level declaration splices break up
declaration groups.

For an example, consider this  code block. We define a datatype @X@ and
then try to call 'reify' on the datatype.

@
module Check where

data X = X
    deriving Eq

$(do
    info <- reify ''X
    runIO $ print info
 )
@

This code fails to compile, noting that @X@ is not available for reification at the site of 'reify'. We can fix this by creating a new declaration group using an empty top-level splice:

@
data X = X
    deriving Eq

$(pure [])

$(do
    info <- reify ''X
    runIO $ print info
 )
@

We provide 'newDeclarationGroup' as a means of documenting this behavior
and providing a name for the pattern.

Since top level splices infer the presence of the @$( ... )@ brackets, we can also write:

@
data X = X
    deriving Eq

newDeclarationGroup

$(do
    info <- reify ''X
    runIO $ print info
 )
@

-}
newDeclarationGroup :: Q [Dec]
newDeclarationGroup = pure []

{- | @reifyInstances nm tys@ returns a list of visible instances of @nm tys@. That is,
if @nm@ is the name of a type class, then all instances of this class at the types @tys@
are returned. Alternatively, if @nm@ is the name of a data family or type family,
all instances of this family at the types @tys@ are returned.

Note that this is a \"shallow\" test; the declarations returned merely have
instance heads which unify with @nm tys@, they need not actually be satisfiable.

  - @reifyInstances ''Eq [ 'TupleT' 2 \``AppT`\` 'ConT' ''A \``AppT`\` 'ConT' ''B ]@ contains
    the @instance (Eq a, Eq b) => Eq (a, b)@ regardless of whether @A@ and
    @B@ themselves implement 'Eq'

  - @reifyInstances ''Show [ 'VarT' ('mkName' "a") ]@ produces every available
    instance of 'Eq'

There is one edge case: @reifyInstances ''Typeable tys@ currently always
produces an empty list (no matter what @tys@ are given).

An instance is visible if it is imported or defined in a prior top-level
declaration group. See the documentation for 'newDeclarationGroup' for more details.

-}
reifyInstances :: Name -> [Type] -> Q [InstanceDec]
reifyInstances cls tys = Q (qReifyInstances cls tys)

{- | @reifyRoles nm@ returns the list of roles associated with the parameters of
the tycon @nm@. Fails if @nm@ cannot be found or is not a tycon.
The returned list should never contain 'InferR'.
-}
reifyRoles :: Name -> Q [Role]
reifyRoles nm = Q (qReifyRoles nm)

-- | @reifyAnnotations target@ returns the list of annotations
-- associated with @target@.  Only the annotations that are
-- appropriately typed is returned.  So if you have @Int@ and @String@
-- annotations for the same target, you have to call this function twice.
reifyAnnotations :: Data a => AnnLookup -> Q [a]
reifyAnnotations an = Q (qReifyAnnotations an)

-- | @reifyModule mod@ looks up information about module @mod@.  To
-- look up the current module, call this function with the return
-- value of 'Language.Haskell.TH.Lib.thisModule'.
reifyModule :: Module -> Q ModuleInfo
reifyModule m = Q (qReifyModule m)

-- | @reifyConStrictness nm@ looks up the strictness information for the fields
-- of the constructor with the name @nm@. Note that the strictness information
-- that 'reifyConStrictness' returns may not correspond to what is written in
-- the source code. For example, in the following data declaration:
--
-- @
-- data Pair a = Pair a a
-- @
--
-- 'reifyConStrictness' would return @['DecidedLazy', DecidedLazy]@ under most
-- circumstances, but it would return @['DecidedStrict', DecidedStrict]@ if the
-- @-XStrictData@ language extension was enabled.
reifyConStrictness :: Name -> Q [DecidedStrictness]
reifyConStrictness n = Q (qReifyConStrictness n)

-- | Is the list of instances returned by 'reifyInstances' nonempty?
--
-- If you're confused by an instance not being visible despite being
-- defined in the same module and above the splice in question, see the
-- docs for 'newDeclarationGroup' for a possible explanation.
isInstance :: Name -> [Type] -> Q Bool
isInstance nm tys = do { decs <- reifyInstances nm tys
                       ; return (not (null decs)) }

-- | The location at which this computation is spliced.
location :: Q Loc
location = Q qLocation

-- |The 'runIO' function lets you run an I\/O computation in the 'Q' monad.
-- Take care: you are guaranteed the ordering of calls to 'runIO' within
-- a single 'Q' computation, but not about the order in which splices are run.
--
-- Note: for various murky reasons, stdout and stderr handles are not
-- necessarily flushed when the compiler finishes running, so you should
-- flush them yourself.
runIO :: IO a -> Q a
runIO m = Q (qRunIO m)

-- | Record external files that runIO is using (dependent upon).
-- The compiler can then recognize that it should re-compile the Haskell file
-- when an external file changes.
--
-- Expects an absolute file path.
--
-- Notes:
--
--   * ghc -M does not know about these dependencies - it does not execute TH.
--
--   * The dependency is based on file content, not a modification time
addDependentFile :: FilePath -> Q ()
addDependentFile fp = Q (qAddDependentFile fp)

-- | Obtain a temporary file path with the given suffix. The compiler will
-- delete this file after compilation.
addTempFile :: String -> Q FilePath
addTempFile suffix = Q (qAddTempFile suffix)

-- | Add additional top-level declarations. The added declarations will be type
-- checked along with the current declaration group.
addTopDecls :: [Dec] -> Q ()
addTopDecls ds = Q (qAddTopDecls ds)

-- |
addForeignFile :: ForeignSrcLang -> String -> Q ()
addForeignFile = addForeignSource
{-# DEPRECATED addForeignFile
               "Use 'Language.Haskell.TH.Syntax.addForeignSource' instead"
  #-} -- deprecated in 8.6

-- | Emit a foreign file which will be compiled and linked to the object for
-- the current module. Currently only languages that can be compiled with
-- the C compiler are supported, and the flags passed as part of -optc will
-- be also applied to the C compiler invocation that will compile them.
--
-- Note that for non-C languages (for example C++) @extern "C"@ directives
-- must be used to get symbols that we can access from Haskell.
--
-- To get better errors, it is recommended to use #line pragmas when
-- emitting C files, e.g.
--
-- > {-# LANGUAGE CPP #-}
-- > ...
-- > addForeignSource LangC $ unlines
-- >   [ "#line " ++ show (__LINE__ + 1) ++ " " ++ show __FILE__
-- >   , ...
-- >   ]
addForeignSource :: ForeignSrcLang -> String -> Q ()
addForeignSource lang src = do
  let suffix = case lang of
                 LangC      -> "c"
                 LangCxx    -> "cpp"
                 LangObjc   -> "m"
                 LangObjcxx -> "mm"
                 LangAsm    -> "s"
                 RawObject  -> "a"
  path <- addTempFile suffix
  runIO $ writeFile path src
  addForeignFilePath lang path

-- | Same as 'addForeignSource', but expects to receive a path pointing to the
-- foreign file instead of a 'String' of its contents. Consider using this in
-- conjunction with 'addTempFile'.
--
-- This is a good alternative to 'addForeignSource' when you are trying to
-- directly link in an object file.
addForeignFilePath :: ForeignSrcLang -> FilePath -> Q ()
addForeignFilePath lang fp = Q (qAddForeignFilePath lang fp)

-- | Add a finalizer that will run in the Q monad after the current module has
-- been type checked. This only makes sense when run within a top-level splice.
--
-- The finalizer is given the local type environment at the splice point. Thus
-- 'reify' is able to find the local definitions when executed inside the
-- finalizer.
addModFinalizer :: Q () -> Q ()
addModFinalizer act = Q (qAddModFinalizer (unQ act))

-- | Adds a core plugin to the compilation pipeline.
--
-- @addCorePlugin m@ has almost the same effect as passing @-fplugin=m@ to ghc
-- in the command line. The major difference is that the plugin module @m@
-- must not belong to the current package. When TH executes, it is too late
-- to tell the compiler that we needed to compile first a plugin module in the
-- current package.
addCorePlugin :: String -> Q ()
addCorePlugin plugin = Q (qAddCorePlugin plugin)

-- | Get state from the 'Q' monad. Note that the state is local to the
-- Haskell module in which the Template Haskell expression is executed.
getQ :: Typeable a => Q (Maybe a)
getQ = Q qGetQ

-- | Replace the state in the 'Q' monad. Note that the state is local to the
-- Haskell module in which the Template Haskell expression is executed.
putQ :: Typeable a => a -> Q ()
putQ x = Q (qPutQ x)

-- | Determine whether the given language extension is enabled in the 'Q' monad.
isExtEnabled :: Extension -> Q Bool
isExtEnabled ext = Q (qIsExtEnabled ext)

-- | List all enabled language extensions.
extsEnabled :: Q [Extension]
extsEnabled = Q qExtsEnabled

-- | Add Haddock documentation to the specified location. This will overwrite
-- any documentation at the location if it already exists. This will reify the
-- specified name, so it must be in scope when you call it. If you want to add
-- documentation to something that you are currently splicing, you can use
-- 'addModFinalizer' e.g.
--
-- > do
-- >   let nm = mkName "x"
-- >   addModFinalizer $ putDoc (DeclDoc nm) "Hello"
-- >   [d| $(varP nm) = 42 |]
--
-- The helper functions 'withDecDoc' and 'withDecsDoc' will do this for you, as
-- will the 'funD_doc' and other @_doc@ combinators.
-- You most likely want to have the @-haddock@ flag turned on when using this.
-- Adding documentation to anything outside of the current module will cause an
-- error.
putDoc :: DocLoc -> String -> Q ()
putDoc t s = Q (qPutDoc t s)

-- | Retreives the Haddock documentation at the specified location, if one
-- exists.
-- It can be used to read documentation on things defined outside of the current
-- module, provided that those modules were compiled with the @-haddock@ flag.
getDoc :: DocLoc -> Q (Maybe String)
getDoc n = Q (qGetDoc n)

instance MonadIO Q where
  liftIO = runIO

instance Quasi Q where
  qNewName            = newName
  qReport             = report
  qRecover            = recover
  qReify              = reify
  qReifyFixity        = reifyFixity
  qReifyType          = reifyType
  qReifyInstances     = reifyInstances
  qReifyRoles         = reifyRoles
  qReifyAnnotations   = reifyAnnotations
  qReifyModule        = reifyModule
  qReifyConStrictness = reifyConStrictness
  qLookupName         = lookupName
  qLocation           = location
  qAddDependentFile   = addDependentFile
  qAddTempFile        = addTempFile
  qAddTopDecls        = addTopDecls
  qAddForeignFilePath = addForeignFilePath
  qAddModFinalizer    = addModFinalizer
  qAddCorePlugin      = addCorePlugin
  qGetQ               = getQ
  qPutQ               = putQ
  qIsExtEnabled       = isExtEnabled
  qExtsEnabled        = extsEnabled
  qPutDoc             = putDoc
  qGetDoc             = getDoc


----------------------------------------------------
-- The following operations are used solely in GHC.HsToCore.Quote when
-- desugaring brackets. They are not necessary for the user, who can use
-- ordinary return and (>>=) etc

sequenceQ :: forall m . Monad m => forall a . [m a] -> m [a]
sequenceQ = sequence


-----------------------------------------------------
--
--              The Lift class
--
-----------------------------------------------------

-- | A 'Lift' instance can have any of its values turned into a Template
-- Haskell expression. This is needed when a value used within a Template
-- Haskell quotation is bound outside the Oxford brackets (@[| ... |]@ or
-- @[|| ... ||]@) but not at the top level. As an example:
--
-- > add1 :: Int -> Q (TExp Int)
-- > add1 x = [|| x + 1 ||]
--
-- Template Haskell has no way of knowing what value @x@ will take on at
-- splice-time, so it requires the type of @x@ to be an instance of 'Lift'.
--
-- A 'Lift' instance must satisfy @$(lift x) ≡ x@ and @$$(liftTyped x) ≡ x@
-- for all @x@, where @$(...)@ and @$$(...)@ are Template Haskell splices.
-- It is additionally expected that @'lift' x ≡ 'unTypeQ' ('liftTyped' x)@.
--
-- 'Lift' instances can be derived automatically by use of the @-XDeriveLift@
-- GHC language extension:
--
-- > {-# LANGUAGE DeriveLift #-}
-- > module Foo where
-- >
-- > import Language.Haskell.TH.Syntax
-- >
-- > data Bar a = Bar1 a (Bar a) | Bar2 String
-- >   deriving Lift
--
-- Representation-polymorphic since /template-haskell-2.16.0.0/.
class Lift (t :: TYPE r) where
  -- | Turn a value into a Template Haskell expression, suitable for use in
  -- a splice.
  lift :: Quote m => t -> m Exp
#if __GLASGOW_HASKELL__ >= 901
  default lift :: (r ~ ('BoxedRep 'Lifted), Quote m) => t -> m Exp
#else
  default lift :: (r ~ 'LiftedRep, Quote m) => t -> m Exp
#endif
  lift = unTypeCode . liftTyped

  -- | Turn a value into a Template Haskell typed expression, suitable for use
  -- in a typed splice.
  --
  -- @since 2.16.0.0
  liftTyped :: Quote m => t -> Code m t


-- If you add any instances here, consider updating test th/TH_Lift
instance Lift Integer where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL x))

instance Lift Int where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

-- | @since 2.16.0.0
instance Lift Int# where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntPrimL (fromIntegral (I# x))))

instance Lift Int8 where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

instance Lift Int16 where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

instance Lift Int32 where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

instance Lift Int64 where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

-- | @since 2.16.0.0
instance Lift Word# where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (WordPrimL (fromIntegral (W# x))))

instance Lift Word where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

instance Lift Word8 where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

instance Lift Word16 where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

instance Lift Word32 where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

instance Lift Word64 where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

instance Lift Natural where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (IntegerL (fromIntegral x)))

instance Integral a => Lift (Ratio a) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (RationalL (toRational x)))

instance Lift Float where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (RationalL (toRational x)))

-- | @since 2.16.0.0
instance Lift Float# where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (FloatPrimL (toRational (F# x))))

instance Lift Double where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (RationalL (toRational x)))

-- | @since 2.16.0.0
instance Lift Double# where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (DoublePrimL (toRational (D# x))))

instance Lift Char where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (CharL x))

-- | @since 2.16.0.0
instance Lift Char# where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x = return (LitE (CharPrimL (C# x)))

instance Lift Bool where
  liftTyped x = unsafeCodeCoerce (lift x)

  lift True  = return (ConE trueName)
  lift False = return (ConE falseName)

-- | Produces an 'Addr#' literal from the NUL-terminated C-string starting at
-- the given memory address.
--
-- @since 2.16.0.0
instance Lift Addr# where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x
    = return (LitE (StringPrimL (map (fromIntegral . ord) (unpackCString# x))))

instance Lift a => Lift (Maybe a) where
  liftTyped x = unsafeCodeCoerce (lift x)

  lift Nothing  = return (ConE nothingName)
  lift (Just x) = liftM (ConE justName `AppE`) (lift x)

instance (Lift a, Lift b) => Lift (Either a b) where
  liftTyped x = unsafeCodeCoerce (lift x)

  lift (Left x)  = liftM (ConE leftName  `AppE`) (lift x)
  lift (Right y) = liftM (ConE rightName `AppE`) (lift y)

instance Lift a => Lift [a] where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift xs = do { xs' <- mapM lift xs; return (ListE xs') }

liftString :: Quote m => String -> m Exp
-- Used in GHC.Tc.Gen.Expr to short-circuit the lifting for strings
liftString s = return (LitE (StringL s))

-- | @since 2.15.0.0
instance Lift a => Lift (NonEmpty a) where
  liftTyped x = unsafeCodeCoerce (lift x)

  lift (x :| xs) = do
    x' <- lift x
    xs' <- lift xs
    return (InfixE (Just x') (ConE nonemptyName) (Just xs'))

-- | @since 2.15.0.0
instance Lift Void where
  liftTyped = liftCode . absurd
  lift = pure . absurd

instance Lift () where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift () = return (ConE (tupleDataName 0))

instance (Lift a, Lift b) => Lift (a, b) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (a, b)
    = liftM TupE $ sequence $ map (fmap Just) [lift a, lift b]

instance (Lift a, Lift b, Lift c) => Lift (a, b, c) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (a, b, c)
    = liftM TupE $ sequence $ map (fmap Just) [lift a, lift b, lift c]

instance (Lift a, Lift b, Lift c, Lift d) => Lift (a, b, c, d) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (a, b, c, d)
    = liftM TupE $ sequence $ map (fmap Just) [lift a, lift b, lift c, lift d]

instance (Lift a, Lift b, Lift c, Lift d, Lift e)
      => Lift (a, b, c, d, e) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (a, b, c, d, e)
    = liftM TupE $ sequence $ map (fmap Just) [ lift a, lift b
                                              , lift c, lift d, lift e ]

instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f)
      => Lift (a, b, c, d, e, f) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (a, b, c, d, e, f)
    = liftM TupE $ sequence $ map (fmap Just) [ lift a, lift b, lift c
                                              , lift d, lift e, lift f ]

instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g)
      => Lift (a, b, c, d, e, f, g) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (a, b, c, d, e, f, g)
    = liftM TupE $ sequence $ map (fmap Just) [ lift a, lift b, lift c
                                              , lift d, lift e, lift f, lift g ]

-- | @since 2.16.0.0
instance Lift (# #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (# #) = return (ConE (unboxedTupleTypeName 0))

-- | @since 2.16.0.0
instance (Lift a) => Lift (# a #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (# a #)
    = liftM UnboxedTupE $ sequence $ map (fmap Just) [lift a]

-- | @since 2.16.0.0
instance (Lift a, Lift b) => Lift (# a, b #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (# a, b #)
    = liftM UnboxedTupE $ sequence $ map (fmap Just) [lift a, lift b]

-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c)
      => Lift (# a, b, c #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (# a, b, c #)
    = liftM UnboxedTupE $ sequence $ map (fmap Just) [lift a, lift b, lift c]

-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d)
      => Lift (# a, b, c, d #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (# a, b, c, d #)
    = liftM UnboxedTupE $ sequence $ map (fmap Just) [ lift a, lift b
                                                     , lift c, lift d ]

-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e)
      => Lift (# a, b, c, d, e #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (# a, b, c, d, e #)
    = liftM UnboxedTupE $ sequence $ map (fmap Just) [ lift a, lift b
                                                     , lift c, lift d, lift e ]

-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f)
      => Lift (# a, b, c, d, e, f #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (# a, b, c, d, e, f #)
    = liftM UnboxedTupE $ sequence $ map (fmap Just) [ lift a, lift b, lift c
                                                     , lift d, lift e, lift f ]

-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g)
      => Lift (# a, b, c, d, e, f, g #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift (# a, b, c, d, e, f, g #)
    = liftM UnboxedTupE $ sequence $ map (fmap Just) [ lift a, lift b, lift c
                                                     , lift d, lift e, lift f
                                                     , lift g ]

-- | @since 2.16.0.0
instance (Lift a, Lift b) => Lift (# a | b #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x
    = case x of
        (# y | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 2
        (# | y #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 2

-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c)
      => Lift (# a | b | c #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x
    = case x of
        (# y | | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 3
        (# | y | #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 3
        (# | | y #) -> UnboxedSumE <$> lift y <*> pure 3 <*> pure 3

-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d)
      => Lift (# a | b | c | d #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x
    = case x of
        (# y | | | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 4
        (# | y | | #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 4
        (# | | y | #) -> UnboxedSumE <$> lift y <*> pure 3 <*> pure 4
        (# | | | y #) -> UnboxedSumE <$> lift y <*> pure 4 <*> pure 4

-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e)
      => Lift (# a | b | c | d | e #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x
    = case x of
        (# y | | | | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 5
        (# | y | | | #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 5
        (# | | y | | #) -> UnboxedSumE <$> lift y <*> pure 3 <*> pure 5
        (# | | | y | #) -> UnboxedSumE <$> lift y <*> pure 4 <*> pure 5
        (# | | | | y #) -> UnboxedSumE <$> lift y <*> pure 5 <*> pure 5

-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f)
      => Lift (# a | b | c | d | e | f #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x
    = case x of
        (# y | | | | | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 6
        (# | y | | | | #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 6
        (# | | y | | | #) -> UnboxedSumE <$> lift y <*> pure 3 <*> pure 6
        (# | | | y | | #) -> UnboxedSumE <$> lift y <*> pure 4 <*> pure 6
        (# | | | | y | #) -> UnboxedSumE <$> lift y <*> pure 5 <*> pure 6
        (# | | | | | y #) -> UnboxedSumE <$> lift y <*> pure 6 <*> pure 6

-- | @since 2.16.0.0
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g)
      => Lift (# a | b | c | d | e | f | g #) where
  liftTyped x = unsafeCodeCoerce (lift x)
  lift x
    = case x of
        (# y | | | | | | #) -> UnboxedSumE <$> lift y <*> pure 1 <*> pure 7
        (# | y | | | | | #) -> UnboxedSumE <$> lift y <*> pure 2 <*> pure 7
        (# | | y | | | | #) -> UnboxedSumE <$> lift y <*> pure 3 <*> pure 7
        (# | | | y | | | #) -> UnboxedSumE <$> lift y <*> pure 4 <*> pure 7
        (# | | | | y | | #) -> UnboxedSumE <$> lift y <*> pure 5 <*> pure 7
        (# | | | | | y | #) -> UnboxedSumE <$> lift y <*> pure 6 <*> pure 7
        (# | | | | | | y #) -> UnboxedSumE <$> lift y <*> pure 7 <*> pure 7

-- TH has a special form for literal strings,
-- which we should take advantage of.
-- NB: the lhs of the rule has no args, so that
--     the rule will apply to a 'lift' all on its own
--     which happens to be the way the type checker
--     creates it.
{-# RULES "TH:liftString" lift = \s -> return (LitE (StringL s)) #-}


trueName, falseName :: Name
trueName  = mkNameG DataName "ghc-prim" "GHC.Types" "True"
falseName = mkNameG DataName "ghc-prim" "GHC.Types" "False"

nothingName, justName :: Name
nothingName = mkNameG DataName "base" "GHC.Maybe" "Nothing"
justName    = mkNameG DataName "base" "GHC.Maybe" "Just"

leftName, rightName :: Name
leftName  = mkNameG DataName "base" "Data.Either" "Left"
rightName = mkNameG DataName "base" "Data.Either" "Right"

nonemptyName :: Name
nonemptyName = mkNameG DataName "base" "GHC.Base" ":|"

oneName, manyName :: Name
oneName  = mkNameG DataName "ghc-prim" "GHC.Types" "One"
manyName = mkNameG DataName "ghc-prim" "GHC.Types" "Many"
-----------------------------------------------------
--
--              Generic Lift implementations
--
-----------------------------------------------------

-- | 'dataToQa' is an internal utility function for constructing generic
-- conversion functions from types with 'Data' instances to various
-- quasi-quoting representations.  See the source of 'dataToExpQ' and
-- 'dataToPatQ' for two example usages: @mkCon@, @mkLit@
-- and @appQ@ are overloadable to account for different syntax for
-- expressions and patterns; @antiQ@ allows you to override type-specific
-- cases, a common usage is just @const Nothing@, which results in
-- no overloading.
dataToQa  ::  forall m a k q. (Quote m, Data a)
          =>  (Name -> k)
          ->  (Lit -> m q)
          ->  (k -> [m q] -> m q)
          ->  (forall b . Data b => b -> Maybe (m q))
          ->  a
          ->  m q
dataToQa mkCon mkLit appCon antiQ t =
    case antiQ t of
      Nothing ->
          case constrRep constr of
            AlgConstr _ ->
                appCon (mkCon funOrConName) conArgs
              where
                funOrConName :: Name
                funOrConName =
                    case showConstr constr of
                      "(:)"       -> Name (mkOccName ":")
                                          (NameG DataName
                                                (mkPkgName "ghc-prim")
                                                (mkModName "GHC.Types"))
                      con@"[]"    -> Name (mkOccName con)
                                          (NameG DataName
                                                (mkPkgName "ghc-prim")
                                                (mkModName "GHC.Types"))
                      con@('(':_) -> Name (mkOccName con)
                                          (NameG DataName
                                                (mkPkgName "ghc-prim")
                                                (mkModName "GHC.Tuple"))

                      -- Tricky case: see Note [Data for non-algebraic types]
                      fun@(x:_)   | startsVarSym x || startsVarId x
                                  -> mkNameG_v tyconPkg tyconMod fun
                      con         -> mkNameG_d tyconPkg tyconMod con

                  where
                    tycon :: TyCon
                    tycon = (typeRepTyCon . typeOf) t

                    tyconPkg, tyconMod :: String
                    tyconPkg = tyConPackage tycon
                    tyconMod = tyConModule  tycon

                conArgs :: [m q]
                conArgs = gmapQ (dataToQa mkCon mkLit appCon antiQ) t
            IntConstr n ->
                mkLit $ IntegerL n
            FloatConstr n ->
                mkLit $ RationalL n
            CharConstr c ->
                mkLit $ CharL c
        where
          constr :: Constr
          constr = toConstr t

      Just y -> y


{- Note [Data for non-algebraic types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Class Data was originally intended for algebraic data types.  But
it is possible to use it for abstract types too.  For example, in
package `text` we find

  instance Data Text where
    ...
    toConstr _ = packConstr

  packConstr :: Constr
  packConstr = mkConstr textDataType "pack" [] Prefix

Here `packConstr` isn't a real data constructor, it's an ordinary
function.  Two complications

* In such a case, we must take care to build the Name using
  mkNameG_v (for values), not mkNameG_d (for data constructors).
  See #10796.

* The pseudo-constructor is named only by its string, here "pack".
  But 'dataToQa' needs the TyCon of its defining module, and has
  to assume it's defined in the same module as the TyCon itself.
  But nothing enforces that; #12596 shows what goes wrong if
  "pack" is defined in a different module than the data type "Text".
  -}

-- | 'dataToExpQ' converts a value to a 'Exp' representation of the
-- same value, in the SYB style. It is generalized to take a function
-- override type-specific cases; see 'liftData' for a more commonly
-- used variant.
dataToExpQ  ::  (Quote m, Data a)
            =>  (forall b . Data b => b -> Maybe (m Exp))
            ->  a
            ->  m Exp
dataToExpQ = dataToQa varOrConE litE (foldl appE)
    where
          -- Make sure that VarE is used if the Constr value relies on a
          -- function underneath the surface (instead of a constructor).
          -- See #10796.
          varOrConE s =
            case nameSpace s of
                 Just VarName  -> return (VarE s)
                 Just DataName -> return (ConE s)
                 _ -> error $ "Can't construct an expression from name "
                           ++ showName s
          appE x y = do { a <- x; b <- y; return (AppE a b)}
          litE c = return (LitE c)

-- | 'liftData' is a variant of 'lift' in the 'Lift' type class which
-- works for any type with a 'Data' instance.
liftData :: (Quote m, Data a) => a -> m Exp
liftData = dataToExpQ (const Nothing)

-- | 'dataToPatQ' converts a value to a 'Pat' representation of the same
-- value, in the SYB style. It takes a function to handle type-specific cases,
-- alternatively, pass @const Nothing@ to get default behavior.
dataToPatQ  ::  (Quote m, Data a)
            =>  (forall b . Data b => b -> Maybe (m Pat))
            ->  a
            ->  m Pat
dataToPatQ = dataToQa id litP conP
    where litP l = return (LitP l)
          conP n ps =
            case nameSpace n of
                Just DataName -> do
                    ps' <- sequence ps
                    return (ConP n [] ps')
                _ -> error $ "Can't construct a pattern from name "
                          ++ showName n

-- | Retrieve a @TemplateHaskell@ 'Name' for the constructor of a 'Typeable' type. Used to drive derivation:
--
-- @

-- $(
-- let
--   prxy = Proxy :: Proxy Int
-- in
--   mobileGen (moatOptionsP prxy) (typeConstructorName prxy)
--  )
-- @
typeConstructorName :: Typeable a => Proxy a -> Name
typeConstructorName prxy =
  let tyRep =
        typeRep prxy
      tyCon =
        typeRepTyCon tyRep
   in mkNameG TcClsName (tyConPackage tyCon) (tyConModule tyCon) (tyConName tyCon)
-----------------------------------------------------
--              Names and uniques
-----------------------------------------------------

newtype ModName = ModName String        -- Module name
 deriving (Show,Eq,Ord,Data,Generic)

newtype PkgName = PkgName String        -- package name
 deriving (Show,Eq,Ord,Data,Generic)

-- | Obtained from 'reifyModule' and 'Language.Haskell.TH.Lib.thisModule'.
data Module = Module PkgName ModName -- package qualified module name
 deriving (Show,Eq,Ord,Data,Generic)

newtype OccName = OccName String
 deriving (Show,Eq,Ord,Data,Generic)

mkModName :: String -> ModName
mkModName s = ModName s

modString :: ModName -> String
modString (ModName m) = m


mkPkgName :: String -> PkgName
mkPkgName s = PkgName s

pkgString :: PkgName -> String
pkgString (PkgName m) = m


-----------------------------------------------------
--              OccName
-----------------------------------------------------

mkOccName :: String -> OccName
mkOccName s = OccName s

occString :: OccName -> String
occString (OccName occ) = occ


-----------------------------------------------------
--               Names
-----------------------------------------------------
--
-- For "global" names ('NameG') we need a totally unique name,
-- so we must include the name-space of the thing
--
-- For unique-numbered things ('NameU'), we've got a unique reference
-- anyway, so no need for name space
--
-- For dynamically bound thing ('NameS') we probably want them to
-- in a context-dependent way, so again we don't want the name
-- space.  For example:
--
-- > let v = mkName "T" in [| data $v = $v |]
--
-- Here we use the same Name for both type constructor and data constructor
--
--
-- NameL and NameG are bound *outside* the TH syntax tree
-- either globally (NameG) or locally (NameL). Ex:
--
-- > f x = $(h [| (map, x) |])
--
-- The 'map' will be a NameG, and 'x' wil be a NameL
--
-- These Names should never appear in a binding position in a TH syntax tree

{- $namecapture #namecapture#
Much of 'Name' API is concerned with the problem of /name capture/, which
can be seen in the following example.

> f expr = [| let x = 0 in $expr |]
> ...
> g x = $( f [| x |] )
> h y = $( f [| y |] )

A naive desugaring of this would yield:

> g x = let x = 0 in x
> h y = let x = 0 in y

All of a sudden, @g@ and @h@ have different meanings! In this case,
we say that the @x@ in the RHS of @g@ has been /captured/
by the binding of @x@ in @f@.

What we actually want is for the @x@ in @f@ to be distinct from the
@x@ in @g@, so we get the following desugaring:

> g x = let x' = 0 in x
> h y = let x' = 0 in y

which avoids name capture as desired.

In the general case, we say that a @Name@ can be captured if
the thing it refers to can be changed by adding new declarations.
-}

{- |
An abstract type representing names in the syntax tree.

'Name's can be constructed in several ways, which come with different
name-capture guarantees (see "Language.Haskell.TH.Syntax#namecapture" for
an explanation of name capture):

  * the built-in syntax @'f@ and @''T@ can be used to construct names,
    The expression @'f@ gives a @Name@ which refers to the value @f@
    currently in scope, and @''T@ gives a @Name@ which refers to the
    type @T@ currently in scope. These names can never be captured.

  * 'lookupValueName' and 'lookupTypeName' are similar to @'f@ and
     @''T@ respectively, but the @Name@s are looked up at the point
     where the current splice is being run. These names can never be
     captured.

  * 'newName' monadically generates a new name, which can never
     be captured.

  * 'mkName' generates a capturable name.

Names constructed using @newName@ and @mkName@ may be used in bindings
(such as @let x = ...@ or @\x -> ...@), but names constructed using
@lookupValueName@, @lookupTypeName@, @'f@, @''T@ may not.
-}
data Name = Name OccName NameFlavour deriving (Data, Eq, Generic)

instance Ord Name where
    -- check if unique is different before looking at strings
  (Name o1 f1) `compare` (Name o2 f2) = (f1 `compare` f2)   `thenCmp`
                                        (o1 `compare` o2)

data NameFlavour
  = NameS           -- ^ An unqualified name; dynamically bound
  | NameQ ModName   -- ^ A qualified name; dynamically bound
  | NameU !Uniq     -- ^ A unique local name
  | NameL !Uniq     -- ^ Local name bound outside of the TH AST
  | NameG NameSpace PkgName ModName -- ^ Global name bound outside of the TH AST:
                -- An original name (occurrences only, not binders)
                -- Need the namespace too to be sure which
                -- thing we are naming
  deriving ( Data, Eq, Ord, Show, Generic )

data NameSpace = VarName        -- ^ Variables
               | DataName       -- ^ Data constructors
               | TcClsName      -- ^ Type constructors and classes; Haskell has them
                                -- in the same name space for now.
               deriving( Eq, Ord, Show, Data, Generic )

-- | @Uniq@ is used by GHC to distinguish names from each other.
type Uniq = Integer

-- | The name without its module prefix.
--
-- ==== __Examples__
--
-- >>> nameBase ''Data.Either.Either
-- "Either"
-- >>> nameBase (mkName "foo")
-- "foo"
-- >>> nameBase (mkName "Module.foo")
-- "foo"
nameBase :: Name -> String
nameBase (Name occ _) = occString occ

-- | Module prefix of a name, if it exists.
--
-- ==== __Examples__
--
-- >>> nameModule ''Data.Either.Either
-- Just "Data.Either"
-- >>> nameModule (mkName "foo")
-- Nothing
-- >>> nameModule (mkName "Module.foo")
-- Just "Module"
nameModule :: Name -> Maybe String
nameModule (Name _ (NameQ m))     = Just (modString m)
nameModule (Name _ (NameG _ _ m)) = Just (modString m)
nameModule _                      = Nothing

-- | A name's package, if it exists.
--
-- ==== __Examples__
--
-- >>> namePackage ''Data.Either.Either
-- Just "base"
-- >>> namePackage (mkName "foo")
-- Nothing
-- >>> namePackage (mkName "Module.foo")
-- Nothing
namePackage :: Name -> Maybe String
namePackage (Name _ (NameG _ p _)) = Just (pkgString p)
namePackage _                      = Nothing

-- | Returns whether a name represents an occurrence of a top-level variable
-- ('VarName'), data constructor ('DataName'), type constructor, or type class
-- ('TcClsName'). If we can't be sure, it returns 'Nothing'.
--
-- ==== __Examples__
--
-- >>> nameSpace 'Prelude.id
-- Just VarName
-- >>> nameSpace (mkName "id")
-- Nothing -- only works for top-level variable names
-- >>> nameSpace 'Data.Maybe.Just
-- Just DataName
-- >>> nameSpace ''Data.Maybe.Maybe
-- Just TcClsName
-- >>> nameSpace ''Data.Ord.Ord
-- Just TcClsName
nameSpace :: Name -> Maybe NameSpace
nameSpace (Name _ (NameG ns _ _)) = Just ns
nameSpace _                       = Nothing

{- |
Generate a capturable name. Occurrences of such names will be
resolved according to the Haskell scoping rules at the occurrence
site.

For example:

> f = [| pi + $(varE (mkName "pi")) |]
> ...
> g = let pi = 3 in $f

In this case, @g@ is desugared to

> g = Prelude.pi + 3

Note that @mkName@ may be used with qualified names:

> mkName "Prelude.pi"

See also 'Language.Haskell.TH.Lib.dyn' for a useful combinator. The above example could
be rewritten using 'Language.Haskell.TH.Lib.dyn' as

> f = [| pi + $(dyn "pi") |]
-}
mkName :: String -> Name
-- The string can have a '.', thus "Foo.baz",
-- giving a dynamically-bound qualified name,
-- in which case we want to generate a NameQ
--
-- Parse the string to see if it has a "." in it
-- so we know whether to generate a qualified or unqualified name
-- It's a bit tricky because we need to parse
--
-- > Foo.Baz.x   as    Qual Foo.Baz x
--
-- So we parse it from back to front
mkName str
  = split [] (reverse str)
  where
    split occ []        = Name (mkOccName occ) NameS
    split occ ('.':rev) | not (null occ)
                        , is_rev_mod_name rev
                        = Name (mkOccName occ) (NameQ (mkModName (reverse rev)))
        -- The 'not (null occ)' guard ensures that
        --      mkName "&." = Name "&." NameS
        -- The 'is_rev_mod' guards ensure that
        --      mkName ".&" = Name ".&" NameS
        --      mkName "^.." = Name "^.." NameS      -- #8633
        --      mkName "Data.Bits..&" = Name ".&" (NameQ "Data.Bits")
        -- This rather bizarre case actually happened; (.&.) is in Data.Bits
    split occ (c:rev)   = split (c:occ) rev

    -- Recognises a reversed module name xA.yB.C,
    -- with at least one component,
    -- and each component looks like a module name
    --   (i.e. non-empty, starts with capital, all alpha)
    is_rev_mod_name rev_mod_str
      | (compt, rest) <- break (== '.') rev_mod_str
      , not (null compt), isUpper (last compt), all is_mod_char compt
      = case rest of
          []             -> True
          (_dot : rest') -> is_rev_mod_name rest'
      | otherwise
      = False

    is_mod_char c = isAlphaNum c || c == '_' || c == '\''

-- | Only used internally
mkNameU :: String -> Uniq -> Name
mkNameU s u = Name (mkOccName s) (NameU u)

-- | Only used internally
mkNameL :: String -> Uniq -> Name
mkNameL s u = Name (mkOccName s) (NameL u)

-- | Used for 'x etc, but not available to the programmer
mkNameG :: NameSpace -> String -> String -> String -> Name
mkNameG ns pkg modu occ
  = Name (mkOccName occ) (NameG ns (mkPkgName pkg) (mkModName modu))

mkNameS :: String -> Name
mkNameS n = Name (mkOccName n) NameS

mkNameG_v, mkNameG_tc, mkNameG_d :: String -> String -> String -> Name
mkNameG_v  = mkNameG VarName
mkNameG_tc = mkNameG TcClsName
mkNameG_d  = mkNameG DataName

data NameIs = Alone | Applied | Infix

showName :: Name -> String
showName = showName' Alone

showName' :: NameIs -> Name -> String
showName' ni nm
 = case ni of
       Alone        -> nms
       Applied
        | pnam      -> nms
        | otherwise -> "(" ++ nms ++ ")"
       Infix
        | pnam      -> "`" ++ nms ++ "`"
        | otherwise -> nms
    where
        -- For now, we make the NameQ and NameG print the same, even though
        -- NameQ is a qualified name (so what it means depends on what the
        -- current scope is), and NameG is an original name (so its meaning
        -- should be independent of what's in scope.
        -- We may well want to distinguish them in the end.
        -- Ditto NameU and NameL
        nms = case nm of
                    Name occ NameS         -> occString occ
                    Name occ (NameQ m)     -> modString m ++ "." ++ occString occ
                    Name occ (NameG _ _ m) -> modString m ++ "." ++ occString occ
                    Name occ (NameU u)     -> occString occ ++ "_" ++ show u
                    Name occ (NameL u)     -> occString occ ++ "_" ++ show u

        pnam = classify nms

        -- True if we are function style, e.g. f, [], (,)
        -- False if we are operator style, e.g. +, :+
        classify "" = False -- shouldn't happen; . operator is handled below
        classify (x:xs) | isAlpha x || (x `elem` "_[]()") =
                            case dropWhile (/='.') xs of
                                  (_:xs') -> classify xs'
                                  []      -> True
                        | otherwise = False

instance Show Name where
  show = showName

-- Tuple data and type constructors
-- | Tuple data constructor
tupleDataName :: Int -> Name
-- | Tuple type constructor
tupleTypeName :: Int -> Name

tupleDataName n = mk_tup_name n DataName  True
tupleTypeName n = mk_tup_name n TcClsName True

-- Unboxed tuple data and type constructors
-- | Unboxed tuple data constructor
unboxedTupleDataName :: Int -> Name
-- | Unboxed tuple type constructor
unboxedTupleTypeName :: Int -> Name

unboxedTupleDataName n = mk_tup_name n DataName  False
unboxedTupleTypeName n = mk_tup_name n TcClsName False

mk_tup_name :: Int -> NameSpace -> Bool -> Name
mk_tup_name n space boxed
  = Name (mkOccName tup_occ) (NameG space (mkPkgName "ghc-prim") tup_mod)
  where
    withParens thing
      | boxed     = "("  ++ thing ++ ")"
      | otherwise = "(#" ++ thing ++ "#)"
    tup_occ | n == 1    = if boxed then "Solo" else "Solo#"
            | otherwise = withParens (replicate n_commas ',')
    n_commas = n - 1
    tup_mod  = mkModName "GHC.Tuple"

-- Unboxed sum data and type constructors
-- | Unboxed sum data constructor
unboxedSumDataName :: SumAlt -> SumArity -> Name
-- | Unboxed sum type constructor
unboxedSumTypeName :: SumArity -> Name

unboxedSumDataName alt arity
  | alt > arity
  = error $ prefix ++ "Index out of bounds." ++ debug_info

  | alt <= 0
  = error $ prefix ++ "Alt must be > 0." ++ debug_info

  | arity < 2
  = error $ prefix ++ "Arity must be >= 2." ++ debug_info

  | otherwise
  = Name (mkOccName sum_occ)
         (NameG DataName (mkPkgName "ghc-prim") (mkModName "GHC.Prim"))

  where
    prefix     = "unboxedSumDataName: "
    debug_info = " (alt: " ++ show alt ++ ", arity: " ++ show arity ++ ")"

    -- Synced with the definition of mkSumDataConOcc in GHC.Builtin.Types
    sum_occ = '(' : '#' : bars nbars_before ++ '_' : bars nbars_after ++ "#)"
    bars i = replicate i '|'
    nbars_before = alt - 1
    nbars_after  = arity - alt

unboxedSumTypeName arity
  | arity < 2
  = error $ "unboxedSumTypeName: Arity must be >= 2."
         ++ " (arity: " ++ show arity ++ ")"

  | otherwise
  = Name (mkOccName sum_occ)
         (NameG TcClsName (mkPkgName "ghc-prim") (mkModName "GHC.Prim"))

  where
    -- Synced with the definition of mkSumTyConOcc in GHC.Builtin.Types
    sum_occ = '(' : '#' : replicate (arity - 1) '|' ++ "#)"

-----------------------------------------------------
--              Locations
-----------------------------------------------------

data Loc
  = Loc { loc_filename :: String
        , loc_package  :: String
        , loc_module   :: String
        , loc_start    :: CharPos
        , loc_end      :: CharPos }
   deriving( Show, Eq, Ord, Data, Generic )

type CharPos = (Int, Int)       -- ^ Line and character position


-----------------------------------------------------
--
--      The Info returned by reification
--
-----------------------------------------------------

-- | Obtained from 'reify' in the 'Q' Monad.
data Info
  =
  -- | A class, with a list of its visible instances
  ClassI
      Dec
      [InstanceDec]

  -- | A class method
  | ClassOpI
       Name
       Type
       ParentName

  -- | A \"plain\" type constructor. \"Fancier\" type constructors are returned
  -- using 'PrimTyConI' or 'FamilyI' as appropriate. At present, this reified
  -- declaration will never have derived instances attached to it (if you wish
  -- to check for an instance, see 'reifyInstances').
  | TyConI
        Dec

  -- | A type or data family, with a list of its visible instances. A closed
  -- type family is returned with 0 instances.
  | FamilyI
        Dec
        [InstanceDec]

  -- | A \"primitive\" type constructor, which can't be expressed with a 'Dec'.
  -- Examples: @(->)@, @Int#@.
  | PrimTyConI
       Name
       Arity
       Unlifted

  -- | A data constructor
  | DataConI
       Name
       Type
       ParentName

  -- | A pattern synonym
  | PatSynI
       Name
       PatSynType

  {- |
  A \"value\" variable (as opposed to a type variable, see 'TyVarI').

  The @Maybe Dec@ field contains @Just@ the declaration which
  defined the variable - including the RHS of the declaration -
  or else @Nothing@, in the case where the RHS is unavailable to
  the compiler. At present, this value is /always/ @Nothing@:
  returning the RHS has not yet been implemented because of
  lack of interest.
  -}
  | VarI
       Name
       Type
       (Maybe Dec)

  {- |
  A type variable.

  The @Type@ field contains the type which underlies the variable.
  At present, this is always @'VarT' theName@, but future changes
  may permit refinement of this.
  -}
  | TyVarI      -- Scoped type variable
        Name
        Type    -- What it is bound to
  deriving( Show, Eq, Ord, Data, Generic )

-- | Obtained from 'reifyModule' in the 'Q' Monad.
data ModuleInfo =
  -- | Contains the import list of the module.
  ModuleInfo [Module]
  deriving( Show, Eq, Ord, Data, Generic )

{- |
In 'ClassOpI' and 'DataConI', name of the parent class or type
-}
type ParentName = Name

-- | In 'UnboxedSumE' and 'UnboxedSumP', the number associated with a
-- particular data constructor. 'SumAlt's are one-indexed and should never
-- exceed the value of its corresponding 'SumArity'. For example:
--
-- * @(\#_|\#)@ has 'SumAlt' 1 (out of a total 'SumArity' of 2)
--
-- * @(\#|_\#)@ has 'SumAlt' 2 (out of a total 'SumArity' of 2)
type SumAlt = Int

-- | In 'UnboxedSumE', 'UnboxedSumT', and 'UnboxedSumP', the total number of
-- 'SumAlt's. For example, @(\#|\#)@ has a 'SumArity' of 2.
type SumArity = Int

-- | In 'PrimTyConI', arity of the type constructor
type Arity = Int

-- | In 'PrimTyConI', is the type constructor unlifted?
type Unlifted = Bool

-- | 'InstanceDec' describes a single instance of a class or type function.
-- It is just a 'Dec', but guaranteed to be one of the following:
--
--   * 'InstanceD' (with empty @['Dec']@)
--
--   * 'DataInstD' or 'NewtypeInstD' (with empty derived @['Name']@)
--
--   * 'TySynInstD'
type InstanceDec = Dec

data Fixity          = Fixity Int FixityDirection
    deriving( Eq, Ord, Show, Data, Generic )
data FixityDirection = InfixL | InfixR | InfixN
    deriving( Eq, Ord, Show, Data, Generic )

-- | Highest allowed operator precedence for 'Fixity' constructor (answer: 9)
maxPrecedence :: Int
maxPrecedence = (9::Int)

-- | Default fixity: @infixl 9@
defaultFixity :: Fixity
defaultFixity = Fixity maxPrecedence InfixL


{-
Note [Unresolved infix]
~~~~~~~~~~~~~~~~~~~~~~~
-}
{- $infix #infix#
When implementing antiquotation for quasiquoters, one often wants
to parse strings into expressions:

> parse :: String -> Maybe Exp

But how should we parse @a + b * c@? If we don't know the fixities of
@+@ and @*@, we don't know whether to parse it as @a + (b * c)@ or @(a
+ b) * c@.

In cases like this, use 'UInfixE', 'UInfixP', or 'UInfixT', which stand for
\"unresolved infix expression/pattern/type\", respectively. When the compiler
is given a splice containing a tree of @UInfixE@ applications such as

> UInfixE
>   (UInfixE e1 op1 e2)
>   op2
>   (UInfixE e3 op3 e4)

it will look up and the fixities of the relevant operators and
reassociate the tree as necessary.

  * trees will not be reassociated across 'ParensE', 'ParensP', or 'ParensT',
    which are of use for parsing expressions like

    > (a + b * c) + d * e

  * 'InfixE', 'InfixP', and 'InfixT' expressions are never reassociated.

  * The 'UInfixE' constructor doesn't support sections. Sections
    such as @(a *)@ have no ambiguity, so 'InfixE' suffices. For longer
    sections such as @(a + b * c -)@, use an 'InfixE' constructor for the
    outer-most section, and use 'UInfixE' constructors for all
    other operators:

    > InfixE
    >   Just (UInfixE ...a + b * c...)
    >   op
    >   Nothing

    Sections such as @(a + b +)@ and @((a + b) +)@ should be rendered
    into 'Exp's differently:

    > (+ a + b)   ---> InfixE Nothing + (Just $ UInfixE a + b)
    >                    -- will result in a fixity error if (+) is left-infix
    > (+ (a + b)) ---> InfixE Nothing + (Just $ ParensE $ UInfixE a + b)
    >                    -- no fixity errors

  * Quoted expressions such as

    > [| a * b + c |] :: Q Exp
    > [p| a : b : c |] :: Q Pat
    > [t| T + T |] :: Q Type

    will never contain 'UInfixE', 'UInfixP', 'UInfixT', 'InfixT', 'ParensE',
    'ParensP', or 'ParensT' constructors.

-}

-----------------------------------------------------
--
--      The main syntax data types
--
-----------------------------------------------------

data Lit = CharL Char
         | StringL String
         | IntegerL Integer     -- ^ Used for overloaded and non-overloaded
                                -- literals. We don't have a good way to
                                -- represent non-overloaded literals at
                                -- the moment. Maybe that doesn't matter?
         | RationalL Rational   -- Ditto
         | IntPrimL Integer
         | WordPrimL Integer
         | FloatPrimL Rational
         | DoublePrimL Rational
         | StringPrimL [Word8]  -- ^ A primitive C-style string, type 'Addr#'
         | BytesPrimL Bytes     -- ^ Some raw bytes, type 'Addr#':
         | CharPrimL Char
    deriving( Show, Eq, Ord, Data, Generic )

    -- We could add Int, Float, Double etc, as we do in HsLit,
    -- but that could complicate the
    -- supposedly-simple TH.Syntax literal type

-- | Raw bytes embedded into the binary.
--
-- Avoid using Bytes constructor directly as it is likely to change in the
-- future. Use helpers such as `mkBytes` in Language.Haskell.TH.Lib instead.
data Bytes = Bytes
   { bytesPtr    :: ForeignPtr Word8 -- ^ Pointer to the data
   , bytesOffset :: Word             -- ^ Offset from the pointer
   , bytesSize   :: Word             -- ^ Number of bytes
   -- Maybe someday:
   -- , bytesAlignement  :: Word -- ^ Alignement constraint
   -- , bytesReadOnly    :: Bool -- ^ Shall we embed into a read-only
   --                            --   section or not
   -- , bytesInitialized :: Bool -- ^ False: only use `bytesSize` to allocate
   --                            --   an uninitialized region
   }
   deriving (Data,Generic)

-- We can't derive Show instance for Bytes because we don't want to show the
-- pointer value but the actual bytes (similarly to what ByteString does). See
-- #16457.
instance Show Bytes where
   show b = unsafePerformIO $ withForeignPtr (bytesPtr b) $ \ptr ->
               peekCStringLen ( ptr `plusPtr` fromIntegral (bytesOffset b)
                              , fromIntegral (bytesSize b)
                              )

-- We can't derive Eq and Ord instances for Bytes because we don't want to
-- compare pointer values but the actual bytes (similarly to what ByteString
-- does).  See #16457
instance Eq Bytes where
   (==) = eqBytes

instance Ord Bytes where
   compare = compareBytes

eqBytes :: Bytes -> Bytes -> Bool
eqBytes a@(Bytes fp off len) b@(Bytes fp' off' len')
  | len /= len'              = False    -- short cut on length
  | fp == fp' && off == off' = True     -- short cut for the same bytes
  | otherwise                = compareBytes a b == EQ

compareBytes :: Bytes -> Bytes -> Ordering
compareBytes (Bytes _   _    0)    (Bytes _   _    0)    = EQ  -- short cut for empty Bytes
compareBytes (Bytes fp1 off1 len1) (Bytes fp2 off2 len2) =
    unsafePerformIO $
      withForeignPtr fp1 $ \p1 ->
      withForeignPtr fp2 $ \p2 -> do
        i <- memcmp (p1 `plusPtr` fromIntegral off1)
                    (p2 `plusPtr` fromIntegral off2)
                    (fromIntegral (min len1 len2))
        return $! (i `compare` 0) <> (len1 `compare` len2)

foreign import ccall unsafe "memcmp"
  memcmp :: Ptr a -> Ptr b -> CSize -> IO CInt


-- | Pattern in Haskell given in @{}@
data Pat
  = LitP Lit                        -- ^ @{ 5 or \'c\' }@
  | VarP Name                       -- ^ @{ x }@
  | TupP [Pat]                      -- ^ @{ (p1,p2) }@
  | UnboxedTupP [Pat]               -- ^ @{ (\# p1,p2 \#) }@
  | UnboxedSumP Pat SumAlt SumArity -- ^ @{ (\#|p|\#) }@
  | ConP Name [Type] [Pat]          -- ^ @data T1 = C1 t1 t2; {C1 \@ty1 p1 p2} = e@
  | InfixP Pat Name Pat             -- ^ @foo ({x :+ y}) = e@
  | UInfixP Pat Name Pat            -- ^ @foo ({x :+ y}) = e@
                                    --
                                    -- See "Language.Haskell.TH.Syntax#infix"
  | ParensP Pat                     -- ^ @{(p)}@
                                    --
                                    -- See "Language.Haskell.TH.Syntax#infix"
  | TildeP Pat                      -- ^ @{ ~p }@
  | BangP Pat                       -- ^ @{ !p }@
  | AsP Name Pat                    -- ^ @{ x \@ p }@
  | WildP                           -- ^ @{ _ }@
  | RecP Name [FieldPat]            -- ^ @f (Pt { pointx = x }) = g x@
  | ListP [ Pat ]                   -- ^ @{ [1,2,3] }@
  | SigP Pat Type                   -- ^ @{ p :: t }@
  | ViewP Exp Pat                   -- ^ @{ e -> p }@
  deriving( Show, Eq, Ord, Data, Generic )

type FieldPat = (Name,Pat)

data Match = Match Pat Body [Dec] -- ^ @case e of { pat -> body where decs }@
    deriving( Show, Eq, Ord, Data, Generic )
data Clause = Clause [Pat] Body [Dec]
                                  -- ^ @f { p1 p2 = body where decs }@
    deriving( Show, Eq, Ord, Data, Generic )

data Exp
  = VarE Name                          -- ^ @{ x }@
  | ConE Name                          -- ^ @data T1 = C1 t1 t2; p = {C1} e1 e2  @
  | LitE Lit                           -- ^ @{ 5 or \'c\'}@
  | AppE Exp Exp                       -- ^ @{ f x }@
  | AppTypeE Exp Type                  -- ^ @{ f \@Int }@

  | InfixE (Maybe Exp) Exp (Maybe Exp) -- ^ @{x + y} or {(x+)} or {(+ x)} or {(+)}@

    -- It's a bit gruesome to use an Exp as the operator when a Name
    -- would suffice. Historically, Exp was used to make it easier to
    -- distinguish between infix constructors and non-constructors.
    -- This is a bit overkill, since one could just as well call
    -- `startsConId` or `startsConSym` (from `GHC.Lexeme`) on a Name.
    -- Unfortunately, changing this design now would involve lots of
    -- code churn for consumers of the TH API, so we continue to use
    -- an Exp as the operator and perform an extra check during conversion
    -- to ensure that the Exp is a constructor or a variable (#16895).

  | UInfixE Exp Exp Exp                -- ^ @{x + y}@
                                       --
                                       -- See "Language.Haskell.TH.Syntax#infix"
  | ParensE Exp                        -- ^ @{ (e) }@
                                       --
                                       -- See "Language.Haskell.TH.Syntax#infix"
  | LamE [Pat] Exp                     -- ^ @{ \\ p1 p2 -> e }@
  | LamCaseE [Match]                   -- ^ @{ \\case m1; m2 }@
  | TupE [Maybe Exp]                   -- ^ @{ (e1,e2) }  @
                                       --
                                       -- The 'Maybe' is necessary for handling
                                       -- tuple sections.
                                       --
                                       -- > (1,)
                                       --
                                       -- translates to
                                       --
                                       -- > TupE [Just (LitE (IntegerL 1)),Nothing]

  | UnboxedTupE [Maybe Exp]            -- ^ @{ (\# e1,e2 \#) }  @
                                       --
                                       -- The 'Maybe' is necessary for handling
                                       -- tuple sections.
                                       --
                                       -- > (# 'c', #)
                                       --
                                       -- translates to
                                       --
                                       -- > UnboxedTupE [Just (LitE (CharL 'c')),Nothing]

  | UnboxedSumE Exp SumAlt SumArity    -- ^ @{ (\#|e|\#) }@
  | CondE Exp Exp Exp                  -- ^ @{ if e1 then e2 else e3 }@
  | MultiIfE [(Guard, Exp)]            -- ^ @{ if | g1 -> e1 | g2 -> e2 }@
  | LetE [Dec] Exp                     -- ^ @{ let { x=e1; y=e2 } in e3 }@
  | CaseE Exp [Match]                  -- ^ @{ case e of m1; m2 }@
  | DoE (Maybe ModName) [Stmt]         -- ^ @{ do { p <- e1; e2 }  }@ or a qualified do if
                                       -- the module name is present
  | MDoE (Maybe ModName) [Stmt]        -- ^ @{ mdo { x <- e1 y; y <- e2 x; } }@ or a qualified
                                       -- mdo if the module name is present
  | CompE [Stmt]                       -- ^ @{ [ (x,y) | x <- xs, y <- ys ] }@
      --
      -- The result expression of the comprehension is
      -- the /last/ of the @'Stmt'@s, and should be a 'NoBindS'.
      --
      -- E.g. translation:
      --
      -- > [ f x | x <- xs ]
      --
      -- > CompE [BindS (VarP x) (VarE xs), NoBindS (AppE (VarE f) (VarE x))]

  | ArithSeqE Range                    -- ^ @{ [ 1 ,2 .. 10 ] }@
  | ListE [ Exp ]                      -- ^ @{ [1,2,3] }@
  | SigE Exp Type                      -- ^ @{ e :: t }@
  | RecConE Name [FieldExp]            -- ^ @{ T { x = y, z = w } }@
  | RecUpdE Exp [FieldExp]             -- ^ @{ (f x) { z = w } }@
  | StaticE Exp                        -- ^ @{ static e }@
  | UnboundVarE Name                   -- ^ @{ _x }@
                                       --
                                       -- This is used for holes or unresolved
                                       -- identifiers in AST quotes. Note that
                                       -- it could either have a variable name
                                       -- or constructor name.
  | LabelE String                      -- ^ @{ #x }@ ( Overloaded label )
  | ImplicitParamVarE String           -- ^ @{ ?x }@ ( Implicit parameter )
  | GetFieldE Exp String               -- ^ @{ exp.field }@ ( Overloaded Record Dot )
  | ProjectionE [String]                -- ^ @(.x)@ or @(.x.y)@ (Record projections)
  deriving( Show, Eq, Ord, Data, Generic )

type FieldExp = (Name,Exp)

-- Omitted: implicit parameters

data Body
  = GuardedB [(Guard,Exp)]   -- ^ @f p { | e1 = e2
                                 --      | e3 = e4 }
                                 -- where ds@
  | NormalB Exp              -- ^ @f p { = e } where ds@
  deriving( Show, Eq, Ord, Data, Generic )

data Guard
  = NormalG Exp -- ^ @f x { | odd x } = x@
  | PatG [Stmt] -- ^ @f x { | Just y <- x, Just z <- y } = z@
  deriving( Show, Eq, Ord, Data, Generic )

data Stmt
  = BindS Pat Exp -- ^ @p <- e@
  | LetS [ Dec ]  -- ^ @{ let { x=e1; y=e2 } }@
  | NoBindS Exp   -- ^ @e@
  | ParS [[Stmt]] -- ^ @x <- e1 | s2, s3 | s4@ (in 'CompE')
  | RecS [Stmt]   -- ^ @rec { s1; s2 }@
  deriving( Show, Eq, Ord, Data, Generic )

data Range = FromR Exp | FromThenR Exp Exp
           | FromToR Exp Exp | FromThenToR Exp Exp Exp
          deriving( Show, Eq, Ord, Data, Generic )

data Dec
  = FunD Name [Clause]            -- ^ @{ f p1 p2 = b where decs }@
  | ValD Pat Body [Dec]           -- ^ @{ p = b where decs }@
  | DataD Cxt Name [TyVarBndr ()]
          (Maybe Kind)            -- Kind signature (allowed only for GADTs)
          [Con] [DerivClause]
                                  -- ^ @{ data Cxt x => T x = A x | B (T x)
                                  --       deriving (Z,W)
                                  --       deriving stock Eq }@
  | NewtypeD Cxt Name [TyVarBndr ()]
             (Maybe Kind)         -- Kind signature
             Con [DerivClause]    -- ^ @{ newtype Cxt x => T x = A (B x)
                                  --       deriving (Z,W Q)
                                  --       deriving stock Eq }@
  | TySynD Name [TyVarBndr ()] Type -- ^ @{ type T x = (x,x) }@
  | ClassD Cxt Name [TyVarBndr ()]
         [FunDep] [Dec]           -- ^ @{ class Eq a => Ord a where ds }@
  | InstanceD (Maybe Overlap) Cxt Type [Dec]
                                  -- ^ @{ instance {\-\# OVERLAPS \#-\}
                                  --        Show w => Show [w] where ds }@
  | SigD Name Type                -- ^ @{ length :: [a] -> Int }@
  | KiSigD Name Kind              -- ^ @{ type TypeRep :: k -> Type }@
  | ForeignD Foreign              -- ^ @{ foreign import ... }
                                  --{ foreign export ... }@

  | InfixD Fixity Name            -- ^ @{ infix 3 foo }@
  | DefaultD [Type]               -- ^ @{ default (Integer, Double) }@

  -- | pragmas
  | PragmaD Pragma                -- ^ @{ {\-\# INLINE [1] foo \#-\} }@

  -- | data families (may also appear in [Dec] of 'ClassD' and 'InstanceD')
  | DataFamilyD Name [TyVarBndr ()]
               (Maybe Kind)
         -- ^ @{ data family T a b c :: * }@

  | DataInstD Cxt (Maybe [TyVarBndr ()]) Type
             (Maybe Kind)         -- Kind signature
             [Con] [DerivClause]  -- ^ @{ data instance Cxt x => T [x]
                                  --       = A x | B (T x)
                                  --       deriving (Z,W)
                                  --       deriving stock Eq }@

  | NewtypeInstD Cxt (Maybe [TyVarBndr ()]) Type -- Quantified type vars
                 (Maybe Kind)      -- Kind signature
                 Con [DerivClause] -- ^ @{ newtype instance Cxt x => T [x]
                                   --        = A (B x)
                                   --        deriving (Z,W)
                                   --        deriving stock Eq }@
  | TySynInstD TySynEqn            -- ^ @{ type instance ... }@

  -- | open type families (may also appear in [Dec] of 'ClassD' and 'InstanceD')
  | OpenTypeFamilyD TypeFamilyHead
         -- ^ @{ type family T a b c = (r :: *) | r -> a b }@

  | ClosedTypeFamilyD TypeFamilyHead [TySynEqn]
       -- ^ @{ type family F a b = (r :: *) | r -> a where ... }@

  | RoleAnnotD Name [Role]     -- ^ @{ type role T nominal representational }@
  | StandaloneDerivD (Maybe DerivStrategy) Cxt Type
       -- ^ @{ deriving stock instance Ord a => Ord (Foo a) }@
  | DefaultSigD Name Type      -- ^ @{ default size :: Data a => a -> Int }@

  -- | Pattern Synonyms
  | PatSynD Name PatSynArgs PatSynDir Pat
      -- ^ @{ pattern P v1 v2 .. vn <- p }@  unidirectional           or
      --   @{ pattern P v1 v2 .. vn = p  }@  implicit bidirectional   or
      --   @{ pattern P v1 v2 .. vn <- p
      --        where P v1 v2 .. vn = e  }@  explicit bidirectional
      --
      -- also, besides prefix pattern synonyms, both infix and record
      -- pattern synonyms are supported. See 'PatSynArgs' for details

  | PatSynSigD Name PatSynType  -- ^ A pattern synonym's type signature.

  | ImplicitParamBindD String Exp
      -- ^ @{ ?x = expr }@
      --
      -- Implicit parameter binding declaration. Can only be used in let
      -- and where clauses which consist entirely of implicit bindings.
  deriving( Show, Eq, Ord, Data, Generic )

-- | Varieties of allowed instance overlap.
data Overlap = Overlappable   -- ^ May be overlapped by more specific instances
             | Overlapping    -- ^ May overlap a more general instance
             | Overlaps       -- ^ Both 'Overlapping' and 'Overlappable'
             | Incoherent     -- ^ Both 'Overlappable' and 'Overlappable', and
                              -- pick an arbitrary one if multiple choices are
                              -- available.
  deriving( Show, Eq, Ord, Data, Generic )

-- | A single @deriving@ clause at the end of a datatype.
data DerivClause = DerivClause (Maybe DerivStrategy) Cxt
    -- ^ @{ deriving stock (Eq, Ord) }@
  deriving( Show, Eq, Ord, Data, Generic )

-- | What the user explicitly requests when deriving an instance.
data DerivStrategy = StockStrategy    -- ^ A \"standard\" derived instance
                   | AnyclassStrategy -- ^ @-XDeriveAnyClass@
                   | NewtypeStrategy  -- ^ @-XGeneralizedNewtypeDeriving@
                   | ViaStrategy Type -- ^ @-XDerivingVia@
  deriving( Show, Eq, Ord, Data, Generic )

-- | A pattern synonym's type. Note that a pattern synonym's /fully/
-- specified type has a peculiar shape coming with two forall
-- quantifiers and two constraint contexts. For example, consider the
-- pattern synonym
--
-- > pattern P x1 x2 ... xn = <some-pattern>
--
-- P's complete type is of the following form
--
-- > pattern P :: forall universals.   required constraints
-- >           => forall existentials. provided constraints
-- >           => t1 -> t2 -> ... -> tn -> t
--
-- consisting of four parts:
--
--   1. the (possibly empty lists of) universally quantified type
--      variables and required constraints on them.
--   2. the (possibly empty lists of) existentially quantified
--      type variables and the provided constraints on them.
--   3. the types @t1@, @t2@, .., @tn@ of @x1@, @x2@, .., @xn@, respectively
--   4. the type @t@ of @\<some-pattern\>@, mentioning only universals.
--
-- Pattern synonym types interact with TH when (a) reifying a pattern
-- synonym, (b) pretty printing, or (c) specifying a pattern synonym's
-- type signature explicitly:
--
--   * Reification always returns a pattern synonym's /fully/ specified
--     type in abstract syntax.
--
--   * Pretty printing via 'Language.Haskell.TH.Ppr.pprPatSynType' abbreviates
--     a pattern synonym's type unambiguously in concrete syntax: The rule of
--     thumb is to print initial empty universals and the required
--     context as @() =>@, if existentials and a provided context
--     follow. If only universals and their required context, but no
--     existentials are specified, only the universals and their
--     required context are printed. If both or none are specified, so
--     both (or none) are printed.
--
--   * When specifying a pattern synonym's type explicitly with
--     'PatSynSigD' either one of the universals, the existentials, or
--     their contexts may be left empty.
--
-- See the GHC user's guide for more information on pattern synonyms
-- and their types:
-- <https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#pattern-synonyms>.
type PatSynType = Type

-- | Common elements of 'OpenTypeFamilyD' and 'ClosedTypeFamilyD'. By
-- analogy with "head" for type classes and type class instances as
-- defined in /Type classes: an exploration of the design space/, the
-- @TypeFamilyHead@ is defined to be the elements of the declaration
-- between @type family@ and @where@.
data TypeFamilyHead =
  TypeFamilyHead Name [TyVarBndr ()] FamilyResultSig (Maybe InjectivityAnn)
  deriving( Show, Eq, Ord, Data, Generic )

-- | One equation of a type family instance or closed type family. The
-- arguments are the left-hand-side type and the right-hand-side result.
--
-- For instance, if you had the following type family:
--
-- @
-- type family Foo (a :: k) :: k where
--   forall k (a :: k). Foo \@k a = a
-- @
--
-- The @Foo \@k a = a@ equation would be represented as follows:
--
-- @
-- 'TySynEqn' ('Just' ['PlainTV' k, 'KindedTV' a ('VarT' k)])
--            ('AppT' ('AppKindT' ('ConT' ''Foo) ('VarT' k)) ('VarT' a))
--            ('VarT' a)
-- @
data TySynEqn = TySynEqn (Maybe [TyVarBndr ()]) Type Type
  deriving( Show, Eq, Ord, Data, Generic )

data FunDep = FunDep [Name] [Name]
  deriving( Show, Eq, Ord, Data, Generic )

data Foreign = ImportF Callconv Safety String Name Type
             | ExportF Callconv        String Name Type
         deriving( Show, Eq, Ord, Data, Generic )

-- keep Callconv in sync with module ForeignCall in ghc/compiler/GHC/Types/ForeignCall.hs
data Callconv = CCall | StdCall | CApi | Prim | JavaScript
          deriving( Show, Eq, Ord, Data, Generic )

data Safety = Unsafe | Safe | Interruptible
        deriving( Show, Eq, Ord, Data, Generic )

data Pragma = InlineP         Name Inline RuleMatch Phases
            | SpecialiseP     Name Type (Maybe Inline) Phases
            | SpecialiseInstP Type
            | RuleP           String (Maybe [TyVarBndr ()]) [RuleBndr] Exp Exp Phases
            | AnnP            AnnTarget Exp
            | LineP           Int String
            | CompleteP       [Name] (Maybe Name)
                -- ^ @{ {\-\# COMPLETE C_1, ..., C_i [ :: T ] \#-} }@
        deriving( Show, Eq, Ord, Data, Generic )

data Inline = NoInline
            | Inline
            | Inlinable
            deriving (Show, Eq, Ord, Data, Generic)

data RuleMatch = ConLike
               | FunLike
               deriving (Show, Eq, Ord, Data, Generic)

data Phases = AllPhases
            | FromPhase Int
            | BeforePhase Int
            deriving (Show, Eq, Ord, Data, Generic)

data RuleBndr = RuleVar Name
              | TypedRuleVar Name Type
              deriving (Show, Eq, Ord, Data, Generic)

data AnnTarget = ModuleAnnotation
               | TypeAnnotation Name
               | ValueAnnotation Name
              deriving (Show, Eq, Ord, Data, Generic)

type Cxt = [Pred]                 -- ^ @(Eq a, Ord b)@

-- | Since the advent of @ConstraintKinds@, constraints are really just types.
-- Equality constraints use the 'EqualityT' constructor. Constraints may also
-- be tuples of other constraints.
type Pred = Type

data SourceUnpackedness
  = NoSourceUnpackedness -- ^ @C a@
  | SourceNoUnpack       -- ^ @C { {\-\# NOUNPACK \#-\} } a@
  | SourceUnpack         -- ^ @C { {\-\# UNPACK \#-\} } a@
        deriving (Show, Eq, Ord, Data, Generic)

data SourceStrictness = NoSourceStrictness    -- ^ @C a@
                      | SourceLazy            -- ^ @C {~}a@
                      | SourceStrict          -- ^ @C {!}a@
        deriving (Show, Eq, Ord, Data, Generic)

-- | Unlike 'SourceStrictness' and 'SourceUnpackedness', 'DecidedStrictness'
-- refers to the strictness that the compiler chooses for a data constructor
-- field, which may be different from what is written in source code. See
-- 'reifyConStrictness' for more information.
data DecidedStrictness = DecidedLazy
                       | DecidedStrict
                       | DecidedUnpack
        deriving (Show, Eq, Ord, Data, Generic)

-- | A single data constructor.
--
-- The constructors for 'Con' can roughly be divided up into two categories:
-- those for constructors with \"vanilla\" syntax ('NormalC', 'RecC', and
-- 'InfixC'), and those for constructors with GADT syntax ('GadtC' and
-- 'RecGadtC'). The 'ForallC' constructor, which quantifies additional type
-- variables and class contexts, can surround either variety of constructor.
-- However, the type variables that it quantifies are different depending
-- on what constructor syntax is used:
--
-- * If a 'ForallC' surrounds a constructor with vanilla syntax, then the
--   'ForallC' will only quantify /existential/ type variables. For example:
--
--   @
--   data Foo a = forall b. MkFoo a b
--   @
--
--   In @MkFoo@, 'ForallC' will quantify @b@, but not @a@.
--
-- * If a 'ForallC' surrounds a constructor with GADT syntax, then the
--   'ForallC' will quantify /all/ type variables used in the constructor.
--   For example:
--
--   @
--   data Bar a b where
--     MkBar :: (a ~ b) => c -> MkBar a b
--   @
--
--   In @MkBar@, 'ForallC' will quantify @a@, @b@, and @c@.
--
-- Multiplicity annotations for data types are currently not supported
-- in Template Haskell (i.e. all fields represented by Template Haskell
-- will be linear).
data Con = NormalC Name [BangType]       -- ^ @C Int a@
         | RecC Name [VarBangType]       -- ^ @C { v :: Int, w :: a }@
         | InfixC BangType Name BangType -- ^ @Int :+ a@
         | ForallC [TyVarBndr Specificity] Cxt Con -- ^ @forall a. Eq a => C [a]@
         | GadtC [Name] [BangType]
                 Type                    -- See Note [GADT return type]
                                         -- ^ @C :: a -> b -> T b Int@
         | RecGadtC [Name] [VarBangType]
                    Type                 -- See Note [GADT return type]
                                         -- ^ @C :: { v :: Int } -> T b Int@
        deriving (Show, Eq, Ord, Data, Generic)

-- Note [GADT return type]
-- ~~~~~~~~~~~~~~~~~~~~~~~
--
-- The return type of a GADT constructor does not necessarily match the name of
-- the data type:
--
-- type S = T
--
-- data T a where
--     MkT :: S Int
--
--
-- type S a = T
--
-- data T a where
--     MkT :: S Char Int
--
--
-- type Id a = a
-- type S a = T
--
-- data T a where
--     MkT :: Id (S Char Int)
--
--
-- That is why we allow the return type stored by a constructor to be an
-- arbitrary type. See also #11341

data Bang = Bang SourceUnpackedness SourceStrictness
         -- ^ @C { {\-\# UNPACK \#-\} !}a@
        deriving (Show, Eq, Ord, Data, Generic)

type BangType    = (Bang, Type)
type VarBangType = (Name, Bang, Type)

-- | As of @template-haskell-2.11.0.0@, 'Strict' has been replaced by 'Bang'.
type Strict      = Bang

-- | As of @template-haskell-2.11.0.0@, 'StrictType' has been replaced by
-- 'BangType'.
type StrictType    = BangType

-- | As of @template-haskell-2.11.0.0@, 'VarStrictType' has been replaced by
-- 'VarBangType'.
type VarStrictType = VarBangType

-- | A pattern synonym's directionality.
data PatSynDir
  = Unidir             -- ^ @pattern P x {<-} p@
  | ImplBidir          -- ^ @pattern P x {=} p@
  | ExplBidir [Clause] -- ^ @pattern P x {<-} p where P x = e@
  deriving( Show, Eq, Ord, Data, Generic )

-- | A pattern synonym's argument type.
data PatSynArgs
  = PrefixPatSyn [Name]        -- ^ @pattern P {x y z} = p@
  | InfixPatSyn Name Name      -- ^ @pattern {x P y} = p@
  | RecordPatSyn [Name]        -- ^ @pattern P { {x,y,z} } = p@
  deriving( Show, Eq, Ord, Data, Generic )

data Type = ForallT [TyVarBndr Specificity] Cxt Type -- ^ @forall \<vars\>. \<ctxt\> => \<type\>@
          | ForallVisT [TyVarBndr ()] Type  -- ^ @forall \<vars\> -> \<type\>@
          | AppT Type Type                -- ^ @T a b@
          | AppKindT Type Kind            -- ^ @T \@k t@
          | SigT Type Kind                -- ^ @t :: k@
          | VarT Name                     -- ^ @a@
          | ConT Name                     -- ^ @T@
          | PromotedT Name                -- ^ @'T@
          | InfixT Type Name Type         -- ^ @T + T@
          | UInfixT Type Name Type        -- ^ @T + T@
                                          --
                                          -- See "Language.Haskell.TH.Syntax#infix"
          | ParensT Type                  -- ^ @(T)@

          -- See Note [Representing concrete syntax in types]
          | TupleT Int                    -- ^ @(,), (,,), etc.@
          | UnboxedTupleT Int             -- ^ @(\#,\#), (\#,,\#), etc.@
          | UnboxedSumT SumArity          -- ^ @(\#|\#), (\#||\#), etc.@
          | ArrowT                        -- ^ @->@
          | MulArrowT                     -- ^ @FUN@
          | EqualityT                     -- ^ @~@
          | ListT                         -- ^ @[]@
          | PromotedTupleT Int            -- ^ @'(), '(,), '(,,), etc.@
          | PromotedNilT                  -- ^ @'[]@
          | PromotedConsT                 -- ^ @(':)@
          | StarT                         -- ^ @*@
          | ConstraintT                   -- ^ @Constraint@
          | LitT TyLit                    -- ^ @0,1,2, etc.@
          | WildCardT                     -- ^ @_@
          | ImplicitParamT String Type    -- ^ @?x :: t@
      deriving( Show, Eq, Ord, Data, Generic )

data Specificity = SpecifiedSpec          -- ^ @a@
                 | InferredSpec           -- ^ @{a}@
      deriving( Show, Eq, Ord, Data, Generic )

data TyVarBndr flag = PlainTV  Name flag      -- ^ @a@
                    | KindedTV Name flag Kind -- ^ @(a :: k)@
      deriving( Show, Eq, Ord, Data, Generic, Functor )

-- | Type family result signature
data FamilyResultSig = NoSig              -- ^ no signature
                     | KindSig  Kind      -- ^ @k@
                     | TyVarSig (TyVarBndr ()) -- ^ @= r, = (r :: k)@
      deriving( Show, Eq, Ord, Data, Generic )

-- | Injectivity annotation
data InjectivityAnn = InjectivityAnn Name [Name]
  deriving ( Show, Eq, Ord, Data, Generic )

data TyLit = NumTyLit Integer             -- ^ @2@
           | StrTyLit String              -- ^ @\"Hello\"@
           | CharTyLit Char               -- ^ @\'C\'@, @since 4.16.0.0
  deriving ( Show, Eq, Ord, Data, Generic )

-- | Role annotations
data Role = NominalR            -- ^ @nominal@
          | RepresentationalR   -- ^ @representational@
          | PhantomR            -- ^ @phantom@
          | InferR              -- ^ @_@
  deriving( Show, Eq, Ord, Data, Generic )

-- | Annotation target for reifyAnnotations
data AnnLookup = AnnLookupModule Module
               | AnnLookupName Name
               deriving( Show, Eq, Ord, Data, Generic )

-- | To avoid duplication between kinds and types, they
-- are defined to be the same. Naturally, you would never
-- have a type be 'StarT' and you would never have a kind
-- be 'SigT', but many of the other constructors are shared.
-- Note that the kind @Bool@ is denoted with 'ConT', not
-- 'PromotedT'. Similarly, tuple kinds are made with 'TupleT',
-- not 'PromotedTupleT'.

type Kind = Type

{- Note [Representing concrete syntax in types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Haskell has a rich concrete syntax for types, including
  t1 -> t2, (t1,t2), [t], and so on
In TH we represent all of this using AppT, with a distinguished
type constructor at the head.  So,
  Type              TH representation
  -----------------------------------------------
  t1 -> t2          ArrowT `AppT` t2 `AppT` t2
  [t]               ListT `AppT` t
  (t1,t2)           TupleT 2 `AppT` t1 `AppT` t2
  '(t1,t2)          PromotedTupleT 2 `AppT` t1 `AppT` t2

But if the original HsSyn used prefix application, we won't use
these special TH constructors.  For example
  [] t              ConT "[]" `AppT` t
  (->) t            ConT "->" `AppT` t
In this way we can faithfully represent in TH whether the original
HsType used concrete syntax or not.

The one case that doesn't fit this pattern is that of promoted lists
  '[ Maybe, IO ]    PromotedListT 2 `AppT` t1 `AppT` t2
but it's very smelly because there really is no type constructor
corresponding to PromotedListT. So we encode HsExplicitListTy with
PromotedConsT and PromotedNilT (which *do* have underlying type
constructors):
  '[ Maybe, IO ]    PromotedConsT `AppT` Maybe `AppT`
                    (PromotedConsT  `AppT` IO `AppT` PromotedNilT)
-}

-- | A location at which to attach Haddock documentation.
-- Note that adding documentation to a 'Name' defined oustide of the current
-- module will cause an error.
data DocLoc
  = ModuleDoc         -- ^ At the current module's header.
  | DeclDoc Name      -- ^ At a declaration, not necessarily top level.
  | ArgDoc Name Int   -- ^ At a specific argument of a function, indexed by its
                      -- position.
  | InstDoc Type      -- ^ At a class or family instance.
  deriving ( Show, Eq, Ord, Data, Generic )

-----------------------------------------------------
--              Internal helper functions
-----------------------------------------------------

cmpEq :: Ordering -> Bool
cmpEq EQ = True
cmpEq _  = False

thenCmp :: Ordering -> Ordering -> Ordering
thenCmp EQ o2 = o2
thenCmp o1 _  = o1