1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
|
{-# LANGUAGE DeriveDataTypeable, MagicHash, PolymorphicComponents, RoleAnnotations, UnboxedTuples #-}
-----------------------------------------------------------------------------
-- |
-- Module : Language.Haskell.Syntax
-- Copyright : (c) The University of Glasgow 2003
-- License : BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer : libraries@haskell.org
-- Stability : experimental
-- Portability : portable
--
-- Abstract syntax definitions for Template Haskell.
--
-----------------------------------------------------------------------------
module Language.Haskell.TH.Syntax where
import GHC.Exts
import Data.Data (Data(..), Typeable, mkConstr, mkDataType, constrIndex)
import qualified Data.Data as Data
import Control.Applicative( Applicative(..) )
import Data.IORef
import System.IO.Unsafe ( unsafePerformIO )
import Control.Monad (liftM)
import System.IO ( hPutStrLn, stderr )
import Data.Char ( isAlpha, isAlphaNum, isUpper )
import Data.Word ( Word8 )
-----------------------------------------------------
--
-- The Quasi class
--
-----------------------------------------------------
class (Monad m, Applicative m) => Quasi m where
qNewName :: String -> m Name
-- ^ Fresh names
-- Error reporting and recovery
qReport :: Bool -> String -> m () -- ^ Report an error (True) or warning (False)
-- ...but carry on; use 'fail' to stop
qRecover :: m a -- ^ the error handler
-> m a -- ^ action which may fail
-> m a -- ^ Recover from the monadic 'fail'
-- Inspect the type-checker's environment
qLookupName :: Bool -> String -> m (Maybe Name)
-- True <=> type namespace, False <=> value namespace
qReify :: Name -> m Info
qReifyInstances :: Name -> [Type] -> m [Dec]
-- Is (n tys) an instance?
-- Returns list of matching instance Decs
-- (with empty sub-Decs)
-- Works for classes and type functions
qReifyRoles :: Name -> m [Role]
qReifyAnnotations :: Data a => AnnLookup -> m [a]
qReifyModule :: Module -> m ModuleInfo
qLocation :: m Loc
qRunIO :: IO a -> m a
-- ^ Input/output (dangerous)
qAddDependentFile :: FilePath -> m ()
qAddTopDecls :: [Dec] -> m ()
qAddModFinalizer :: Q () -> m ()
qGetQ :: Typeable a => m (Maybe a)
qPutQ :: Typeable a => a -> m ()
-----------------------------------------------------
-- The IO instance of Quasi
--
-- This instance is used only when running a Q
-- computation in the IO monad, usually just to
-- print the result. There is no interesting
-- type environment, so reification isn't going to
-- work.
--
-----------------------------------------------------
instance Quasi IO where
qNewName s = do { n <- readIORef counter
; writeIORef counter (n+1)
; return (mkNameU s n) }
qReport True msg = hPutStrLn stderr ("Template Haskell error: " ++ msg)
qReport False msg = hPutStrLn stderr ("Template Haskell error: " ++ msg)
qLookupName _ _ = badIO "lookupName"
qReify _ = badIO "reify"
qReifyInstances _ _ = badIO "reifyInstances"
qReifyRoles _ = badIO "reifyRoles"
qReifyAnnotations _ = badIO "reifyAnnotations"
qReifyModule _ = badIO "reifyModule"
qLocation = badIO "currentLocation"
qRecover _ _ = badIO "recover" -- Maybe we could fix this?
qAddDependentFile _ = badIO "addDependentFile"
qAddTopDecls _ = badIO "addTopDecls"
qAddModFinalizer _ = badIO "addModFinalizer"
qGetQ = badIO "getQ"
qPutQ _ = badIO "putQ"
qRunIO m = m
badIO :: String -> IO a
badIO op = do { qReport True ("Can't do `" ++ op ++ "' in the IO monad")
; fail "Template Haskell failure" }
-- Global variable to generate unique symbols
counter :: IORef Int
{-# NOINLINE counter #-}
counter = unsafePerformIO (newIORef 0)
-----------------------------------------------------
--
-- The Q monad
--
-----------------------------------------------------
newtype Q a = Q { unQ :: forall m. Quasi m => m a }
-- \"Runs\" the 'Q' monad. Normal users of Template Haskell
-- should not need this function, as the splice brackets @$( ... )@
-- are the usual way of running a 'Q' computation.
--
-- This function is primarily used in GHC internals, and for debugging
-- splices by running them in 'IO'.
--
-- Note that many functions in 'Q', such as 'reify' and other compiler
-- queries, are not supported when running 'Q' in 'IO'; these operations
-- simply fail at runtime. Indeed, the only operations guaranteed to succeed
-- are 'newName', 'runIO', 'reportError' and 'reportWarning'.
runQ :: Quasi m => Q a -> m a
runQ (Q m) = m
instance Monad Q where
return x = Q (return x)
Q m >>= k = Q (m >>= \x -> unQ (k x))
Q m >> Q n = Q (m >> n)
fail s = report True s >> Q (fail "Q monad failure")
instance Functor Q where
fmap f (Q x) = Q (fmap f x)
instance Applicative Q where
pure x = Q (pure x)
Q f <*> Q x = Q (f <*> x)
-----------------------------------------------------
--
-- The TExp type
--
-----------------------------------------------------
type role TExp nominal -- See Note [Role of TExp]
newtype TExp a = TExp { unType :: Exp }
unTypeQ :: Q (TExp a) -> Q Exp
unTypeQ m = do { TExp e <- m
; return e }
unsafeTExpCoerce :: Q Exp -> Q (TExp a)
unsafeTExpCoerce m = do { e <- m
; return (TExp e) }
{- Note [Role of TExp]
~~~~~~~~~~~~~~~~~~~~~~
TExp's argument must have a nominal role, not phantom as would
be inferred (Trac #8459). Consider
e :: TExp Age
e = MkAge 3
foo = $(coerce e) + 4::Int
The splice will evaluate to (MkAge 3) and you can't add that to
4::Int. So you can't coerce a (TExp Age) to a (TExp Int). -}
----------------------------------------------------
-- Packaged versions for the programmer, hiding the Quasi-ness
{- |
Generate a fresh name, which cannot be captured.
For example, this:
@f = $(do
nm1 <- newName \"x\"
let nm2 = 'mkName' \"x\"
return ('LamE' ['VarP' nm1] (LamE [VarP nm2] ('VarE' nm1)))
)@
will produce the splice
>f = \x0 -> \x -> x0
In particular, the occurrence @VarE nm1@ refers to the binding @VarP nm1@,
and is not captured by the binding @VarP nm2@.
Although names generated by @newName@ cannot /be captured/, they can
/capture/ other names. For example, this:
>g = $(do
> nm1 <- newName "x"
> let nm2 = mkName "x"
> return (LamE [VarP nm2] (LamE [VarP nm1] (VarE nm2)))
> )
will produce the splice
>g = \x -> \x0 -> x0
since the occurrence @VarE nm2@ is captured by the innermost binding
of @x@, namely @VarP nm1@.
-}
newName :: String -> Q Name
newName s = Q (qNewName s)
-- | Report an error (True) or warning (False),
-- but carry on; use 'fail' to stop.
report :: Bool -> String -> Q ()
report b s = Q (qReport b s)
{-# DEPRECATED report "Use reportError or reportWarning instead" #-} -- deprecated in 7.6
-- | Report an error to the user, but allow the current splice's computation to carry on. To abort the computation, use 'fail'.
reportError :: String -> Q ()
reportError = report True
-- | Report a warning to the user, and carry on.
reportWarning :: String -> Q ()
reportWarning = report False
-- | Recover from errors raised by 'reportError' or 'fail'.
recover :: Q a -- ^ handler to invoke on failure
-> Q a -- ^ computation to run
-> Q a
recover (Q r) (Q m) = Q (qRecover r m)
-- We don't export lookupName; the Bool isn't a great API
-- Instead we export lookupTypeName, lookupValueName
lookupName :: Bool -> String -> Q (Maybe Name)
lookupName ns s = Q (qLookupName ns s)
-- | Look up the given name in the (type namespace of the) current splice's scope. See "Language.Haskell.TH.Syntax#namelookup" for more details.
lookupTypeName :: String -> Q (Maybe Name)
lookupTypeName s = Q (qLookupName True s)
-- | Look up the given name in the (value namespace of the) current splice's scope. See "Language.Haskell.TH.Syntax#namelookup" for more details.
lookupValueName :: String -> Q (Maybe Name)
lookupValueName s = Q (qLookupName False s)
{-
Note [Name lookup]
~~~~~~~~~~~~~~~~~~
-}
{- $namelookup #namelookup#
The functions 'lookupTypeName' and 'lookupValueName' provide
a way to query the current splice's context for what names
are in scope. The function 'lookupTypeName' queries the type
namespace, whereas 'lookupValueName' queries the value namespace,
but the functions are otherwise identical.
A call @lookupValueName s@ will check if there is a value
with name @s@ in scope at the current splice's location. If
there is, the @Name@ of this value is returned;
if not, then @Nothing@ is returned.
The returned name cannot be \"captured\".
For example:
> f = "global"
> g = $( do
> Just nm <- lookupValueName "f"
> [| let f = "local" in $( varE nm ) |]
In this case, @g = \"global\"@; the call to @lookupValueName@
returned the global @f@, and this name was /not/ captured by
the local definition of @f@.
The lookup is performed in the context of the /top-level/ splice
being run. For example:
> f = "global"
> g = $( [| let f = "local" in
> $(do
> Just nm <- lookupValueName "f"
> varE nm
> ) |] )
Again in this example, @g = \"global\"@, because the call to
@lookupValueName@ queries the context of the outer-most @$(...)@.
Operators should be queried without any surrounding parentheses, like so:
> lookupValueName "+"
Qualified names are also supported, like so:
> lookupValueName "Prelude.+"
> lookupValueName "Prelude.map"
-}
{- | 'reify' looks up information about the 'Name'.
It is sometimes useful to construct the argument name using 'lookupTypeName' or 'lookupValueName'
to ensure that we are reifying from the right namespace. For instance, in this context:
> data D = D
which @D@ does @reify (mkName \"D\")@ return information about? (Answer: @D@-the-type, but don't rely on it.)
To ensure we get information about @D@-the-value, use 'lookupValueName':
> do
> Just nm <- lookupValueName "D"
> reify nm
and to get information about @D@-the-type, use 'lookupTypeName'.
-}
reify :: Name -> Q Info
reify v = Q (qReify v)
{- | @reifyInstances nm tys@ returns a list of visible instances of @nm tys@. That is,
if @nm@ is the name of a type class, then all instances of this class at the types @tys@
are returned. Alternatively, if @nm@ is the name of a data family or type family,
all instances of this family at the types @tys@ are returned.
-}
reifyInstances :: Name -> [Type] -> Q [InstanceDec]
reifyInstances cls tys = Q (qReifyInstances cls tys)
{- | @reifyRoles nm@ returns the list of roles associated with the parameters of
the tycon @nm@. Fails if @nm@ cannot be found or is not a tycon.
The returned list should never contain 'InferR'.
-}
reifyRoles :: Name -> Q [Role]
reifyRoles nm = Q (qReifyRoles nm)
-- | @reifyAnnotations target@ returns the list of annotations
-- associated with @target@. Only the annotations that are
-- appropriately typed is returned. So if you have @Int@ and @String@
-- annotations for the same target, you have to call this function twice.
reifyAnnotations :: Data a => AnnLookup -> Q [a]
reifyAnnotations an = Q (qReifyAnnotations an)
-- | @reifyModule mod@ looks up information about module @mod@. To
-- look up the current module, call this function with the return
-- value of @thisModule@.
reifyModule :: Module -> Q ModuleInfo
reifyModule m = Q (qReifyModule m)
-- | Is the list of instances returned by 'reifyInstances' nonempty?
isInstance :: Name -> [Type] -> Q Bool
isInstance nm tys = do { decs <- reifyInstances nm tys
; return (not (null decs)) }
-- | The location at which this computation is spliced.
location :: Q Loc
location = Q qLocation
-- |The 'runIO' function lets you run an I\/O computation in the 'Q' monad.
-- Take care: you are guaranteed the ordering of calls to 'runIO' within
-- a single 'Q' computation, but not about the order in which splices are run.
--
-- Note: for various murky reasons, stdout and stderr handles are not
-- necessarily flushed when the compiler finishes running, so you should
-- flush them yourself.
runIO :: IO a -> Q a
runIO m = Q (qRunIO m)
-- | Record external files that runIO is using (dependent upon).
-- The compiler can then recognize that it should re-compile the file using this TH when the external file changes.
-- Note that ghc -M will still not know about these dependencies - it does not execute TH.
-- Expects an absolute file path.
addDependentFile :: FilePath -> Q ()
addDependentFile fp = Q (qAddDependentFile fp)
-- | Add additional top-level declarations. The added declarations will be type
-- checked along with the current declaration group.
addTopDecls :: [Dec] -> Q ()
addTopDecls ds = Q (qAddTopDecls ds)
-- | Add a finalizer that will run in the Q monad after the current module has
-- been type checked. This only makes sense when run within a top-level splice.
addModFinalizer :: Q () -> Q ()
addModFinalizer act = Q (qAddModFinalizer (unQ act))
-- | Get state from the Q monad.
getQ :: Typeable a => Q (Maybe a)
getQ = Q qGetQ
-- | Replace the state in the Q monad.
putQ :: Typeable a => a -> Q ()
putQ x = Q (qPutQ x)
instance Quasi Q where
qNewName = newName
qReport = report
qRecover = recover
qReify = reify
qReifyInstances = reifyInstances
qReifyRoles = reifyRoles
qReifyAnnotations = reifyAnnotations
qReifyModule = reifyModule
qLookupName = lookupName
qLocation = location
qRunIO = runIO
qAddDependentFile = addDependentFile
qAddTopDecls = addTopDecls
qAddModFinalizer = addModFinalizer
qGetQ = getQ
qPutQ = putQ
----------------------------------------------------
-- The following operations are used solely in DsMeta when desugaring brackets
-- They are not necessary for the user, who can use ordinary return and (>>=) etc
returnQ :: a -> Q a
returnQ = return
bindQ :: Q a -> (a -> Q b) -> Q b
bindQ = (>>=)
sequenceQ :: [Q a] -> Q [a]
sequenceQ = sequence
-----------------------------------------------------
--
-- The Lift class
--
-----------------------------------------------------
class Lift t where
lift :: t -> Q Exp
instance Lift Integer where
lift x = return (LitE (IntegerL x))
instance Lift Int where
lift x= return (LitE (IntegerL (fromIntegral x)))
instance Lift Char where
lift x = return (LitE (CharL x))
instance Lift Bool where
lift True = return (ConE trueName)
lift False = return (ConE falseName)
instance Lift a => Lift (Maybe a) where
lift Nothing = return (ConE nothingName)
lift (Just x) = liftM (ConE justName `AppE`) (lift x)
instance (Lift a, Lift b) => Lift (Either a b) where
lift (Left x) = liftM (ConE leftName `AppE`) (lift x)
lift (Right y) = liftM (ConE rightName `AppE`) (lift y)
instance Lift a => Lift [a] where
lift xs = do { xs' <- mapM lift xs; return (ListE xs') }
liftString :: String -> Q Exp
-- Used in TcExpr to short-circuit the lifting for strings
liftString s = return (LitE (StringL s))
instance (Lift a, Lift b) => Lift (a, b) where
lift (a, b)
= liftM TupE $ sequence [lift a, lift b]
instance (Lift a, Lift b, Lift c) => Lift (a, b, c) where
lift (a, b, c)
= liftM TupE $ sequence [lift a, lift b, lift c]
instance (Lift a, Lift b, Lift c, Lift d) => Lift (a, b, c, d) where
lift (a, b, c, d)
= liftM TupE $ sequence [lift a, lift b, lift c, lift d]
instance (Lift a, Lift b, Lift c, Lift d, Lift e)
=> Lift (a, b, c, d, e) where
lift (a, b, c, d, e)
= liftM TupE $ sequence [lift a, lift b, lift c, lift d, lift e]
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f)
=> Lift (a, b, c, d, e, f) where
lift (a, b, c, d, e, f)
= liftM TupE $ sequence [lift a, lift b, lift c, lift d, lift e, lift f]
instance (Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g)
=> Lift (a, b, c, d, e, f, g) where
lift (a, b, c, d, e, f, g)
= liftM TupE $ sequence [lift a, lift b, lift c, lift d, lift e, lift f, lift g]
-- TH has a special form for literal strings,
-- which we should take advantage of.
-- NB: the lhs of the rule has no args, so that
-- the rule will apply to a 'lift' all on its own
-- which happens to be the way the type checker
-- creates it.
{-# RULES "TH:liftString" lift = \s -> return (LitE (StringL s)) #-}
trueName, falseName :: Name
trueName = mkNameG DataName "ghc-prim" "GHC.Types" "True"
falseName = mkNameG DataName "ghc-prim" "GHC.Types" "False"
nothingName, justName :: Name
nothingName = mkNameG DataName "base" "Data.Maybe" "Nothing"
justName = mkNameG DataName "base" "Data.Maybe" "Just"
leftName, rightName :: Name
leftName = mkNameG DataName "base" "Data.Either" "Left"
rightName = mkNameG DataName "base" "Data.Either" "Right"
-----------------------------------------------------
-- Names and uniques
-----------------------------------------------------
newtype ModName = ModName String -- Module name
deriving (Show,Eq,Ord,Typeable,Data)
newtype PkgName = PkgName String -- package name
deriving (Show,Eq,Ord,Typeable,Data)
-- | Obtained from 'reifyModule' and 'thisModule'.
data Module = Module PkgName ModName -- package qualified module name
deriving (Show,Eq,Ord,Typeable,Data)
newtype OccName = OccName String
deriving (Show,Eq,Ord,Typeable,Data)
mkModName :: String -> ModName
mkModName s = ModName s
modString :: ModName -> String
modString (ModName m) = m
mkPkgName :: String -> PkgName
mkPkgName s = PkgName s
pkgString :: PkgName -> String
pkgString (PkgName m) = m
-----------------------------------------------------
-- OccName
-----------------------------------------------------
mkOccName :: String -> OccName
mkOccName s = OccName s
occString :: OccName -> String
occString (OccName occ) = occ
-----------------------------------------------------
-- Names
-----------------------------------------------------
--
-- For "global" names ('NameG') we need a totally unique name,
-- so we must include the name-space of the thing
--
-- For unique-numbered things ('NameU'), we've got a unique reference
-- anyway, so no need for name space
--
-- For dynamically bound thing ('NameS') we probably want them to
-- in a context-dependent way, so again we don't want the name
-- space. For example:
--
-- > let v = mkName "T" in [| data $v = $v |]
--
-- Here we use the same Name for both type constructor and data constructor
--
--
-- NameL and NameG are bound *outside* the TH syntax tree
-- either globally (NameG) or locally (NameL). Ex:
--
-- > f x = $(h [| (map, x) |])
--
-- The 'map' will be a NameG, and 'x' wil be a NameL
--
-- These Names should never appear in a binding position in a TH syntax tree
{- $namecapture #namecapture#
Much of 'Name' API is concerned with the problem of /name capture/, which
can be seen in the following example.
> f expr = [| let x = 0 in $expr |]
> ...
> g x = $( f [| x |] )
> h y = $( f [| y |] )
A naive desugaring of this would yield:
> g x = let x = 0 in x
> h y = let x = 0 in y
All of a sudden, @g@ and @h@ have different meanings! In this case,
we say that the @x@ in the RHS of @g@ has been /captured/
by the binding of @x@ in @f@.
What we actually want is for the @x@ in @f@ to be distinct from the
@x@ in @g@, so we get the following desugaring:
> g x = let x' = 0 in x
> h y = let x' = 0 in y
which avoids name capture as desired.
In the general case, we say that a @Name@ can be captured if
the thing it refers to can be changed by adding new declarations.
-}
{- |
An abstract type representing names in the syntax tree.
'Name's can be constructed in several ways, which come with different
name-capture guarantees (see "Language.Haskell.TH.Syntax#namecapture" for
an explanation of name capture):
* the built-in syntax @'f@ and @''T@ can be used to construct names,
The expression @'f@ gives a @Name@ which refers to the value @f@
currently in scope, and @''T@ gives a @Name@ which refers to the
type @T@ currently in scope. These names can never be captured.
* 'lookupValueName' and 'lookupTypeName' are similar to @'f@ and
@''T@ respectively, but the @Name@s are looked up at the point
where the current splice is being run. These names can never be
captured.
* 'newName' monadically generates a new name, which can never
be captured.
* 'mkName' generates a capturable name.
Names constructed using @newName@ and @mkName@ may be used in bindings
(such as @let x = ...@ or @\x -> ...@), but names constructed using
@lookupValueName@, @lookupTypeName@, @'f@, @''T@ may not.
-}
data Name = Name OccName NameFlavour deriving (Typeable, Data)
data NameFlavour
= NameS -- ^ An unqualified name; dynamically bound
| NameQ ModName -- ^ A qualified name; dynamically bound
| NameU Int# -- ^ A unique local name
| NameL Int# -- ^ Local name bound outside of the TH AST
| NameG NameSpace PkgName ModName -- ^ Global name bound outside of the TH AST:
-- An original name (occurrences only, not binders)
-- Need the namespace too to be sure which
-- thing we are naming
deriving ( Typeable )
-- |
-- Although the NameFlavour type is abstract, the Data instance is not. The reason for this
-- is that currently we use Data to serialize values in annotations, and in order for that to
-- work for Template Haskell names introduced via the 'x syntax we need gunfold on NameFlavour
-- to work. Bleh!
--
-- The long term solution to this is to use the binary package for annotation serialization and
-- then remove this instance. However, to do _that_ we need to wait on binary to become stable, since
-- boot libraries cannot be upgraded separately from GHC itself.
--
-- This instance cannot be derived automatically due to bug #2701
instance Data NameFlavour where
gfoldl _ z NameS = z NameS
gfoldl k z (NameQ mn) = z NameQ `k` mn
gfoldl k z (NameU i) = z (\(I# i') -> NameU i') `k` (I# i)
gfoldl k z (NameL i) = z (\(I# i') -> NameL i') `k` (I# i)
gfoldl k z (NameG ns p m) = z NameG `k` ns `k` p `k` m
gunfold k z c = case constrIndex c of
1 -> z NameS
2 -> k $ z NameQ
3 -> k $ z (\(I# i) -> NameU i)
4 -> k $ z (\(I# i) -> NameL i)
5 -> k $ k $ k $ z NameG
_ -> error "gunfold: NameFlavour"
toConstr NameS = con_NameS
toConstr (NameQ _) = con_NameQ
toConstr (NameU _) = con_NameU
toConstr (NameL _) = con_NameL
toConstr (NameG _ _ _) = con_NameG
dataTypeOf _ = ty_NameFlavour
con_NameS, con_NameQ, con_NameU, con_NameL, con_NameG :: Data.Constr
con_NameS = mkConstr ty_NameFlavour "NameS" [] Data.Prefix
con_NameQ = mkConstr ty_NameFlavour "NameQ" [] Data.Prefix
con_NameU = mkConstr ty_NameFlavour "NameU" [] Data.Prefix
con_NameL = mkConstr ty_NameFlavour "NameL" [] Data.Prefix
con_NameG = mkConstr ty_NameFlavour "NameG" [] Data.Prefix
ty_NameFlavour :: Data.DataType
ty_NameFlavour = mkDataType "Language.Haskell.TH.Syntax.NameFlavour"
[con_NameS, con_NameQ, con_NameU,
con_NameL, con_NameG]
data NameSpace = VarName -- ^ Variables
| DataName -- ^ Data constructors
| TcClsName -- ^ Type constructors and classes; Haskell has them
-- in the same name space for now.
deriving( Eq, Ord, Data, Typeable )
type Uniq = Int
-- | The name without its module prefix
nameBase :: Name -> String
nameBase (Name occ _) = occString occ
-- | Module prefix of a name, if it exists
nameModule :: Name -> Maybe String
nameModule (Name _ (NameQ m)) = Just (modString m)
nameModule (Name _ (NameG _ _ m)) = Just (modString m)
nameModule _ = Nothing
{- |
Generate a capturable name. Occurrences of such names will be
resolved according to the Haskell scoping rules at the occurrence
site.
For example:
> f = [| pi + $(varE (mkName "pi")) |]
> ...
> g = let pi = 3 in $f
In this case, @g@ is desugared to
> g = Prelude.pi + 3
Note that @mkName@ may be used with qualified names:
> mkName "Prelude.pi"
See also 'Language.Haskell.TH.Lib.dyn' for a useful combinator. The above example could
be rewritten using 'dyn' as
> f = [| pi + $(dyn "pi") |]
-}
mkName :: String -> Name
-- The string can have a '.', thus "Foo.baz",
-- giving a dynamically-bound qualified name,
-- in which case we want to generate a NameQ
--
-- Parse the string to see if it has a "." in it
-- so we know whether to generate a qualified or unqualified name
-- It's a bit tricky because we need to parse
--
-- > Foo.Baz.x as Qual Foo.Baz x
--
-- So we parse it from back to front
mkName str
= split [] (reverse str)
where
split occ [] = Name (mkOccName occ) NameS
split occ ('.':rev) | not (null occ)
, is_rev_mod_name rev
= Name (mkOccName occ) (NameQ (mkModName (reverse rev)))
-- The 'not (null occ)' guard ensures that
-- mkName "&." = Name "&." NameS
-- The 'is_rev_mod' guards ensure that
-- mkName ".&" = Name ".&" NameS
-- mkName "^.." = Name "^.." NameS -- Trac #8633
-- mkName "Data.Bits..&" = Name ".&" (NameQ "Data.Bits")
-- This rather bizarre case actually happened; (.&.) is in Data.Bits
split occ (c:rev) = split (c:occ) rev
-- Recognises a reversed module name xA.yB.C,
-- with at least one component,
-- and each component looks like a module name
-- (i.e. non-empty, starts with capital, all alpha)
is_rev_mod_name rev_mod_str
| (compt, rest) <- break (== '.') rev_mod_str
, not (null compt), isUpper (last compt), all is_mod_char compt
= case rest of
[] -> True
(_dot : rest') -> is_rev_mod_name rest'
| otherwise
= False
is_mod_char c = isAlphaNum c || c == '_' || c == '\''
-- | Only used internally
mkNameU :: String -> Uniq -> Name
mkNameU s (I# u) = Name (mkOccName s) (NameU u)
-- | Only used internally
mkNameL :: String -> Uniq -> Name
mkNameL s (I# u) = Name (mkOccName s) (NameL u)
-- | Used for 'x etc, but not available to the programmer
mkNameG :: NameSpace -> String -> String -> String -> Name
mkNameG ns pkg modu occ
= Name (mkOccName occ) (NameG ns (mkPkgName pkg) (mkModName modu))
mkNameG_v, mkNameG_tc, mkNameG_d :: String -> String -> String -> Name
mkNameG_v = mkNameG VarName
mkNameG_tc = mkNameG TcClsName
mkNameG_d = mkNameG DataName
instance Eq Name where
v1 == v2 = cmpEq (v1 `compare` v2)
instance Ord Name where
(Name o1 f1) `compare` (Name o2 f2) = (f1 `compare` f2) `thenCmp`
(o1 `compare` o2)
instance Eq NameFlavour where
f1 == f2 = cmpEq (f1 `compare` f2)
instance Ord NameFlavour where
-- NameS < NameQ < NameU < NameL < NameG
NameS `compare` NameS = EQ
NameS `compare` _ = LT
(NameQ _) `compare` NameS = GT
(NameQ m1) `compare` (NameQ m2) = m1 `compare` m2
(NameQ _) `compare` _ = LT
(NameU _) `compare` NameS = GT
(NameU _) `compare` (NameQ _) = GT
(NameU u1) `compare` (NameU u2) | isTrue# (u1 <# u2) = LT
| isTrue# (u1 ==# u2) = EQ
| otherwise = GT
(NameU _) `compare` _ = LT
(NameL _) `compare` NameS = GT
(NameL _) `compare` (NameQ _) = GT
(NameL _) `compare` (NameU _) = GT
(NameL u1) `compare` (NameL u2) | isTrue# (u1 <# u2) = LT
| isTrue# (u1 ==# u2) = EQ
| otherwise = GT
(NameL _) `compare` _ = LT
(NameG ns1 p1 m1) `compare` (NameG ns2 p2 m2) = (ns1 `compare` ns2) `thenCmp`
(p1 `compare` p2) `thenCmp`
(m1 `compare` m2)
(NameG _ _ _) `compare` _ = GT
data NameIs = Alone | Applied | Infix
showName :: Name -> String
showName = showName' Alone
showName' :: NameIs -> Name -> String
showName' ni nm
= case ni of
Alone -> nms
Applied
| pnam -> nms
| otherwise -> "(" ++ nms ++ ")"
Infix
| pnam -> "`" ++ nms ++ "`"
| otherwise -> nms
where
-- For now, we make the NameQ and NameG print the same, even though
-- NameQ is a qualified name (so what it means depends on what the
-- current scope is), and NameG is an original name (so its meaning
-- should be independent of what's in scope.
-- We may well want to distinguish them in the end.
-- Ditto NameU and NameL
nms = case nm of
Name occ NameS -> occString occ
Name occ (NameQ m) -> modString m ++ "." ++ occString occ
Name occ (NameG _ _ m) -> modString m ++ "." ++ occString occ
Name occ (NameU u) -> occString occ ++ "_" ++ show (I# u)
Name occ (NameL u) -> occString occ ++ "_" ++ show (I# u)
pnam = classify nms
-- True if we are function style, e.g. f, [], (,)
-- False if we are operator style, e.g. +, :+
classify "" = False -- shouldn't happen; . operator is handled below
classify (x:xs) | isAlpha x || (x `elem` "_[]()") =
case dropWhile (/='.') xs of
(_:xs') -> classify xs'
[] -> True
| otherwise = False
instance Show Name where
show = showName
-- Tuple data and type constructors
-- | Tuple data constructor
tupleDataName :: Int -> Name
-- | Tuple type constructor
tupleTypeName :: Int -> Name
tupleDataName 0 = mk_tup_name 0 DataName
tupleDataName 1 = error "tupleDataName 1"
tupleDataName n = mk_tup_name (n-1) DataName
tupleTypeName 0 = mk_tup_name 0 TcClsName
tupleTypeName 1 = error "tupleTypeName 1"
tupleTypeName n = mk_tup_name (n-1) TcClsName
mk_tup_name :: Int -> NameSpace -> Name
mk_tup_name n_commas space
= Name occ (NameG space (mkPkgName "ghc-prim") tup_mod)
where
occ = mkOccName ('(' : replicate n_commas ',' ++ ")")
tup_mod = mkModName "GHC.Tuple"
-- Unboxed tuple data and type constructors
-- | Unboxed tuple data constructor
unboxedTupleDataName :: Int -> Name
-- | Unboxed tuple type constructor
unboxedTupleTypeName :: Int -> Name
unboxedTupleDataName 0 = error "unboxedTupleDataName 0"
unboxedTupleDataName 1 = error "unboxedTupleDataName 1"
unboxedTupleDataName n = mk_unboxed_tup_name (n-1) DataName
unboxedTupleTypeName 0 = error "unboxedTupleTypeName 0"
unboxedTupleTypeName 1 = error "unboxedTupleTypeName 1"
unboxedTupleTypeName n = mk_unboxed_tup_name (n-1) TcClsName
mk_unboxed_tup_name :: Int -> NameSpace -> Name
mk_unboxed_tup_name n_commas space
= Name occ (NameG space (mkPkgName "ghc-prim") tup_mod)
where
occ = mkOccName ("(#" ++ replicate n_commas ',' ++ "#)")
tup_mod = mkModName "GHC.Tuple"
-----------------------------------------------------
-- Locations
-----------------------------------------------------
data Loc
= Loc { loc_filename :: String
, loc_package :: String
, loc_module :: String
, loc_start :: CharPos
, loc_end :: CharPos }
type CharPos = (Int, Int) -- ^ Line and character position
-----------------------------------------------------
--
-- The Info returned by reification
--
-----------------------------------------------------
-- | Obtained from 'reify' in the 'Q' Monad.
data Info
=
-- | A class, with a list of its visible instances
ClassI
Dec
[InstanceDec]
-- | A class method
| ClassOpI
Name
Type
ParentName
Fixity
-- | A \"plain\" type constructor. \"Fancier\" type constructors are returned using 'PrimTyConI' or 'FamilyI' as appropriate
| TyConI
Dec
-- | A type or data family, with a list of its visible instances. A closed
-- type family is returned with 0 instances.
| FamilyI
Dec
[InstanceDec]
-- | A \"primitive\" type constructor, which can't be expressed with a 'Dec'. Examples: @(->)@, @Int#@.
| PrimTyConI
Name
Arity
Unlifted
-- | A data constructor
| DataConI
Name
Type
ParentName
Fixity
{- |
A \"value\" variable (as opposed to a type variable, see 'TyVarI').
The @Maybe Dec@ field contains @Just@ the declaration which
defined the variable -- including the RHS of the declaration --
or else @Nothing@, in the case where the RHS is unavailable to
the compiler. At present, this value is _always_ @Nothing@:
returning the RHS has not yet been implemented because of
lack of interest.
-}
| VarI
Name
Type
(Maybe Dec)
Fixity
{- |
A type variable.
The @Type@ field contains the type which underlies the variable.
At present, this is always @'VarT' theName@, but future changes
may permit refinement of this.
-}
| TyVarI -- Scoped type variable
Name
Type -- What it is bound to
deriving( Show, Data, Typeable )
-- | Obtained from 'reifyModule' in the 'Q' Monad.
data ModuleInfo =
-- | Contains the import list of the module.
ModuleInfo [Module]
deriving( Show, Data, Typeable )
{- |
In 'ClassOpI' and 'DataConI', name of the parent class or type
-}
type ParentName = Name
-- | In 'PrimTyConI', arity of the type constructor
type Arity = Int
-- | In 'PrimTyConI', is the type constructor unlifted?
type Unlifted = Bool
-- | 'InstanceDec' desribes a single instance of a class or type function.
-- It is just a 'Dec', but guaranteed to be one of the following:
--
-- * 'InstanceD' (with empty @['Dec']@)
--
-- * 'DataInstD' or 'NewtypeInstD' (with empty derived @['Name']@)
--
-- * 'TySynInstD'
type InstanceDec = Dec
data Fixity = Fixity Int FixityDirection
deriving( Eq, Show, Data, Typeable )
data FixityDirection = InfixL | InfixR | InfixN
deriving( Eq, Show, Data, Typeable )
-- | Highest allowed operator precedence for 'Fixity' constructor (answer: 9)
maxPrecedence :: Int
maxPrecedence = (9::Int)
-- | Default fixity: @infixl 9@
defaultFixity :: Fixity
defaultFixity = Fixity maxPrecedence InfixL
{-
Note [Unresolved infix]
~~~~~~~~~~~~~~~~~~~~~~~
-}
{- $infix #infix#
When implementing antiquotation for quasiquoters, one often wants
to parse strings into expressions:
> parse :: String -> Maybe Exp
But how should we parse @a + b * c@? If we don't know the fixities of
@+@ and @*@, we don't know whether to parse it as @a + (b * c)@ or @(a
+ b) * c@.
In cases like this, use 'UInfixE' or 'UInfixP', which stand for
\"unresolved infix expression\" and \"unresolved infix pattern\". When
the compiler is given a splice containing a tree of @UInfixE@
applications such as
> UInfixE
> (UInfixE e1 op1 e2)
> op2
> (UInfixE e3 op3 e4)
it will look up and the fixities of the relevant operators and
reassociate the tree as necessary.
* trees will not be reassociated across 'ParensE' or 'ParensP',
which are of use for parsing expressions like
> (a + b * c) + d * e
* 'InfixE' and 'InfixP' expressions are never reassociated.
* The 'UInfixE' constructor doesn't support sections. Sections
such as @(a *)@ have no ambiguity, so 'InfixE' suffices. For longer
sections such as @(a + b * c -)@, use an 'InfixE' constructor for the
outer-most section, and use 'UInfixE' constructors for all
other operators:
> InfixE
> Just (UInfixE ...a + b * c...)
> op
> Nothing
Sections such as @(a + b +)@ and @((a + b) +)@ should be rendered
into 'Exp's differently:
> (+ a + b) ---> InfixE Nothing + (Just $ UInfixE a + b)
> -- will result in a fixity error if (+) is left-infix
> (+ (a + b)) ---> InfixE Nothing + (Just $ ParensE $ UInfixE a + b)
> -- no fixity errors
* Quoted expressions such as
> [| a * b + c |] :: Q Exp
> [p| a : b : c |] :: Q Pat
will never contain 'UInfixE', 'UInfixP', 'ParensE', or 'ParensP'
constructors.
-}
-----------------------------------------------------
--
-- The main syntax data types
--
-----------------------------------------------------
data Lit = CharL Char
| StringL String
| IntegerL Integer -- ^ Used for overloaded and non-overloaded
-- literals. We don't have a good way to
-- represent non-overloaded literals at
-- the moment. Maybe that doesn't matter?
| RationalL Rational -- Ditto
| IntPrimL Integer
| WordPrimL Integer
| FloatPrimL Rational
| DoublePrimL Rational
| StringPrimL [Word8] -- ^ A primitive C-style string, type Addr#
deriving( Show, Eq, Data, Typeable )
-- We could add Int, Float, Double etc, as we do in HsLit,
-- but that could complicate the
-- suppposedly-simple TH.Syntax literal type
-- | Pattern in Haskell given in @{}@
data Pat
= LitP Lit -- ^ @{ 5 or 'c' }@
| VarP Name -- ^ @{ x }@
| TupP [Pat] -- ^ @{ (p1,p2) }@
| UnboxedTupP [Pat] -- ^ @{ (# p1,p2 #) }@
| ConP Name [Pat] -- ^ @data T1 = C1 t1 t2; {C1 p1 p1} = e@
| InfixP Pat Name Pat -- ^ @foo ({x :+ y}) = e@
| UInfixP Pat Name Pat -- ^ @foo ({x :+ y}) = e@
--
-- See "Language.Haskell.TH.Syntax#infix"
| ParensP Pat -- ^ @{(p)}@
--
-- See "Language.Haskell.TH.Syntax#infix"
| TildeP Pat -- ^ @{ ~p }@
| BangP Pat -- ^ @{ !p }@
| AsP Name Pat -- ^ @{ x \@ p }@
| WildP -- ^ @{ _ }@
| RecP Name [FieldPat] -- ^ @f (Pt { pointx = x }) = g x@
| ListP [ Pat ] -- ^ @{ [1,2,3] }@
| SigP Pat Type -- ^ @{ p :: t }@
| ViewP Exp Pat -- ^ @{ e -> p }@
deriving( Show, Eq, Data, Typeable )
type FieldPat = (Name,Pat)
data Match = Match Pat Body [Dec] -- ^ @case e of { pat -> body where decs }@
deriving( Show, Eq, Data, Typeable )
data Clause = Clause [Pat] Body [Dec]
-- ^ @f { p1 p2 = body where decs }@
deriving( Show, Eq, Data, Typeable )
data Exp
= VarE Name -- ^ @{ x }@
| ConE Name -- ^ @data T1 = C1 t1 t2; p = {C1} e1 e2 @
| LitE Lit -- ^ @{ 5 or 'c'}@
| AppE Exp Exp -- ^ @{ f x }@
| InfixE (Maybe Exp) Exp (Maybe Exp) -- ^ @{x + y} or {(x+)} or {(+ x)} or {(+)}@
-- It's a bit gruesome to use an Exp as the
-- operator, but how else can we distinguish
-- constructors from non-constructors?
-- Maybe there should be a var-or-con type?
-- Or maybe we should leave it to the String itself?
| UInfixE Exp Exp Exp -- ^ @{x + y}@
--
-- See "Language.Haskell.TH.Syntax#infix"
| ParensE Exp -- ^ @{ (e) }@
--
-- See "Language.Haskell.TH.Syntax#infix"
| LamE [Pat] Exp -- ^ @{ \ p1 p2 -> e }@
| LamCaseE [Match] -- ^ @{ \case m1; m2 }@
| TupE [Exp] -- ^ @{ (e1,e2) } @
| UnboxedTupE [Exp] -- ^ @{ (# e1,e2 #) } @
| CondE Exp Exp Exp -- ^ @{ if e1 then e2 else e3 }@
| MultiIfE [(Guard, Exp)] -- ^ @{ if | g1 -> e1 | g2 -> e2 }@
| LetE [Dec] Exp -- ^ @{ let x=e1; y=e2 in e3 }@
| CaseE Exp [Match] -- ^ @{ case e of m1; m2 }@
| DoE [Stmt] -- ^ @{ do { p <- e1; e2 } }@
| CompE [Stmt] -- ^ @{ [ (x,y) | x <- xs, y <- ys ] }@
--
-- The result expression of the comprehension is
-- the /last/ of the @'Stmt'@s, and should be a 'NoBindS'.
--
-- E.g. translation:
--
-- > [ f x | x <- xs ]
--
-- > CompE [BindS (VarP x) (VarE xs), NoBindS (AppE (VarE f) (VarE x))]
| ArithSeqE Range -- ^ @{ [ 1 ,2 .. 10 ] }@
| ListE [ Exp ] -- ^ @{ [1,2,3] }@
| SigE Exp Type -- ^ @{ e :: t }@
| RecConE Name [FieldExp] -- ^ @{ T { x = y, z = w } }@
| RecUpdE Exp [FieldExp] -- ^ @{ (f x) { z = w } }@
deriving( Show, Eq, Data, Typeable )
type FieldExp = (Name,Exp)
-- Omitted: implicit parameters
data Body
= GuardedB [(Guard,Exp)] -- ^ @f p { | e1 = e2
-- | e3 = e4 }
-- where ds@
| NormalB Exp -- ^ @f p { = e } where ds@
deriving( Show, Eq, Data, Typeable )
data Guard
= NormalG Exp -- ^ @f x { | odd x } = x@
| PatG [Stmt] -- ^ @f x { | Just y <- x, Just z <- y } = z@
deriving( Show, Eq, Data, Typeable )
data Stmt
= BindS Pat Exp
| LetS [ Dec ]
| NoBindS Exp
| ParS [[Stmt]]
deriving( Show, Eq, Data, Typeable )
data Range = FromR Exp | FromThenR Exp Exp
| FromToR Exp Exp | FromThenToR Exp Exp Exp
deriving( Show, Eq, Data, Typeable )
data Dec
= FunD Name [Clause] -- ^ @{ f p1 p2 = b where decs }@
| ValD Pat Body [Dec] -- ^ @{ p = b where decs }@
| DataD Cxt Name [TyVarBndr]
[Con] [Name] -- ^ @{ data Cxt x => T x = A x | B (T x)
-- deriving (Z,W)}@
| NewtypeD Cxt Name [TyVarBndr]
Con [Name] -- ^ @{ newtype Cxt x => T x = A (B x)
-- deriving (Z,W)}@
| TySynD Name [TyVarBndr] Type -- ^ @{ type T x = (x,x) }@
| ClassD Cxt Name [TyVarBndr]
[FunDep] [Dec] -- ^ @{ class Eq a => Ord a where ds }@
| InstanceD Cxt Type [Dec] -- ^ @{ instance Show w => Show [w]
-- where ds }@
| SigD Name Type -- ^ @{ length :: [a] -> Int }@
| ForeignD Foreign -- ^ @{ foreign import ... }
--{ foreign export ... }@
| InfixD Fixity Name -- ^ @{ infix 3 foo }@
-- | pragmas
| PragmaD Pragma -- ^ @{ {\-# INLINE [1] foo #-\} }@
-- | type families (may also appear in [Dec] of 'ClassD' and 'InstanceD')
| FamilyD FamFlavour Name
[TyVarBndr] (Maybe Kind) -- ^ @{ type family T a b c :: * }@
| DataInstD Cxt Name [Type]
[Con] [Name] -- ^ @{ data instance Cxt x => T [x] = A x
-- | B (T x)
-- deriving (Z,W)}@
| NewtypeInstD Cxt Name [Type]
Con [Name] -- ^ @{ newtype instance Cxt x => T [x] = A (B x)
-- deriving (Z,W)}@
| TySynInstD Name TySynEqn -- ^ @{ type instance ... }@
| ClosedTypeFamilyD Name
[TyVarBndr] (Maybe Kind)
[TySynEqn] -- ^ @{ type family F a b :: * where ... }@
| RoleAnnotD Name [Role] -- ^ @{ type role T nominal representational }@
deriving( Show, Eq, Data, Typeable )
-- | One equation of a type family instance or closed type family. The
-- arguments are the left-hand-side type patterns and the right-hand-side
-- result.
data TySynEqn = TySynEqn [Type] Type
deriving( Show, Eq, Data, Typeable )
data FunDep = FunDep [Name] [Name]
deriving( Show, Eq, Data, Typeable )
data FamFlavour = TypeFam | DataFam
deriving( Show, Eq, Data, Typeable )
data Foreign = ImportF Callconv Safety String Name Type
| ExportF Callconv String Name Type
deriving( Show, Eq, Data, Typeable )
data Callconv = CCall | StdCall
deriving( Show, Eq, Data, Typeable )
data Safety = Unsafe | Safe | Interruptible
deriving( Show, Eq, Data, Typeable )
data Pragma = InlineP Name Inline RuleMatch Phases
| SpecialiseP Name Type (Maybe Inline) Phases
| SpecialiseInstP Type
| RuleP String [RuleBndr] Exp Exp Phases
| AnnP AnnTarget Exp
deriving( Show, Eq, Data, Typeable )
data Inline = NoInline
| Inline
| Inlinable
deriving (Show, Eq, Data, Typeable)
data RuleMatch = ConLike
| FunLike
deriving (Show, Eq, Data, Typeable)
data Phases = AllPhases
| FromPhase Int
| BeforePhase Int
deriving (Show, Eq, Data, Typeable)
data RuleBndr = RuleVar Name
| TypedRuleVar Name Type
deriving (Show, Eq, Data, Typeable)
data AnnTarget = ModuleAnnotation
| TypeAnnotation Name
| ValueAnnotation Name
deriving (Show, Eq, Data, Typeable)
type Cxt = [Pred] -- ^ @(Eq a, Ord b)@
-- | Since the advent of @ConstraintKinds@, constraints are really just types.
-- Equality constraints use the 'EqualityT' constructor. Constraints may also
-- be tuples of other constraints.
type Pred = Type
data Strict = IsStrict | NotStrict | Unpacked
deriving( Show, Eq, Data, Typeable )
data Con = NormalC Name [StrictType] -- ^ @C Int a@
| RecC Name [VarStrictType] -- ^ @C { v :: Int, w :: a }@
| InfixC StrictType Name StrictType -- ^ @Int :+ a@
| ForallC [TyVarBndr] Cxt Con -- ^ @forall a. Eq a => C [a]@
deriving( Show, Eq, Data, Typeable )
type StrictType = (Strict, Type)
type VarStrictType = (Name, Strict, Type)
data Type = ForallT [TyVarBndr] Cxt Type -- ^ @forall \<vars\>. \<ctxt\> -> \<type\>@
| AppT Type Type -- ^ @T a b@
| SigT Type Kind -- ^ @t :: k@
| VarT Name -- ^ @a@
| ConT Name -- ^ @T@
| PromotedT Name -- ^ @'T@
-- See Note [Representing concrete syntax in types]
| TupleT Int -- ^ @(,), (,,), etc.@
| UnboxedTupleT Int -- ^ @(#,#), (#,,#), etc.@
| ArrowT -- ^ @->@
| EqualityT -- ^ @~@
| ListT -- ^ @[]@
| PromotedTupleT Int -- ^ @'(), '(,), '(,,), etc.@
| PromotedNilT -- ^ @'[]@
| PromotedConsT -- ^ @(':)@
| StarT -- ^ @*@
| ConstraintT -- ^ @Constraint@
| LitT TyLit -- ^ @0,1,2, etc.@
deriving( Show, Eq, Data, Typeable )
data TyVarBndr = PlainTV Name -- ^ @a@
| KindedTV Name Kind -- ^ @(a :: k)@
deriving( Show, Eq, Data, Typeable )
data TyLit = NumTyLit Integer -- ^ @2@
| StrTyLit String -- ^ @"Hello"@
deriving ( Show, Eq, Data, Typeable )
-- | Role annotations
data Role = NominalR -- ^ @nominal@
| RepresentationalR -- ^ @representational@
| PhantomR -- ^ @phantom@
| InferR -- ^ @_@
deriving( Show, Eq, Data, Typeable )
-- | Annotation target for reifyAnnotations
data AnnLookup = AnnLookupModule Module
| AnnLookupName Name
deriving( Show, Eq, Data, Typeable )
-- | To avoid duplication between kinds and types, they
-- are defined to be the same. Naturally, you would never
-- have a type be 'StarT' and you would never have a kind
-- be 'SigT', but many of the other constructors are shared.
-- Note that the kind @Bool@ is denoted with 'ConT', not
-- 'PromotedT'. Similarly, tuple kinds are made with 'TupleT',
-- not 'PromotedTupleT'.
type Kind = Type
{- Note [Representing concrete syntax in types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Haskell has a rich concrete syntax for types, including
t1 -> t2, (t1,t2), [t], and so on
In TH we represent all of this using AppT, with a distinguished
type constructor at the head. So,
Type TH representation
-----------------------------------------------
t1 -> t2 ArrowT `AppT` t2 `AppT` t2
[t] ListT `AppT` t
(t1,t2) TupleT 2 `AppT` t1 `AppT` t2
'(t1,t2) PromotedTupleT 2 `AppT` t1 `AppT` t2
But if the original HsSyn used prefix application, we won't use
these special TH constructors. For example
[] t ConT "[]" `AppT` t
(->) t ConT "->" `AppT` t
In this way we can faithfully represent in TH whether the original
HsType used concrete syntax or not.
The one case that doesn't fit this pattern is that of promoted lists
'[ Maybe, IO ] PromotedListT 2 `AppT` t1 `AppT` t2
but it's very smelly because there really is no type constructor
corresponding to PromotedListT. So we encode HsExplicitListTy with
PromotedConsT and PromotedNilT (which *do* have underlying type
constructors):
'[ Maybe, IO ] PromotedConsT `AppT` Maybe `AppT`
(PromotedConsT `AppT` IO `AppT` PromotedNilT)
-}
-----------------------------------------------------
-- Internal helper functions
-----------------------------------------------------
cmpEq :: Ordering -> Bool
cmpEq EQ = True
cmpEq _ = False
thenCmp :: Ordering -> Ordering -> Ordering
thenCmp EQ o2 = o2
thenCmp o1 _ = o1
|