1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
|
/* -----------------------------------------------------------------------------
* Foreign export adjustor thunks
*
* Copyright (c) 1998.
*
* ---------------------------------------------------------------------------*/
/* A little bit of background...
An adjustor thunk is a dynamically allocated code snippet that allows
Haskell closures to be viewed as C function pointers.
Stable pointers provide a way for the outside world to get access to,
and evaluate, Haskell heap objects, with the RTS providing a small
range of ops for doing so. So, assuming we've got a stable pointer in
our hand in C, we can jump into the Haskell world and evaluate a callback
procedure, say. This works OK in some cases where callbacks are used, but
does require the external code to know about stable pointers and how to deal
with them. We'd like to hide the Haskell-nature of a callback and have it
be invoked just like any other C function pointer.
Enter adjustor thunks. An adjustor thunk is a little piece of code
that's generated on-the-fly (one per Haskell closure being exported)
that, when entered using some 'universal' calling convention (e.g., the
C calling convention on platform X), pushes an implicit stable pointer
(to the Haskell callback) before calling another (static) C function stub
which takes care of entering the Haskell code via its stable pointer.
An adjustor thunk is allocated on the C heap, and is called from within
Haskell just before handing out the function pointer to the Haskell (IO)
action. User code should never have to invoke it explicitly.
An adjustor thunk differs from a C function pointer in one respect: when
the code is through with it, it has to be freed in order to release Haskell
and C resources. Failure to do so will result in memory leaks on both the C and
Haskell side.
*/
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
#include "Stable.h"
#if defined(USE_LIBFFI_FOR_ADJUSTORS)
#include "ffi.h"
#include <string.h>
#endif
#if defined(i386_HOST_ARCH)
extern void adjustorCode(void);
#elif defined(powerpc_HOST_ARCH) || defined(powerpc64_HOST_ARCH)
// from AdjustorAsm.s
// not declared as a function so that AIX-style
// fundescs can never get in the way.
extern void *adjustorCode;
#endif
#if defined(USE_LIBFFI_FOR_ADJUSTORS)
/* There are subtle differences between how libffi adjustors work on
* different platforms, and the situation is a little complex.
*
* HOW ADJUSTORS/CLOSURES WORK ON LIBFFI:
* libffi's ffi_closure_alloc() function gives you two pointers to a closure,
* 1. the writable pointer, and 2. the executable pointer. You write the
* closure into the writable pointer (and ffi_prep_closure_loc() will do this
* for you) and you execute it at the executable pointer.
*
* THE PROBLEM:
* The RTS deals only with the executable pointer, but when it comes time to
* free the closure, libffi wants the writable pointer back that it gave you
* when you allocated it.
*
* On Linux we solve this problem by storing the address of the writable
* mapping into itself, then returning both writable and executable pointers
* plus 1 machine word for preparing the closure for use by the RTS (see the
* Linux version of allocateExec() in rts/sm/Storage.c). When we want to
* recover the writable address, we subtract 1 word from the executable
* address and fetch. This works because Linux kernel magic gives us two
* pointers with different addresses that refer to the same memory. Whatever
* you write into the writeable address can be read back at the executable
* address. This method is very efficient.
*
* On iOS this breaks for two reasons: 1. the two pointers do not refer to
* the same memory (so we can't retrieve anything stored into the writable
* pointer if we only have the exec pointer), and 2. libffi's
* ffi_closure_alloc() assumes the pointer it has returned you is a
* ffi_closure structure and treats it as such: It uses that memory to
* communicate with ffi_prep_closure_loc(). On Linux by contrast
* ffi_closure_alloc() is viewed simply as a memory allocation, and only
* ffi_prep_closure_loc() deals in ffi_closure structures. Each of these
* differences is enough make the efficient way used on Linux not work on iOS.
* Instead on iOS we use hash tables to recover the writable address from the
* executable one. This method is conservative and would almost certainly work
* on any platform, but on Linux it makes sense to use the faster method.
*/
void
freeHaskellFunctionPtr(void* ptr)
{
ffi_closure *cl;
#if defined(ios_HOST_OS)
cl = execToWritable(ptr);
#else
cl = (ffi_closure*)ptr;
#endif
freeStablePtr(cl->user_data);
stgFree(cl->cif->arg_types);
stgFree(cl->cif);
freeExec(ptr);
}
static ffi_type * char_to_ffi_type(char c)
{
switch (c) {
case 'v': return &ffi_type_void;
case 'f': return &ffi_type_float;
case 'd': return &ffi_type_double;
case 'L': return &ffi_type_sint64;
case 'l': return &ffi_type_uint64;
case 'W': return &ffi_type_sint32;
case 'w': return &ffi_type_uint32;
case 'S': return &ffi_type_sint16;
case 's': return &ffi_type_uint16;
case 'B': return &ffi_type_sint8;
case 'b': return &ffi_type_uint8;
case 'p': return &ffi_type_pointer;
default: barf("char_to_ffi_type: unknown type '%c'", c);
}
}
void*
createAdjustor (int cconv,
StgStablePtr hptr,
StgFunPtr wptr,
char *typeString)
{
ffi_cif *cif;
ffi_type **arg_types;
nat n_args, i;
ffi_type *result_type;
ffi_closure *cl;
int r, abi;
void *code;
n_args = strlen(typeString) - 1;
cif = stgMallocBytes(sizeof(ffi_cif), "createAdjustor");
arg_types = stgMallocBytes(n_args * sizeof(ffi_type*), "createAdjustor");
result_type = char_to_ffi_type(typeString[0]);
for (i=0; i < n_args; i++) {
arg_types[i] = char_to_ffi_type(typeString[i+1]);
}
switch (cconv) {
#if defined(mingw32_HOST_OS) && defined(i386_HOST_ARCH)
case 0: /* stdcall */
abi = FFI_STDCALL;
break;
#endif
case 1: /* ccall */
abi = FFI_DEFAULT_ABI;
break;
default:
barf("createAdjustor: convention %d not supported on this platform", cconv);
}
r = ffi_prep_cif(cif, abi, n_args, result_type, arg_types);
if (r != FFI_OK) barf("ffi_prep_cif failed: %d", r);
cl = allocateExec(sizeof(ffi_closure), &code);
if (cl == NULL) {
barf("createAdjustor: failed to allocate memory");
}
r = ffi_prep_closure_loc(cl, cif, (void*)wptr, hptr/*userdata*/, code);
if (r != FFI_OK) barf("ffi_prep_closure_loc failed: %d", r);
return (void*)code;
}
#else // To end of file...
#if defined(_WIN32)
#include <windows.h>
#endif
#if defined(powerpc_HOST_ARCH) && defined(linux_HOST_OS)
#include <string.h>
#endif
#ifdef LEADING_UNDERSCORE
#define UNDERSCORE "_"
#else
#define UNDERSCORE ""
#endif
#if defined(x86_64_HOST_ARCH)
/*
Now here's something obscure for you:
When generating an adjustor thunk that uses the C calling
convention, we have to make sure that the thunk kicks off
the process of jumping into Haskell with a tail jump. Why?
Because as a result of jumping in into Haskell we may end
up freeing the very adjustor thunk we came from using
freeHaskellFunctionPtr(). Hence, we better not return to
the adjustor code on our way out, since it could by then
point to junk.
The fix is readily at hand, just include the opcodes
for the C stack fixup code that we need to perform when
returning in some static piece of memory and arrange
to return to it before tail jumping from the adjustor thunk.
*/
static void GNUC3_ATTRIBUTE(used) obscure_ccall_wrapper(void)
{
__asm__ (
".globl " UNDERSCORE "obscure_ccall_ret_code\n"
UNDERSCORE "obscure_ccall_ret_code:\n\t"
"addq $0x8, %rsp\n\t"
#if defined(mingw32_HOST_OS)
/* On Win64, we had to put the original return address after the
arg 1-4 spill slots, ro now we have to move it back */
"movq 0x20(%rsp), %rcx\n"
"movq %rcx, (%rsp)\n"
#endif
"ret"
);
}
extern void obscure_ccall_ret_code(void);
#endif
#if defined(alpha_HOST_ARCH)
/* To get the definition of PAL_imb: */
# if defined(linux_HOST_OS)
# include <asm/pal.h>
# else
# include <machine/pal.h>
# endif
#endif
#if defined(ia64_HOST_ARCH)
/* Layout of a function descriptor */
typedef struct _IA64FunDesc {
StgWord64 ip;
StgWord64 gp;
} IA64FunDesc;
static void *
stgAllocStable(size_t size_in_bytes, StgStablePtr *stable)
{
StgArrWords* arr;
nat data_size_in_words, total_size_in_words;
/* round up to a whole number of words */
data_size_in_words = ROUNDUP_BYTES_TO_WDS(size_in_bytes);
total_size_in_words = sizeofW(StgArrWords) + data_size_in_words;
/* allocate and fill it in */
arr = (StgArrWords *)allocate(total_size_in_words);
SET_ARR_HDR(arr, &stg_ARR_WORDS_info, CCCS, size_in_bytes);
/* obtain a stable ptr */
*stable = getStablePtr((StgPtr)arr);
/* and return a ptr to the goods inside the array */
return(&(arr->payload));
}
#endif
#if defined(powerpc_HOST_ARCH) && defined(linux_HOST_OS)
__asm__("obscure_ccall_ret_code:\n\t"
"lwz 1,0(1)\n\t"
"lwz 0,4(1)\n\t"
"mtlr 0\n\t"
"blr");
extern void obscure_ccall_ret_code(void);
#endif
#if defined(powerpc_HOST_ARCH) || defined(powerpc64_HOST_ARCH)
#if !(defined(powerpc_HOST_ARCH) && defined(linux_HOST_OS))
/* !!! !!! WARNING: !!! !!!
* This structure is accessed from AdjustorAsm.s
* Any changes here have to be mirrored in the offsets there.
*/
typedef struct AdjustorStub {
#if defined(powerpc_HOST_ARCH) && defined(darwin_HOST_OS)
unsigned lis;
unsigned ori;
unsigned lwz;
unsigned mtctr;
unsigned bctr;
StgFunPtr code;
#elif defined(powerpc64_HOST_ARCH) && defined(darwin_HOST_OS)
/* powerpc64-darwin: just guessing that it won't use fundescs. */
unsigned lis;
unsigned ori;
unsigned rldimi;
unsigned oris;
unsigned ori2;
unsigned lwz;
unsigned mtctr;
unsigned bctr;
StgFunPtr code;
#else
/* fundesc-based ABIs */
#define FUNDESCS
StgFunPtr code;
struct AdjustorStub
*toc;
void *env;
#endif
StgStablePtr hptr;
StgFunPtr wptr;
StgInt negative_framesize;
StgInt extrawords_plus_one;
} AdjustorStub;
#endif
#endif
#if defined(i386_HOST_ARCH)
/* !!! !!! WARNING: !!! !!!
* This structure is accessed from AdjustorAsm.s
* Any changes here have to be mirrored in the offsets there.
*/
typedef struct AdjustorStub {
unsigned char call[8];
StgStablePtr hptr;
StgFunPtr wptr;
StgInt frame_size;
StgInt argument_size;
} AdjustorStub;
#endif
#if defined(i386_HOST_ARCH) || defined(powerpc_HOST_ARCH) || defined(powerpc64_HOST_ARCH)
static int totalArgumentSize(char *typeString)
{
int sz = 0;
while(*typeString)
{
char t = *typeString++;
switch(t)
{
// on 32-bit platforms, Double and Int64 occupy two words.
case 'd':
case 'l':
case 'L':
if(sizeof(void*) == 4)
{
sz += 2;
break;
}
// everything else is one word.
default:
sz += 1;
}
}
return sz;
}
#endif
void*
createAdjustor(int cconv, StgStablePtr hptr,
StgFunPtr wptr,
char *typeString
#if !defined(powerpc_HOST_ARCH) && !defined(powerpc64_HOST_ARCH) && !defined(x86_64_HOST_ARCH)
STG_UNUSED
#endif
)
{
void *adjustor = NULL;
void *code = NULL;
switch (cconv)
{
case 0: /* _stdcall */
#if defined(i386_HOST_ARCH) && !defined(darwin_HOST_OS)
/* Magic constant computed by inspecting the code length of
the following assembly language snippet
(offset and machine code prefixed):
<0>: 58 popl %eax # temp. remove ret addr..
<1>: 68 fd fc fe fa pushl 0xfafefcfd # constant is large enough to
# hold a StgStablePtr
<6>: 50 pushl %eax # put back ret. addr
<7>: b8 fa ef ff 00 movl $0x00ffeffa, %eax # load up wptr
<c>: ff e0 jmp %eax # and jump to it.
# the callee cleans up the stack
*/
adjustor = allocateExec(14,&code);
{
unsigned char *const adj_code = (unsigned char *)adjustor;
adj_code[0x00] = (unsigned char)0x58; /* popl %eax */
adj_code[0x01] = (unsigned char)0x68; /* pushl hptr (which is a dword immediate ) */
*((StgStablePtr*)(adj_code + 0x02)) = (StgStablePtr)hptr;
adj_code[0x06] = (unsigned char)0x50; /* pushl %eax */
adj_code[0x07] = (unsigned char)0xb8; /* movl $wptr, %eax */
*((StgFunPtr*)(adj_code + 0x08)) = (StgFunPtr)wptr;
adj_code[0x0c] = (unsigned char)0xff; /* jmp %eax */
adj_code[0x0d] = (unsigned char)0xe0;
}
#endif
break;
case 1: /* _ccall */
#if defined(i386_HOST_ARCH)
{
/*
Most of the trickiness here is due to the need to keep the
stack pointer 16-byte aligned (see #5250). That means we
can't just push another argument on the stack and call the
wrapper, we may have to shuffle the whole argument block.
We offload most of the work to AdjustorAsm.S.
*/
AdjustorStub *adjustorStub = allocateExec(sizeof(AdjustorStub),&code);
adjustor = adjustorStub;
int sz = totalArgumentSize(typeString);
adjustorStub->call[0] = 0xe8;
*(long*)&adjustorStub->call[1] = ((char*)&adjustorCode) - ((char*)code + 5);
adjustorStub->hptr = hptr;
adjustorStub->wptr = wptr;
// The adjustor puts the following things on the stack:
// 1.) %ebp link
// 2.) padding and (a copy of) the arguments
// 3.) a dummy argument
// 4.) hptr
// 5.) return address (for returning to the adjustor)
// All these have to add up to a multiple of 16.
// first, include everything in frame_size
adjustorStub->frame_size = sz * 4 + 16;
// align to 16 bytes
adjustorStub->frame_size = (adjustorStub->frame_size + 15) & ~15;
// only count 2.) and 3.) as part of frame_size
adjustorStub->frame_size -= 12;
adjustorStub->argument_size = sz;
}
#elif defined(x86_64_HOST_ARCH)
# if defined(mingw32_HOST_OS)
/*
stack at call:
argn
...
arg5
return address
%rcx,%rdx,%r8,%r9 = arg1..arg4
if there are <4 integer args, then we can just push the
StablePtr into %rcx and shuffle the other args up.
If there are >=4 integer args, then we have to flush one arg
to the stack, and arrange to adjust the stack ptr on return.
The stack will be rearranged to this:
argn
...
arg5
return address *** <-- dummy arg in stub fn.
arg4
obscure_ccall_ret_code
This unfortunately means that the type of the stub function
must have a dummy argument for the original return address
pointer inserted just after the 4th integer argument.
Code for the simple case:
0: 4d 89 c1 mov %r8,%r9
3: 49 89 d0 mov %rdx,%r8
6: 48 89 ca mov %rcx,%rdx
9: f2 0f 10 da movsd %xmm2,%xmm3
d: f2 0f 10 d1 movsd %xmm1,%xmm2
11: f2 0f 10 c8 movsd %xmm0,%xmm1
15: 48 8b 0d 0c 00 00 00 mov 0xc(%rip),%rcx # 28 <.text+0x28>
1c: ff 25 0e 00 00 00 jmpq *0xe(%rip) # 30 <.text+0x30>
22: 90 nop
[...]
And the version for >=4 integer arguments:
[we want to push the 4th argument (either %r9 or %xmm3, depending on
whether it is a floating arg or not) and the return address onto the
stack. However, slots 1-4 are reserved for code we call to spill its
args 1-4 into, so we can't just push them onto the bottom of the stack.
So first put the 4th argument onto the stack, above what will be the
spill slots.]
0: 48 83 ec 08 sub $0x8,%rsp
[if non-floating arg, then do this:]
4: 90 nop
5: 4c 89 4c 24 20 mov %r9,0x20(%rsp)
[else if floating arg then do this:]
4: f2 0f 11 5c 24 20 movsd %xmm3,0x20(%rsp)
[end if]
[Now push the new return address onto the stack]
a: ff 35 30 00 00 00 pushq 0x30(%rip) # 40 <.text+0x40>
[But the old return address has been moved up into a spill slot, so
we need to move it above them]
10: 4c 8b 4c 24 10 mov 0x10(%rsp),%r9
15: 4c 89 4c 24 30 mov %r9,0x30(%rsp)
[Now we do the normal register shuffle-up etc]
1a: 4d 89 c1 mov %r8,%r9
1d: 49 89 d0 mov %rdx,%r8
20: 48 89 ca mov %rcx,%rdx
23: f2 0f 10 da movsd %xmm2,%xmm3
27: f2 0f 10 d1 movsd %xmm1,%xmm2
2b: f2 0f 10 c8 movsd %xmm0,%xmm1
2f: 48 8b 0d 12 00 00 00 mov 0x12(%rip),%rcx # 48 <.text+0x48>
36: ff 25 14 00 00 00 jmpq *0x14(%rip) # 50 <.text+0x50>
3c: 90 nop
3d: 90 nop
3e: 90 nop
3f: 90 nop
[...]
*/
{
StgWord8 *adj_code;
// determine whether we have 4 or more integer arguments,
// and therefore need to flush one to the stack.
if ((typeString[0] == '\0') ||
(typeString[1] == '\0') ||
(typeString[2] == '\0') ||
(typeString[3] == '\0')) {
adjustor = allocateExec(0x38,&code);
adj_code = (StgWord8*)adjustor;
*(StgInt32 *)adj_code = 0x49c1894d;
*(StgInt32 *)(adj_code+0x4) = 0x8948d089;
*(StgInt32 *)(adj_code+0x8) = 0x100ff2ca;
*(StgInt32 *)(adj_code+0xc) = 0x100ff2da;
*(StgInt32 *)(adj_code+0x10) = 0x100ff2d1;
*(StgInt32 *)(adj_code+0x14) = 0x0d8b48c8;
*(StgInt32 *)(adj_code+0x18) = 0x0000000c;
*(StgInt32 *)(adj_code+0x1c) = 0x000e25ff;
*(StgInt32 *)(adj_code+0x20) = 0x00000000;
*(StgInt64 *)(adj_code+0x28) = (StgInt64)hptr;
*(StgInt64 *)(adj_code+0x30) = (StgInt64)wptr;
}
else
{
int fourthFloating;
fourthFloating = (typeString[3] == 'f' || typeString[3] == 'd');
adjustor = allocateExec(0x58,&code);
adj_code = (StgWord8*)adjustor;
*(StgInt32 *)adj_code = 0x08ec8348;
*(StgInt32 *)(adj_code+0x4) = fourthFloating ? 0x5c110ff2
: 0x4c894c90;
*(StgInt32 *)(adj_code+0x8) = 0x35ff2024;
*(StgInt32 *)(adj_code+0xc) = 0x00000030;
*(StgInt32 *)(adj_code+0x10) = 0x244c8b4c;
*(StgInt32 *)(adj_code+0x14) = 0x4c894c10;
*(StgInt32 *)(adj_code+0x18) = 0x894d3024;
*(StgInt32 *)(adj_code+0x1c) = 0xd08949c1;
*(StgInt32 *)(adj_code+0x20) = 0xf2ca8948;
*(StgInt32 *)(adj_code+0x24) = 0xf2da100f;
*(StgInt32 *)(adj_code+0x28) = 0xf2d1100f;
*(StgInt32 *)(adj_code+0x2c) = 0x48c8100f;
*(StgInt32 *)(adj_code+0x30) = 0x00120d8b;
*(StgInt32 *)(adj_code+0x34) = 0x25ff0000;
*(StgInt32 *)(adj_code+0x38) = 0x00000014;
*(StgInt32 *)(adj_code+0x3c) = 0x90909090;
*(StgInt64 *)(adj_code+0x40) = (StgInt64)obscure_ccall_ret_code;
*(StgInt64 *)(adj_code+0x48) = (StgInt64)hptr;
*(StgInt64 *)(adj_code+0x50) = (StgInt64)wptr;
}
}
# else
/*
stack at call:
argn
...
arg7
return address
%rdi,%rsi,%rdx,%rcx,%r8,%r9 = arg1..arg6
if there are <6 integer args, then we can just push the
StablePtr into %edi and shuffle the other args up.
If there are >=6 integer args, then we have to flush one arg
to the stack, and arrange to adjust the stack ptr on return.
The stack will be rearranged to this:
argn
...
arg7
return address *** <-- dummy arg in stub fn.
arg6
obscure_ccall_ret_code
This unfortunately means that the type of the stub function
must have a dummy argument for the original return address
pointer inserted just after the 6th integer argument.
Code for the simple case:
0: 4d 89 c1 mov %r8,%r9
3: 49 89 c8 mov %rcx,%r8
6: 48 89 d1 mov %rdx,%rcx
9: 48 89 f2 mov %rsi,%rdx
c: 48 89 fe mov %rdi,%rsi
f: 48 8b 3d 0a 00 00 00 mov 10(%rip),%rdi
16: ff 25 0c 00 00 00 jmpq *12(%rip)
...
20: .quad 0 # aligned on 8-byte boundary
28: .quad 0 # aligned on 8-byte boundary
And the version for >=6 integer arguments:
0: 41 51 push %r9
2: ff 35 20 00 00 00 pushq 32(%rip) # 28 <ccall_adjustor+0x28>
8: 4d 89 c1 mov %r8,%r9
b: 49 89 c8 mov %rcx,%r8
e: 48 89 d1 mov %rdx,%rcx
11: 48 89 f2 mov %rsi,%rdx
14: 48 89 fe mov %rdi,%rsi
17: 48 8b 3d 12 00 00 00 mov 18(%rip),%rdi # 30 <ccall_adjustor+0x30>
1e: ff 25 14 00 00 00 jmpq *20(%rip) # 38 <ccall_adjustor+0x38>
...
28: .quad 0 # aligned on 8-byte boundary
30: .quad 0 # aligned on 8-byte boundary
38: .quad 0 # aligned on 8-byte boundary
*/
{
int i = 0;
char *c;
StgWord8 *adj_code;
// determine whether we have 6 or more integer arguments,
// and therefore need to flush one to the stack.
for (c = typeString; *c != '\0'; c++) {
if (*c != 'f' && *c != 'd') i++;
if (i == 6) break;
}
if (i < 6) {
adjustor = allocateExec(0x30,&code);
adj_code = (StgWord8*)adjustor;
*(StgInt32 *)adj_code = 0x49c1894d;
*(StgInt32 *)(adj_code+0x4) = 0x8948c889;
*(StgInt32 *)(adj_code+0x8) = 0xf28948d1;
*(StgInt32 *)(adj_code+0xc) = 0x48fe8948;
*(StgInt32 *)(adj_code+0x10) = 0x000a3d8b;
*(StgInt32 *)(adj_code+0x14) = 0x25ff0000;
*(StgInt32 *)(adj_code+0x18) = 0x0000000c;
*(StgInt64 *)(adj_code+0x20) = (StgInt64)hptr;
*(StgInt64 *)(adj_code+0x28) = (StgInt64)wptr;
}
else
{
adjustor = allocateExec(0x40,&code);
adj_code = (StgWord8*)adjustor;
*(StgInt32 *)adj_code = 0x35ff5141;
*(StgInt32 *)(adj_code+0x4) = 0x00000020;
*(StgInt32 *)(adj_code+0x8) = 0x49c1894d;
*(StgInt32 *)(adj_code+0xc) = 0x8948c889;
*(StgInt32 *)(adj_code+0x10) = 0xf28948d1;
*(StgInt32 *)(adj_code+0x14) = 0x48fe8948;
*(StgInt32 *)(adj_code+0x18) = 0x00123d8b;
*(StgInt32 *)(adj_code+0x1c) = 0x25ff0000;
*(StgInt32 *)(adj_code+0x20) = 0x00000014;
*(StgInt64 *)(adj_code+0x28) = (StgInt64)obscure_ccall_ret_code;
*(StgInt64 *)(adj_code+0x30) = (StgInt64)hptr;
*(StgInt64 *)(adj_code+0x38) = (StgInt64)wptr;
}
}
# endif
#elif defined(sparc_HOST_ARCH)
/* Magic constant computed by inspecting the code length of the following
assembly language snippet (offset and machine code prefixed):
<00>: 9C23A008 sub %sp, 8, %sp ! make room for %o4/%o5 in caller's frame
<04>: DA23A060 st %o5, [%sp + 96] ! shift registers by 2 positions
<08>: D823A05C st %o4, [%sp + 92]
<0C>: 9A10000B mov %o3, %o5
<10>: 9810000A mov %o2, %o4
<14>: 96100009 mov %o1, %o3
<18>: 94100008 mov %o0, %o2
<1C>: 13000000 sethi %hi(wptr), %o1 ! load up wptr (1 of 2)
<20>: 11000000 sethi %hi(hptr), %o0 ! load up hptr (1 of 2)
<24>: 81C26000 jmp %o1 + %lo(wptr) ! jump to wptr (load 2 of 2)
<28>: 90122000 or %o0, %lo(hptr), %o0 ! load up hptr (2 of 2, delay slot)
<2C> 00000000 ! place for getting hptr back easily
ccall'ing on SPARC is easy, because we are quite lucky to push a
multiple of 8 bytes (1 word hptr + 1 word dummy arg) in front of the
existing arguments (note that %sp must stay double-word aligned at
all times, see ABI spec at http://www.sparc.org/standards/psABI3rd.pdf).
To do this, we extend the *caller's* stack frame by 2 words and shift
the output registers used for argument passing (%o0 - %o5, we are a *leaf*
procedure because of the tail-jump) by 2 positions. This makes room in
%o0 and %o1 for the additinal arguments, namely hptr and a dummy (used
for destination addr of jump on SPARC, return address on x86, ...). This
shouldn't cause any problems for a C-like caller: alloca is implemented
similarly, and local variables should be accessed via %fp, not %sp. In a
nutshell: This should work! (Famous last words! :-)
*/
adjustor = allocateExec(4*(11+1),&code);
{
unsigned long *const adj_code = (unsigned long *)adjustor;
adj_code[ 0] = 0x9C23A008UL; /* sub %sp, 8, %sp */
adj_code[ 1] = 0xDA23A060UL; /* st %o5, [%sp + 96] */
adj_code[ 2] = 0xD823A05CUL; /* st %o4, [%sp + 92] */
adj_code[ 3] = 0x9A10000BUL; /* mov %o3, %o5 */
adj_code[ 4] = 0x9810000AUL; /* mov %o2, %o4 */
adj_code[ 5] = 0x96100009UL; /* mov %o1, %o3 */
adj_code[ 6] = 0x94100008UL; /* mov %o0, %o2 */
adj_code[ 7] = 0x13000000UL; /* sethi %hi(wptr), %o1 */
adj_code[ 7] |= ((unsigned long)wptr) >> 10;
adj_code[ 8] = 0x11000000UL; /* sethi %hi(hptr), %o0 */
adj_code[ 8] |= ((unsigned long)hptr) >> 10;
adj_code[ 9] = 0x81C26000UL; /* jmp %o1 + %lo(wptr) */
adj_code[ 9] |= ((unsigned long)wptr) & 0x000003FFUL;
adj_code[10] = 0x90122000UL; /* or %o0, %lo(hptr), %o0 */
adj_code[10] |= ((unsigned long)hptr) & 0x000003FFUL;
adj_code[11] = (unsigned long)hptr;
/* flush cache */
asm("flush %0" : : "r" (adj_code ));
asm("flush %0" : : "r" (adj_code + 2));
asm("flush %0" : : "r" (adj_code + 4));
asm("flush %0" : : "r" (adj_code + 6));
asm("flush %0" : : "r" (adj_code + 10));
/* max. 5 instructions latency, and we need at >= 1 for returning */
asm("nop");
asm("nop");
asm("nop");
asm("nop");
}
#elif defined(alpha_HOST_ARCH)
/* Magic constant computed by inspecting the code length of
the following assembly language snippet
(offset and machine code prefixed; note that the machine code
shown is longwords stored in little-endian order):
<00>: 46520414 mov a2, a4
<04>: 46100412 mov a0, a2
<08>: a61b0020 ldq a0, 0x20(pv) # load up hptr
<0c>: 46730415 mov a3, a5
<10>: a77b0028 ldq pv, 0x28(pv) # load up wptr
<14>: 46310413 mov a1, a3
<18>: 6bfb---- jmp (pv), <hint> # jump to wptr (with hint)
<1c>: 00000000 # padding for alignment
<20>: [8 bytes for hptr quadword]
<28>: [8 bytes for wptr quadword]
The "computed" jump at <08> above is really a jump to a fixed
location. Accordingly, we place an always-correct hint in the
jump instruction, namely the address offset from <0c> to wptr,
divided by 4, taking the lowest 14 bits.
We only support passing 4 or fewer argument words, for the same
reason described under sparc_HOST_ARCH above by JRS, 21 Aug 01.
On the Alpha the first 6 integer arguments are in a0 through a5,
and the rest on the stack. Hence we want to shuffle the original
caller's arguments by two.
On the Alpha the calling convention is so complex and dependent
on the callee's signature -- for example, the stack pointer has
to be a multiple of 16 -- that it seems impossible to me [ccshan]
to handle the general case correctly without changing how the
adjustor is called from C. For now, our solution of shuffling
registers only and ignoring the stack only works if the original
caller passed 4 or fewer argument words.
TODO: Depending on how much allocation overhead stgMallocBytes uses for
header information (more precisely, if the overhead is no more than
4 bytes), we should move the first three instructions above down by
4 bytes (getting rid of the nop), hence saving memory. [ccshan]
*/
ASSERT(((StgWord64)wptr & 3) == 0);
adjustor = allocateExec(48,&code);
{
StgWord64 *const code = (StgWord64 *)adjustor;
code[0] = 0x4610041246520414L;
code[1] = 0x46730415a61b0020L;
code[2] = 0x46310413a77b0028L;
code[3] = 0x000000006bfb0000L
| (((StgWord32*)(wptr) - (StgWord32*)(code) - 3) & 0x3fff);
code[4] = (StgWord64)hptr;
code[5] = (StgWord64)wptr;
/* Ensure that instruction cache is consistent with our new code */
__asm__ volatile("call_pal %0" : : "i" (PAL_imb));
}
#elif defined(powerpc_HOST_ARCH) && defined(linux_HOST_OS)
#define OP_LO(op,lo) ((((unsigned)(op)) << 16) | (((unsigned)(lo)) & 0xFFFF))
#define OP_HI(op,hi) ((((unsigned)(op)) << 16) | (((unsigned)(hi)) >> 16))
{
/* The PowerPC Linux (32-bit) calling convention is annoyingly complex.
We need to calculate all the details of the stack frame layout,
taking into account the types of all the arguments, and then
generate code on the fly. */
int src_gpr = 3, dst_gpr = 5;
int fpr = 3;
int src_offset = 0, dst_offset = 0;
int n = strlen(typeString),i;
int src_locs[n], dst_locs[n];
int frameSize;
unsigned *code;
/* Step 1:
Calculate where the arguments should go.
src_locs[] will contain the locations of the arguments in the
original stack frame passed to the adjustor.
dst_locs[] will contain the locations of the arguments after the
adjustor runs, on entry to the wrapper proc pointed to by wptr.
This algorithm is based on the one described on page 3-19 of the
System V ABI PowerPC Processor Supplement.
*/
for(i=0;typeString[i];i++)
{
char t = typeString[i];
if((t == 'f' || t == 'd') && fpr <= 8)
src_locs[i] = dst_locs[i] = -32-(fpr++);
else
{
if((t == 'l' || t == 'L') && src_gpr <= 9)
{
if((src_gpr & 1) == 0)
src_gpr++;
src_locs[i] = -src_gpr;
src_gpr += 2;
}
else if((t == 'w' || t == 'W') && src_gpr <= 10)
{
src_locs[i] = -(src_gpr++);
}
else
{
if(t == 'l' || t == 'L' || t == 'd')
{
if(src_offset % 8)
src_offset += 4;
}
src_locs[i] = src_offset;
src_offset += (t == 'l' || t == 'L' || t == 'd') ? 8 : 4;
}
if((t == 'l' || t == 'L') && dst_gpr <= 9)
{
if((dst_gpr & 1) == 0)
dst_gpr++;
dst_locs[i] = -dst_gpr;
dst_gpr += 2;
}
else if((t == 'w' || t == 'W') && dst_gpr <= 10)
{
dst_locs[i] = -(dst_gpr++);
}
else
{
if(t == 'l' || t == 'L' || t == 'd')
{
if(dst_offset % 8)
dst_offset += 4;
}
dst_locs[i] = dst_offset;
dst_offset += (t == 'l' || t == 'L' || t == 'd') ? 8 : 4;
}
}
}
frameSize = dst_offset + 8;
frameSize = (frameSize+15) & ~0xF;
/* Step 2:
Build the adjustor.
*/
// allocate space for at most 4 insns per parameter
// plus 14 more instructions.
adjustor = allocateExec(4 * (4*n + 14),&code);
code = (unsigned*)adjustor;
*code++ = 0x48000008; // b *+8
// * Put the hptr in a place where freeHaskellFunctionPtr
// can get at it.
*code++ = (unsigned) hptr;
// * save the link register
*code++ = 0x7c0802a6; // mflr r0;
*code++ = 0x90010004; // stw r0, 4(r1);
// * and build a new stack frame
*code++ = OP_LO(0x9421, -frameSize); // stwu r1, -frameSize(r1)
// * now generate instructions to copy arguments
// from the old stack frame into the new stack frame.
for(i=n-1;i>=0;i--)
{
if(src_locs[i] < -32)
ASSERT(dst_locs[i] == src_locs[i]);
else if(src_locs[i] < 0)
{
// source in GPR.
ASSERT(typeString[i] != 'f' && typeString[i] != 'd');
if(dst_locs[i] < 0)
{
ASSERT(dst_locs[i] > -32);
// dst is in GPR, too.
if(typeString[i] == 'l' || typeString[i] == 'L')
{
// mr dst+1, src+1
*code++ = 0x7c000378
| ((-dst_locs[i]+1) << 16)
| ((-src_locs[i]+1) << 11)
| ((-src_locs[i]+1) << 21);
}
// mr dst, src
*code++ = 0x7c000378
| ((-dst_locs[i]) << 16)
| ((-src_locs[i]) << 11)
| ((-src_locs[i]) << 21);
}
else
{
if(typeString[i] == 'l' || typeString[i] == 'L')
{
// stw src+1, dst_offset+4(r1)
*code++ = 0x90010000
| ((-src_locs[i]+1) << 21)
| (dst_locs[i] + 4);
}
// stw src, dst_offset(r1)
*code++ = 0x90010000
| ((-src_locs[i]) << 21)
| (dst_locs[i] + 8);
}
}
else
{
ASSERT(dst_locs[i] >= 0);
ASSERT(typeString[i] != 'f' && typeString[i] != 'd');
if(typeString[i] == 'l' || typeString[i] == 'L')
{
// lwz r0, src_offset(r1)
*code++ = 0x80010000
| (src_locs[i] + frameSize + 8 + 4);
// stw r0, dst_offset(r1)
*code++ = 0x90010000
| (dst_locs[i] + 8 + 4);
}
// lwz r0, src_offset(r1)
*code++ = 0x80010000
| (src_locs[i] + frameSize + 8);
// stw r0, dst_offset(r1)
*code++ = 0x90010000
| (dst_locs[i] + 8);
}
}
// * hptr will be the new first argument.
// lis r3, hi(hptr)
*code++ = OP_HI(0x3c60, hptr);
// ori r3,r3,lo(hptr)
*code++ = OP_LO(0x6063, hptr);
// * we need to return to a piece of code
// which will tear down the stack frame.
// lis r11,hi(obscure_ccall_ret_code)
*code++ = OP_HI(0x3d60, obscure_ccall_ret_code);
// ori r11,r11,lo(obscure_ccall_ret_code)
*code++ = OP_LO(0x616b, obscure_ccall_ret_code);
// mtlr r11
*code++ = 0x7d6803a6;
// * jump to wptr
// lis r11,hi(wptr)
*code++ = OP_HI(0x3d60, wptr);
// ori r11,r11,lo(wptr)
*code++ = OP_LO(0x616b, wptr);
// mtctr r11
*code++ = 0x7d6903a6;
// bctr
*code++ = 0x4e800420;
// Flush the Instruction cache:
{
unsigned *p = adjustor;
while(p < code)
{
__asm__ volatile ("dcbf 0,%0\n\tsync\n\ticbi 0,%0"
: : "r" (p));
p++;
}
__asm__ volatile ("sync\n\tisync");
}
}
#elif defined(powerpc_HOST_ARCH) || defined(powerpc64_HOST_ARCH)
#define OP_LO(op,lo) ((((unsigned)(op)) << 16) | (((unsigned)(lo)) & 0xFFFF))
#define OP_HI(op,hi) ((((unsigned)(op)) << 16) | (((unsigned)(hi)) >> 16))
{
/* The following code applies to all PowerPC and PowerPC64 platforms
whose stack layout is based on the AIX ABI.
Besides (obviously) AIX, this includes
Mac OS 9 and BeOS/PPC (may they rest in peace),
which use the 32-bit AIX ABI
powerpc64-linux,
which uses the 64-bit AIX ABI
and Darwin (Mac OS X),
which uses the same stack layout as AIX,
but no function descriptors.
The actual stack-frame shuffling is implemented out-of-line
in the function adjustorCode, in AdjustorAsm.S.
Here, we set up an AdjustorStub structure, which
is a function descriptor (on platforms that have function
descriptors) or a short piece of stub code (on Darwin) to call
adjustorCode with a pointer to the AdjustorStub struct loaded
into register r2.
One nice thing about this is that there is _no_ code generated at
runtime on the platforms that have function descriptors.
*/
AdjustorStub *adjustorStub;
int sz = 0, extra_sz, total_sz;
#ifdef FUNDESCS
adjustorStub = stgMallocBytes(sizeof(AdjustorStub), "createAdjustor");
#else
adjustorStub = allocateExec(sizeof(AdjustorStub),&code);
#endif
adjustor = adjustorStub;
adjustorStub->code = (void*) &adjustorCode;
#ifdef FUNDESCS
// function descriptors are a cool idea.
// We don't need to generate any code at runtime.
adjustorStub->toc = adjustorStub;
#else
// no function descriptors :-(
// We need to do things "by hand".
#if defined(powerpc_HOST_ARCH)
// lis r2, hi(adjustorStub)
adjustorStub->lis = OP_HI(0x3c40, adjustorStub);
// ori r2, r2, lo(adjustorStub)
adjustorStub->ori = OP_LO(0x6042, adjustorStub);
// lwz r0, code(r2)
adjustorStub->lwz = OP_LO(0x8002, (char*)(&adjustorStub->code)
- (char*)adjustorStub);
// mtctr r0
adjustorStub->mtctr = 0x7c0903a6;
// bctr
adjustorStub->bctr = 0x4e800420;
#else
barf("adjustor creation not supported on this platform");
#endif
// Flush the Instruction cache:
{
int n = sizeof(AdjustorStub)/sizeof(unsigned);
unsigned *p = (unsigned*)adjustor;
while(n--)
{
__asm__ volatile ("dcbf 0,%0\n\tsync\n\ticbi 0,%0"
: : "r" (p));
p++;
}
__asm__ volatile ("sync\n\tisync");
}
#endif
// Calculate the size of the stack frame, in words.
sz = totalArgumentSize(typeString);
// The first eight words of the parameter area
// are just "backing store" for the parameters passed in
// the GPRs. extra_sz is the number of words beyond those first
// 8 words.
extra_sz = sz - 8;
if(extra_sz < 0)
extra_sz = 0;
// Calculate the total size of the stack frame.
total_sz = (6 /* linkage area */
+ 8 /* minimum parameter area */
+ 2 /* two extra arguments */
+ extra_sz)*sizeof(StgWord);
// align to 16 bytes.
// AIX only requires 8 bytes, but who cares?
total_sz = (total_sz+15) & ~0xF;
// Fill in the information that adjustorCode in AdjustorAsm.S
// will use to create a new stack frame with the additional args.
adjustorStub->hptr = hptr;
adjustorStub->wptr = wptr;
adjustorStub->negative_framesize = -total_sz;
adjustorStub->extrawords_plus_one = extra_sz + 1;
}
#elif defined(ia64_HOST_ARCH)
/*
Up to 8 inputs are passed in registers. We flush the last two inputs to
the stack, initially into the 16-byte scratch region left by the caller.
We then shuffle the others along by 4 (taking 2 registers for ourselves
to save return address and previous function state - we need to come back
here on the way out to restore the stack, so this is a real function
rather than just a trampoline).
The function descriptor we create contains the gp of the target function
so gp is already loaded correctly.
[MLX] alloc r16=ar.pfs,10,2,0
movl r17=wptr
[MII] st8.spill [r12]=r38,8 // spill in6 (out4)
mov r41=r37 // out7 = in5 (out3)
mov r40=r36;; // out6 = in4 (out2)
[MII] st8.spill [r12]=r39 // spill in7 (out5)
mov.sptk b6=r17,50
mov r38=r34;; // out4 = in2 (out0)
[MII] mov r39=r35 // out5 = in3 (out1)
mov r37=r33 // out3 = in1 (loc1)
mov r36=r32 // out2 = in0 (loc0)
[MLX] adds r12=-24,r12 // update sp
movl r34=hptr;; // out0 = hptr
[MIB] mov r33=r16 // loc1 = ar.pfs
mov r32=b0 // loc0 = retaddr
br.call.sptk.many b0=b6;;
[MII] adds r12=-16,r12
mov b0=r32
mov.i ar.pfs=r33
[MFB] nop.m 0x0
nop.f 0x0
br.ret.sptk.many b0;;
*/
/* These macros distribute a long constant into the two words of an MLX bundle */
#define BITS(val,start,count) (((val) >> (start)) & ((1 << (count))-1))
#define MOVL_LOWORD(val) (BITS(val,22,18) << 46)
#define MOVL_HIWORD(val) ( (BITS(val,0,7) << 36) \
| (BITS(val,7,9) << 50) \
| (BITS(val,16,5) << 45) \
| (BITS(val,21,1) << 44) \
| (BITS(val,40,23)) \
| (BITS(val,63,1) << 59))
{
StgStablePtr stable;
IA64FunDesc *wdesc = (IA64FunDesc *)wptr;
StgWord64 wcode = wdesc->ip;
IA64FunDesc *fdesc;
StgWord64 *code;
/* we allocate on the Haskell heap since malloc'd memory isn't
* executable - argh */
/* Allocated memory is word-aligned (8 bytes) but functions on ia64
* must be aligned to 16 bytes. We allocate an extra 8 bytes of
* wiggle room so that we can put the code on a 16 byte boundary. */
adjustor = stgAllocStable(sizeof(IA64FunDesc)+18*8+8, &stable);
fdesc = (IA64FunDesc *)adjustor;
code = (StgWord64 *)(fdesc + 1);
/* add 8 bytes to code if needed to align to a 16-byte boundary */
if ((StgWord64)code & 15) code++;
fdesc->ip = (StgWord64)code;
fdesc->gp = wdesc->gp;
code[0] = 0x0000058004288004 | MOVL_LOWORD(wcode);
code[1] = 0x6000000220000000 | MOVL_HIWORD(wcode);
code[2] = 0x029015d818984001;
code[3] = 0x8401200500420094;
code[4] = 0x886011d8189c0001;
code[5] = 0x84011004c00380c0;
code[6] = 0x0250210046013800;
code[7] = 0x8401000480420084;
code[8] = 0x0000233f19a06005 | MOVL_LOWORD((StgWord64)hptr);
code[9] = 0x6000000440000000 | MOVL_HIWORD((StgWord64)hptr);
code[10] = 0x0200210020010811;
code[11] = 0x1080006800006200;
code[12] = 0x0000210018406000;
code[13] = 0x00aa021000038005;
code[14] = 0x000000010000001d;
code[15] = 0x0084000880000200;
/* save stable pointers in convenient form */
code[16] = (StgWord64)hptr;
code[17] = (StgWord64)stable;
}
#else
barf("adjustor creation not supported on this platform");
#endif
break;
default:
ASSERT(0);
break;
}
/* Have fun! */
return code;
}
void
freeHaskellFunctionPtr(void* ptr)
{
#if defined(i386_HOST_ARCH)
if ( *(unsigned char*)ptr != 0xe8 &&
*(unsigned char*)ptr != 0x58 ) {
errorBelch("freeHaskellFunctionPtr: not for me, guv! %p\n", ptr);
return;
}
if (*(unsigned char*)ptr == 0xe8) { /* Aha, a ccall adjustor! */
freeStablePtr(((AdjustorStub*)ptr)->hptr);
} else {
freeStablePtr(*((StgStablePtr*)((unsigned char*)ptr + 0x02)));
}
#elif defined(x86_64_HOST_ARCH)
if ( *(StgWord16 *)ptr == 0x894d ) {
freeStablePtr(*(StgStablePtr*)((StgWord8*)ptr+
#if defined(mingw32_HOST_OS)
0x28
#else
0x20
#endif
));
#if !defined(mingw32_HOST_OS)
} else if ( *(StgWord16 *)ptr == 0x5141 ) {
freeStablePtr(*(StgStablePtr*)((StgWord8*)ptr+0x30));
#endif
#if defined(mingw32_HOST_OS)
} else if ( *(StgWord16 *)ptr == 0x8348 ) {
freeStablePtr(*(StgStablePtr*)((StgWord8*)ptr+0x48));
#endif
} else {
errorBelch("freeHaskellFunctionPtr: not for me, guv! %p\n", ptr);
return;
}
#elif defined(sparc_HOST_ARCH)
if ( *(unsigned long*)ptr != 0x9C23A008UL ) {
errorBelch("freeHaskellFunctionPtr: not for me, guv! %p\n", ptr);
return;
}
/* Free the stable pointer first..*/
freeStablePtr(*((StgStablePtr*)((unsigned long*)ptr + 11)));
#elif defined(alpha_HOST_ARCH)
if ( *(StgWord64*)ptr != 0xa77b0018a61b0010L ) {
errorBelch("freeHaskellFunctionPtr: not for me, guv! %p\n", ptr);
return;
}
/* Free the stable pointer first..*/
freeStablePtr(*((StgStablePtr*)((unsigned char*)ptr + 0x10)));
#elif defined(powerpc_HOST_ARCH) && defined(linux_HOST_OS)
if ( *(StgWord*)ptr != 0x48000008 ) {
errorBelch("freeHaskellFunctionPtr: not for me, guv! %p\n", ptr);
return;
}
freeStablePtr(((StgStablePtr*)ptr)[1]);
#elif defined(powerpc_HOST_ARCH) || defined(powerpc64_HOST_ARCH)
if ( ((AdjustorStub*)ptr)->code != (StgFunPtr) &adjustorCode ) {
errorBelch("freeHaskellFunctionPtr: not for me, guv! %p\n", ptr);
return;
}
freeStablePtr(((AdjustorStub*)ptr)->hptr);
#elif defined(ia64_HOST_ARCH)
IA64FunDesc *fdesc = (IA64FunDesc *)ptr;
StgWord64 *code = (StgWord64 *)(fdesc+1);
if (fdesc->ip != (StgWord64)code) {
errorBelch("freeHaskellFunctionPtr: not for me, guv! %p\n", ptr);
return;
}
freeStablePtr((StgStablePtr)code[16]);
freeStablePtr((StgStablePtr)code[17]);
return;
#else
ASSERT(0);
#endif
// Can't write to this memory, it is only executable:
// *((unsigned char*)ptr) = '\0';
freeExec(ptr);
}
#endif // !USE_LIBFFI_FOR_ADJUSTORS
|