summaryrefslogtreecommitdiff
path: root/rts/Apply.cmm
blob: 78a0256d3aa274e9621840654dc5c43e07897fbb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
/* -----------------------------------------------------------------------------
 *
 * (c) The University of Glasgow 2004
 *
 * Application-related bits.
 *
 * This file is written in a subset of C--, extended with various
 * features specific to GHC.  It is compiled by GHC directly.  For the
 * syntax of .cmm files, see the parser in ghc/compiler/GHC/Cmm/Parser.y.
 *
 * -------------------------------------------------------------------------- */

#include "Cmm.h"

/* ----------------------------------------------------------------------------
 * Evaluate a closure and return it.
 *
 * There isn't an info table / return address version of stg_ap_0, because
 * everything being returned is guaranteed evaluated, so it would be a no-op.
 */

STRING(stg_ap_0_ret_str,"stg_ap_0_ret... ")

stg_ap_0_fast ( P_ fun )
{
    IF_DEBUG(apply,
        ccall debugBelch(stg_ap_0_ret_str);
        ccall printClosure(R1 "ptr"));

    IF_DEBUG(sanity,
        ccall checkStackFrame(Sp "ptr"));

#if !defined(PROFILING)

    ENTER(fun);

#else

/*
  Note [Evaluating functions with profiling]
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  If we evaluate something like

    let f = {-# SCC "f" #-} g

  where g is a function, then updating the thunk for f to point to g
  would be incorrect: we've lost the SCC annotation.  In general, when
  we evaluate a function and the current CCS is different from the one
  stored in the function, we need to return a function with the
  correct CCS in it.

  The mechanism we use to wrap the function is to create a
  zero-argument PAP as a proxy object to hold the new CCS, and return
  that.

  If the closure we evaluated is itself a PAP, we cannot make a nested
  PAP, so we copy the original PAP and set the CCS in the new PAP to
  enterFunCCS(pap->header.prof.ccs).
*/

again:
    W_  info;
    P_ untaggedfun;
    W_ arity;
    // We must obey the correct heap object observation pattern in
    // Note [Heap memory barriers] in SMP.h.
    untaggedfun = UNTAG(fun);
    info = %INFO_PTR(untaggedfun);
    switch [INVALID_OBJECT .. N_CLOSURE_TYPES]
        (TO_W_( %INFO_TYPE(%STD_INFO(info)) )) {
        case
            IND,
            IND_STATIC:
        {
            fun = StgInd_indirectee(fun);
            goto again;
        }
        case BCO:
        {
            arity = TO_W_(StgBCO_arity(untaggedfun));
            goto dofun;
        }
        case
            FUN,
            FUN_1_0,
            FUN_0_1,
            FUN_2_0,
            FUN_1_1,
            FUN_0_2,
            FUN_STATIC,
            CONTINUATION:
        {
            arity = TO_W_(StgFunInfoExtra_arity(%FUN_INFO(info)));
        dofun:
            if (CCCS == StgHeader_ccs(untaggedfun)) {
                return (fun);
            } else {
                // We're going to build a new PAP, with zero extra
                // arguments and therefore the same arity as the
                // original function.  In other words, we're using a
                // zero-argument PAP as an indirection to the
                // function, so that we can attach a different CCS to
                // it.
                HP_CHK_GEN(SIZEOF_StgPAP);
                TICK_ALLOC_PAP(SIZEOF_StgPAP, 0);
                // attribute this allocation to the "overhead of profiling"
                CCS_ALLOC(BYTES_TO_WDS(SIZEOF_StgPAP), CCS_OVERHEAD);
                P_ pap;
                pap = Hp - SIZEOF_StgPAP + WDS(1);
                SET_HDR(pap, stg_PAP_info, CCCS);
                StgPAP_arity(pap) = arity;
                if (arity <= TAG_MASK) {
                  // TODO: Shouldn't this already be tagged? If not why did we
                  // untag it at the beginning of this function?
                  fun = untaggedfun + arity;
                }
                StgPAP_fun(pap)   = fun;
                StgPAP_n_args(pap) = 0;
                return (pap);
            }
        }
        case PAP:
        {
            if (CCCS == StgHeader_ccs(untaggedfun)) {
                return (fun);
            } else {
                // We're going to copy this PAP, and put the new CCS in it
                W_ size;
                size = SIZEOF_StgPAP + WDS(TO_W_(StgPAP_n_args(untaggedfun)));
                HP_CHK_GEN(size);
                TICK_ALLOC_PAP(size, 0);
                // attribute this allocation to the "overhead of profiling"
                CCS_ALLOC(BYTES_TO_WDS(SIZEOF_StgPAP), CCS_OVERHEAD);
                P_ pap;
                pap = Hp - size + WDS(1);
                // We'll lose the original PAP, so we should enter its CCS
                ccall enterFunCCS(BaseReg "ptr", StgHeader_ccs(untaggedfun) "ptr");
                SET_HDR(pap, stg_PAP_info, CCCS);
                StgPAP_arity(pap) = StgPAP_arity(untaggedfun);
                StgPAP_n_args(pap) = StgPAP_n_args(untaggedfun);
                StgPAP_fun(pap)   = StgPAP_fun(fun);
                W_ i;
                i = TO_W_(StgPAP_n_args(untaggedfun));
            loop:
                if (i == 0) {
                    return (pap);
                }
                i = i - 1;
                StgPAP_payload(pap,i) = StgPAP_payload(fun,i);
                goto loop;
            }
        }
        case AP,
             AP_STACK,
             BLACKHOLE,
             WHITEHOLE,
             THUNK,
             THUNK_1_0,
             THUNK_0_1,
             THUNK_2_0,
             THUNK_1_1,
             THUNK_0_2,
             THUNK_STATIC,
             THUNK_SELECTOR:
        {
            // We have a thunk of some kind, so evaluate it.

            // The thunk might evaluate to a function, so we have to
            // come back here again to adjust its CCS if necessary.
            // Therefore we need to push a stack frame to look at the
            // function that gets returned (a stg_restore_ccs_eval
            // frame), and therefore we need a stack check.
            STK_CHK_GEN();

            // We can't use the value of 'info' any more, because if
            // STK_CHK_GEN() did a GC then the closure we're looking
            // at may have changed, e.g. a THUNK_SELECTOR may have
            // been evaluated by the GC.  So we reload the info
            // pointer now.
            untaggedfun = UNTAG(fun);
            info = %INFO_PTR(untaggedfun);

            jump %ENTRY_CODE(info)
                (stg_restore_cccs_eval_info, CCCS)
                (untaggedfun);
        }
        default:
        {
            jump %ENTRY_CODE(info) (UNTAG(fun));
        }
    }
#endif
}

/* -----------------------------------------------------------------------------
   Entry Code for a PAP.

   This entry code is *only* called by one of the stg_ap functions.
   On entry: Sp points to the remaining arguments on the stack.  If
   the stack check fails, we can just push the PAP on the stack and
   return to the scheduler.

   On entry: R1 points to the PAP.  The rest of the function's
   arguments (apart from those that are already in the PAP) are on the
   stack, starting at Sp(0).  R2 contains an info table which
   describes these arguments, which is used in the event that the
   stack check in the entry code below fails.  The info table is
   currently one of the stg_ap_*_ret family, as this code is always
   entered from those functions.

   The idea is to copy the chunk of stack from the PAP object onto the
   stack / into registers, and enter the function.
   -------------------------------------------------------------------------- */

INFO_TABLE(stg_PAP,/*special layout*/0,0,PAP,"PAP","PAP")
{  ccall barf("PAP object (%p) entered!", R1) never returns; }

stg_PAP_apply /* no args => explicit stack */
{
  W_ Words;
  W_ pap;

  pap = R1;

  Words = TO_W_(StgPAP_n_args(pap));

  //
  // Check for stack overflow and bump the stack pointer.
  // We have a hand-rolled stack check fragment here, because none of
  // the canned ones suit this situation.
  //
  if (Sp - (WDS(Words) + 2/* see ARG_BCO below */) < SpLim) {
      // there is a return address in R2 in the event of a
      // stack check failure.  The various stg_apply functions arrange
      // this before calling stg_PAP_entry.
      Sp_adj(-1);
      Sp(0) = R2;
      jump stg_gc_unpt_r1 [R1];
  }
  Sp_adj(-Words);

  // profiling
  TICK_ENT_PAP();
  LDV_ENTER(pap);
#if defined(PROFILING)
  ccall enterFunCCS(BaseReg "ptr", StgHeader_ccs(pap) "ptr");
#endif

  // Reload the stack
  W_ i;
  W_ p;
  p = pap + SIZEOF_StgHeader + OFFSET_StgPAP_payload;
  i = 0;
for:
  if (i < Words) {
    Sp(i) = W_[p];
    p = p + WDS(1);
    i = i + 1;
    goto for;
  }

  R1 = StgPAP_fun(pap);

/* DEBUGGING CODE, ensures that arity 1 and 2 functions are entered tagged
  if (TO_W_(StgFunInfoExtra_arity(%FUN_INFO(%INFO_PTR(UNTAG(R1))))) == 1 ) {
    if (GETTAG(R1)!=1) {
        W_[0]=1;
    }
  }

  if (TO_W_(StgFunInfoExtra_arity(%FUN_INFO(%INFO_PTR(UNTAG(R1))))) == 2 ) {
    if (GETTAG(R1)!=2) {
        W_[0]=1;
    }
  }
*/

  // Off we go!
  TICK_ENT_VIA_NODE();

#if defined(NO_ARG_REGS)
  jump %GET_ENTRY(UNTAG(R1)) [R1];
#else
      W_ info;
      info = %GET_FUN_INFO(UNTAG(R1));
      W_ type;
      type = TO_W_(StgFunInfoExtra_fun_type(info));
      if (type == ARG_GEN) {
          jump StgFunInfoExtra_slow_apply(info) [R1];
      }
      if (type == ARG_GEN_BIG) {
          jump StgFunInfoExtra_slow_apply(info) [R1];
      }
      if (type == ARG_BCO) {
          Sp_adj(-2);
          Sp(1) = R1;
          Sp(0) = stg_apply_interp_info;
          jump stg_yield_to_interpreter [];
      }
      jump W_[stg_ap_stack_entries +
                WDS(TO_W_(StgFunInfoExtra_fun_type(info)))] [R1];
#endif
}

/* -----------------------------------------------------------------------------
   Entry Code for an AP (a PAP with arity zero).

   The entry code is very similar to a PAP, except there are no
   further arguments on the stack to worry about, so the stack check
   is simpler.  We must also push an update frame on the stack before
   applying the function.
   -------------------------------------------------------------------------- */

INFO_TABLE(stg_AP,/*special layout*/0,0,AP,"AP","AP")
 /* no args => explicit stack */
{
  W_ Words;
  W_ ap;

  ap = R1;

  Words = TO_W_(StgAP_n_args(ap));

  /*
   * Check for stack overflow.  IMPORTANT: use a _ENTER check here,
   * because if the check fails, we might end up blackholing this very
   * closure, in which case we must enter the blackhole on return rather
   * than continuing to evaluate the now-defunct closure.
   */
  STK_CHK_ENTER(WDS(Words) +
                SIZEOF_StgUpdateFrame +
                2/* see ARG_BCO below */, R1);

  PUSH_UPD_FRAME(Sp - SIZEOF_StgUpdateFrame, R1);
  Sp = Sp - SIZEOF_StgUpdateFrame - WDS(Words);

  TICK_ENT_AP();
  LDV_ENTER(ap);
  ENTER_CCS_THUNK(ap);

  // Reload the stack
  W_ i;
  W_ p;
  p = ap + SIZEOF_StgHeader + OFFSET_StgAP_payload;
  i = 0;
for:
  if (i < Words) {
    Sp(i) = W_[p];
    p = p + WDS(1);
    i = i + 1;
    goto for;
  }

  R1 = StgAP_fun(ap);

  // Off we go!
  TICK_ENT_VIA_NODE();

#if defined(NO_ARG_REGS)
  jump %GET_ENTRY(UNTAG(R1)) [R1];
#else
      W_ info;
      info = %GET_FUN_INFO(UNTAG(R1));
      W_ type;
      type = TO_W_(StgFunInfoExtra_fun_type(info));
      if (type == ARG_GEN) {
          jump StgFunInfoExtra_slow_apply(info) [R1];
      }
      if (type == ARG_GEN_BIG) {
          jump StgFunInfoExtra_slow_apply(info) [R1];
      }
      if (type == ARG_BCO) {
          Sp_adj(-2);
          Sp(1) = R1;
          Sp(0) = stg_apply_interp_info;
          jump stg_yield_to_interpreter [];
      }
      jump W_[stg_ap_stack_entries +
                WDS(TO_W_(StgFunInfoExtra_fun_type(info)))] [R1];
#endif
}

/* AP_NOUPD is exactly like AP, except that no update frame is pushed.
   Use for thunks that are guaranteed to be entered once only, such as
   those generated by the byte-code compiler for inserting breakpoints. */

INFO_TABLE(stg_AP_NOUPD,/*special layout*/0,0,AP,"AP_NOUPD","AP_NOUPD")
   /* no args => explicit stack */
{
  W_ Words;
  W_ ap;

  ap = R1;

  Words = TO_W_(StgAP_n_args(ap));

  /*
   * Check for stack overflow.  IMPORTANT: use a _ENTER check here,
   * because if the check fails, we might end up blackholing this very
   * closure, in which case we must enter the blackhole on return rather
   * than continuing to evaluate the now-defunct closure.
   */
  STK_CHK_ENTER(WDS(Words) +
                2/* see ARG_BCO below */, R1);
  Sp = Sp - WDS(Words);

  TICK_ENT_AP();
  LDV_ENTER(ap);
  ENTER_CCS_THUNK(ap);

  // Reload the stack
  W_ i;
  W_ p;
  p = ap + SIZEOF_StgHeader + OFFSET_StgAP_payload;
  i = 0;
for:
  if (i < Words) {
    Sp(i) = W_[p];
    p = p + WDS(1);
    i = i + 1;
    goto for;
  }

  R1 = StgAP_fun(ap);

  // Off we go!
  TICK_ENT_VIA_NODE();

#if defined(NO_ARG_REGS)
  jump %GET_ENTRY(UNTAG(R1)) [R1];
#else
      W_ info;
      info = %GET_FUN_INFO(UNTAG(R1));
      W_ type;
      type = TO_W_(StgFunInfoExtra_fun_type(info));
      if (type == ARG_GEN) {
          jump StgFunInfoExtra_slow_apply(info) [R1];
      }
      if (type == ARG_GEN_BIG) {
          jump StgFunInfoExtra_slow_apply(info) [R1];
      }
      if (type == ARG_BCO) {
          Sp_adj(-2);
          Sp(1) = R1;
          Sp(0) = stg_apply_interp_info;
          jump stg_yield_to_interpreter [];
      }
      jump W_[stg_ap_stack_entries +
                WDS(TO_W_(StgFunInfoExtra_fun_type(info)))] [R1];
#endif
}

/* -----------------------------------------------------------------------------
   Entry Code for an AP_STACK.

   Very similar to a PAP and AP.  The layout is the same as PAP
   and AP, except that the payload is a chunk of stack instead of
   being described by the function's info table.  Like an AP,
   there are no further arguments on the stack to worry about.
   However, the function closure (ap->fun) does not necessarily point
   directly to a function, so we have to enter it using stg_ap_0.
   -------------------------------------------------------------------------- */

/*
Note [AP_STACKs must be eagerly blackholed]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#13615 describes a nasty concurrency issue where we can enter into the
middle of an ST action multiple times, resulting in duplication of effects.
In short, the construction of an AP_STACK allows us to suspend a computation
which should not be duplicated. When running with lazy blackholing, we can then
enter this AP_STACK multiple times, duplicating the computation with potentially
disastrous consequences.

For instance, consider the case of a simple ST program which computes a sum
using in─place mutation,

   inplaceSum :: Num a => [a] ─> a
   inplaceSum xs0 = runST $ do
     y <─ newSTRef 0
     let go [] = readSTRef y
         go (x : xs) = do
           modifySTRef y (+x)
           go xs
     go xs0

Of course, it is fine if we enter an inplaceSum thunk more than once: the two
threads will inhabit different worlds with different STRefs. However, if we
suspend some part of inplaceSum (for instance, due to the heap check at the
beginning of go) and then multiple threads resume that suspension (as is safe in
pure computation) we will have multiple threads concurrently mutating the same
STRef. Disaster!

Let's consider how this might happen: Consider this situation,

  ┌─────────┐            ┌───────┐      ┌───────┐          ┌─────────┐
  │  TSO 1  │      ╭────→│ go    │      │ fun   │          │  TSO 2  │
  └─────────┘      │     └───────┘      └───────┘          └─────────┘
                   │                        │
  ┌─────────┐      │                        │              ┌─────────┐
  │         │──────╯                        ╰──────────────│         │
  ├─────────┤           ┌─────────┐                        ├─────────┤
  │ UPDATE_ │──────────→│ THUNK A │               ╭────────│ UPDATE_ │
  │ FRAME   │ updatee   └─────────┘               │updatee │ FRAME   │
  ├─────────┤                                     │        ├─────────┤
  │ ...     │                                     │        │ etc.    │
  ├─────────┤ updatee              ┌─────────┐    │
  │ UPDATE_ │─────────────────────→│ THUNK B │←───╯
  │ FRAME   │                      └─────────┘
  ├─────────┤
  │ etc.    │

Here we have two threads (TSO 1 and TSO 2) which are in currently pausing (e.g.
in threadPaused). Since they are pausing, their stacks are headed by a pointer
to the continuation code which we will run on resumption (go and fun,
respectively). We also see that there are two thunks on the heap: THUNK A and
THUNK B where THUNK B depends upon THUNK A (as in, evaluation of B will force
A). We see that thread 1 has THUNK A under evaluation, and both threads have
THUNK B under evaluation.

As each thread enters threadPaused, threadPaused will walk its stack looking for
duplicate computation (see Note [suspend duplicate work], although there is some
background described below as well). Let's consider what this check does:

Say that TSO 2 begins this check first. The check will walk TSO 2's stack, until
it finds the first update frame, which updates THUNK B. Upon finding this frame,
it will try to lock THUNK B, replacing it with a BLACKHOLE owned by its TSO. We
now have,

  ┌─────────┐            ┌───────┐   ┌───────┐             ┌─────────┐
  │  TSO 1  │      ╭────→│ go    │   │ fun   │   ╭────────→│  TSO 2  │
  └─────────┘      │     └───────┘   └───────┘   │         └─────────┘
                   │                     ↑ ╭─────╯
  ┌─────────┐      │                     │ │               ┌─────────┐
  │         │──────╯                     ╰─────────────────│         │
  ├─────────┤ updatee   ┌─────────┐        │               ├─────────┤
  │ UPDATE_ │──────────→│ THUNK A │        │    ╭──────────│ UPDATE_ │
  │ FRAME   │           └─────────┘        │    │  updatee │ FRAME   │
  ├─────────┤                              │    │          ├─────────┤
  │ ...     │                         owner│    │          │ etc.    │
  ├─────────┤ updatee           ┌────────────┐  │
  │ UPDATE_ │──────────────────→│ BLACKHOLE  │←─╯
  │ FRAME   │                   └────────────┘
  ├─────────┤
  │ etc.    │

Now consider what happens when TSO 1 runs its duplicate-computation check.
Again, we start walking the stack from the top, where we find the update
frame updating THUNK A. We will lock this thunk, replacing it with a BLACKHOLE
owned by its TSO. We now have,

  ┌─────────┐            ┌───────┐   ┌───────┐             ┌─────────┐
  │  TSO 1  │←──╮  ╭────→│ go    │   │ fun   │   ╭────────→│  TSO 2  │
  └─────────┘   │  │     └───────┘   └───────┘   │         └─────────┘
                │  │                     ↑ ╭─────╯
  ┌─────────┐   ╰──│─────────╮           │ │               ┌─────────┐
  │         │──────╯         │owner      ╰─────────────────│         │
  ├─────────┤           ┌───────────┐      │               ├─────────┤
  │ UPDATE_ │──────────→│ BLACKHOLE │      │    ╭──────────│ UPDATE_ │
  │ FRAME   │ updatee   └───────────┘      │    │  updatee │ FRAME   │
  ├─────────┤                              │    │          ├─────────┤
  │ ...     │                         owner│    │          │ etc.    │
  ├─────────┤ updatee           ┌────────────┐  │
  │ UPDATE_ │──────────────────→│ BLACKHOLE  │←─╯
  │ FRAME   │                   └────────────┘
  ├─────────┤
  │ etc.    │

Now we will continue walking down TSO 1's stack, next coming across the second
update frame, pointing to the now-BLACKHOLE'd THUNK B. At this point
threadPaused will correctly conclude that TSO 1 is duplicating a computation
being carried out by TSO 2 and attempt to suspend it.

The suspension process proceeds by invoking raiseAsync, which walks the stack
from the top looking for update frames. For each update frame we take any stack
frames preceding it and construct an AP_STACK heap object from them. We then
replace the updatee of the frame with an indirection pointing to the AP_STACK.
So, after suspending the first update frame we have,

  ┌─────────┐            ┌───────┐    ┌───────┐            ┌─────────┐
  │  TSO 1  │  ╭────────→│ go    │←─╮ │ fun   │   ╭───────→│  TSO 2  │
  └─────────┘  │         └───────┘  │ └───────┘   │        └─────────┘
               │      ┌───────────┐ │     ↑ ╭─────╯
  ┌─────────┐  │      │ AP_STACK  │ │     │ │              ┌─────────┐
  │         │──╯      ├───────────┤ │     ╰────────────────│         │
  ├─────────┤         │           │─╯       │              ├─────────┤
  │ UPDATE_ │───────╮ └───────────┘         │   ╭──────────│ UPDATE_ │
  │ FRAME   │updatee│     ↑                 │   │  updatee │ FRAME   │
  ├─────────┤       │     │indirectee       │   │          ├─────────┤
  │ ...     │       ╰→┌───────────┐         │   │          │ etc.    │
  ├─────────┤updatee  │ BLACKHOLE │         │   │
  │ UPDATE_ │──╮      └───────────┘    owner│   │
  │ FRAME   │  │                ┌────────────┐  │
  ├─────────┤  ╰───────────────→│ BLACKHOLE  │←─╯
  │ etc.    │                   └────────────┘

Finally, we will replace the second update frame with a blackhole so that TSO 1
will block on TSO 2's computation of THUNK B,

  ┌─────────┐            ┌───────┐    ┌───────┐            ┌─────────┐
  │  TSO 1  │  ╭────────→│ go    │←─╮ │ fun   │   ╭───────→│  TSO 2  │
  └─────────┘  │         └───────┘  │ └───────┘   │        └─────────┘
               │      ┌───────────┐ │     ↑ ╭─────╯
  ┌─────────┐  │      │ AP_STACK  │ │     │ │              ┌─────────┐
  │         │──╯      ├───────────┤ │     ╰────────────────│         │
  ├─────────┤         │           │─╯       │              ├─────────┤
  │ UPDATE_ │───────╮ └───────────┘         │   ╭──────────│ UPDATE_ │
  │ FRAME   │updatee│     ↑                 │   │  updatee │ FRAME   │
  ├─────────┤       │     │indirectee       │   │          ├─────────┤
  │ ...     │       ╰→┌───────────┐         │   │          │ etc.    │
  ├─────────┤         │ BLACKHOLE │         │   │
  │ BLACK   │         └───────────┘    owner│   │
  │ HOLE    │───────────╮       ┌────────────┐  │
  ├─────────┤indirectee ╰──────→│ BLACKHOLE  │←─╯
  │ etc.    │                   └────────────┘

At first glance there's still nothing terribly alarming here. However, consider
what would happen if some other closure held a reference to THUNK A. We would
now have leaked an AP_STACK capturing the state of a potentially
non-duplicatable computation to heap. Even worse, if two threads had references
to THUNK A and both attempted to enter at the same time, they would both succeed
if we allowed AP_STACKs to be lazily blackholed. This is the reason why we must
be very careful when entering AP_STACKS: they introduce the possibility that we
duplicate a computation which could never otherwise be duplicated.

For this reason we employ an atomic blackholing strategy when entering AP_STACK
closures.
 */


INFO_TABLE(stg_AP_STACK,/*special layout*/0,0,AP_STACK,"AP_STACK","AP_STACK")
  /* no args => explicit stack */
{
  W_ Words;
  W_ ap;

  ap = R1;

  Words = StgAP_STACK_size(ap);

  /*
   * Check for stack overflow.  IMPORTANT: use a _ENTER check here,
   * because if the check fails, we might end up blackholing this very
   * closure, in which case we must enter the blackhole on return rather
   * than continuing to evaluate the now-defunct closure.
   */
  STK_CHK_ENTER(WDS(Words) + SIZEOF_StgUpdateFrame + WDS(AP_STACK_SPLIM), R1);

  /*
   * It is imperative that we blackhole lest we may duplicate computation which
   * must not be duplicated. See Note [AP_STACKs must be eagerly blackholed].
   */
  W_ old_info;
  (old_info) = prim %cmpxchgW(ap, stg_AP_STACK_info, stg_WHITEHOLE_info);
  if (old_info != stg_AP_STACK_info) {
    /* someone else beat us to it */
    jump ENTRY_LBL(stg_WHITEHOLE) (ap);
  }
  // Can't add StgInd_indirectee(ap) to UpdRemSet here because the old value is
  // not reachable.
  StgInd_indirectee(ap) = CurrentTSO;
  prim_write_barrier;
  SET_INFO(ap, __stg_EAGER_BLACKHOLE_info);

  /* ensure there is at least AP_STACK_SPLIM words of headroom available
   * after unpacking the AP_STACK. See bug #1466 */
  PUSH_UPD_FRAME(Sp - SIZEOF_StgUpdateFrame, R1);
  Sp = Sp - SIZEOF_StgUpdateFrame - WDS(Words);

  TICK_ENT_AP();
  LDV_ENTER(ap);
  ENTER_CCS_THUNK(ap);

  // Reload the stack
  W_ i;
  W_ p;
  p = ap + SIZEOF_StgHeader + OFFSET_StgAP_STACK_payload;
  i = 0;
for:
  if (i < Words) {
    Sp(i) = W_[p];
    p = p + WDS(1);
    i = i + 1;
    goto for;
  }

  // Off we go!
  TICK_ENT_VIA_NODE();

  R1 = StgAP_STACK_fun(ap);

  // Because of eager blackholing the closure no longer has correct size so
  // threadPaused() can't correctly zero the slop, so we do it here. See #15571
  // and Note [zeroing slop when overwriting closures].
  OVERWRITING_CLOSURE_SIZE(ap, BYTES_TO_WDS(SIZEOF_StgThunkHeader) + 2 + Words);

  ENTER_R1();
}

/* -----------------------------------------------------------------------------
   AP_STACK_NOUPD - exactly like AP_STACK, but doesn't push an update frame.
   -------------------------------------------------------------------------- */

INFO_TABLE(stg_AP_STACK_NOUPD,/*special layout*/0,0,AP_STACK,
                                        "AP_STACK_NOUPD","AP_STACK_NOUPD")
   /* no args => explicit stack */
{
  W_ Words;
  W_ ap;

  ap = R1;

  Words = StgAP_STACK_size(ap);

  /*
   * Check for stack overflow.  IMPORTANT: use a _NP check here,
   * because if the check fails, we might end up blackholing this very
   * closure, in which case we must enter the blackhole on return rather
   * than continuing to evaluate the now-defunct closure.
   */
  STK_CHK_ENTER(WDS(Words) + WDS(AP_STACK_SPLIM), R1);
  /* ensure there is at least AP_STACK_SPLIM words of headroom available
   * after unpacking the AP_STACK. See bug #1466 */

  Sp = Sp - WDS(Words);

  TICK_ENT_AP();
  LDV_ENTER(ap);
  ENTER_CCS_THUNK(ap);

  // Reload the stack
  W_ i;
  W_ p;
  p = ap + SIZEOF_StgHeader + OFFSET_StgAP_STACK_payload;
  i = 0;
for:
  if (i < Words) {
    Sp(i) = W_[p];
    p = p + WDS(1);
    i = i + 1;
    goto for;
  }

  // Off we go!
  TICK_ENT_VIA_NODE();

  R1 = StgAP_STACK_fun(ap);

  ENTER_R1();
}