summaryrefslogtreecommitdiff
path: root/rts/Capability.c
blob: 7ebe51609fbd4f2f5009b8af5d1c7f2e0969df87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
/* ---------------------------------------------------------------------------
 *
 * (c) The GHC Team, 2003-2012
 *
 * Capabilities
 *
 * A Capability represents the token required to execute STG code,
 * and all the state an OS thread/task needs to run Haskell code:
 * its STG registers, a pointer to its TSO, a nursery etc. During
 * STG execution, a pointer to the capabilitity is kept in a
 * register (BaseReg; actually it is a pointer to cap->r).
 *
 * Only in a THREADED_RTS build will there be multiple capabilities,
 * for non-threaded builds there is only one global capability, namely
 * MainCapability.
 *
 * --------------------------------------------------------------------------*/

#include "rts/PosixSource.h"
#include "Rts.h"

#include "Capability.h"
#include "Schedule.h"
#include "Sparks.h"
#include "Trace.h"
#include "eventlog/EventLog.h" // for flushLocalEventsBuf
#include "sm/GC.h" // for gcWorkerThread()
#include "STM.h"
#include "RtsUtils.h"
#include "sm/OSMem.h"
#include "sm/BlockAlloc.h" // for countBlocks()
#include "IOManager.h"

#include <string.h>

// one global capability, this is the Capability for non-threaded
// builds, and for +RTS -N1
Capability MainCapability;

uint32_t n_capabilities = 0;
uint32_t enabled_capabilities = 0;

// The array of Capabilities.  It's important that when we need
// to allocate more Capabilities we don't have to move the existing
// Capabilities, because there may be pointers to them in use
// (e.g. threads in waitForCapability(), see #8209), so this is
// an array of Capability* rather than an array of Capability.
Capability **capabilities = NULL;

// Holds the Capability which last became free.  This is used so that
// an in-call has a chance of quickly finding a free Capability.
// Maintaining a global free list of Capabilities would require global
// locking, so we don't do that.
static Capability *last_free_capability[MAX_NUMA_NODES];

/*
 * Indicates that the RTS wants to synchronise all the Capabilities
 * for some reason.  All Capabilities should yieldCapability().
 */
PendingSync * volatile pending_sync = 0;

// Number of logical NUMA nodes
uint32_t n_numa_nodes;

// Map logical NUMA node to OS node numbers
uint32_t numa_map[MAX_NUMA_NODES];

/* Let foreign code get the current Capability -- assuming there is one!
 * This is useful for unsafe foreign calls because they are called with
 * the current Capability held, but they are not passed it.
 */
Capability * rts_unsafeGetMyCapability (void)
{
#if defined(THREADED_RTS)
  return myTask()->cap;
#else
  return &MainCapability;
#endif
}

#if defined(THREADED_RTS)
STATIC_INLINE bool
globalWorkToDo (void)
{
    return RELAXED_LOAD(&sched_state) >= SCHED_INTERRUPTING
      || RELAXED_LOAD(&recent_activity) == ACTIVITY_INACTIVE; // need to check for deadlock
}
#endif

#if defined(THREADED_RTS)
StgClosure *
findSpark (Capability *cap)
{
  Capability *robbed;
  StgClosurePtr spark;
  bool retry;
  uint32_t i = 0;

  // This is an approximate check so relaxed load is acceptable here.
  if (!emptyRunQueue(cap) || RELAXED_LOAD(&cap->n_returning_tasks) != 0) {
      // If there are other threads, don't try to run any new
      // sparks: sparks might be speculative, we don't want to take
      // resources away from the main computation.
      return 0;
  }

  do {
      retry = false;

      // first try to get a spark from our own pool.
      // We should be using reclaimSpark(), because it works without
      // needing any atomic instructions:
      //   spark = reclaimSpark(cap->sparks);
      // However, measurements show that this makes at least one benchmark
      // slower (prsa) and doesn't affect the others.
      spark = tryStealSpark(cap->sparks);
      while (spark != NULL && fizzledSpark(spark)) {
          cap->spark_stats.fizzled++;
          traceEventSparkFizzle(cap);
          spark = tryStealSpark(cap->sparks);
      }
      if (spark != NULL) {
          cap->spark_stats.converted++;

          // Post event for running a spark from capability's own pool.
          traceEventSparkRun(cap);

          return spark;
      }
      if (!emptySparkPoolCap(cap)) {
          retry = true;
      }

      if (n_capabilities == 1) { return NULL; } // makes no sense...

      debugTrace(DEBUG_sched,
                 "cap %d: Trying to steal work from other capabilities",
                 cap->no);

      /* visit cap.s 0..n-1 in sequence until a theft succeeds. We could
      start at a random place instead of 0 as well.  */
      for ( i=0 ; i < n_capabilities ; i++ ) {
          robbed = capabilities[i];
          if (cap == robbed)  // ourselves...
              continue;

          if (emptySparkPoolCap(robbed)) // nothing to steal here
              continue;

          spark = tryStealSpark(robbed->sparks);
          while (spark != NULL && fizzledSpark(spark)) {
              cap->spark_stats.fizzled++;
              traceEventSparkFizzle(cap);
              spark = tryStealSpark(robbed->sparks);
          }
          if (spark == NULL && !emptySparkPoolCap(robbed)) {
              // we conflicted with another thread while trying to steal;
              // try again later.
              retry = true;
          }

          if (spark != NULL) {
              cap->spark_stats.converted++;
              traceEventSparkSteal(cap, robbed->no);

              return spark;
          }
          // otherwise: no success, try next one
      }
  } while (retry);

  debugTrace(DEBUG_sched, "No sparks stolen");
  return NULL;
}

// Returns True if any spark pool is non-empty at this moment in time
// The result is only valid for an instant, of course, so in a sense
// is immediately invalid, and should not be relied upon for
// correctness.
bool
anySparks (void)
{
    uint32_t i;

    for (i=0; i < n_capabilities; i++) {
        if (!emptySparkPoolCap(capabilities[i])) {
            return true;
        }
    }
    return false;
}
#endif

/* -----------------------------------------------------------------------------
 * Manage the returning_tasks lists.
 *
 * These functions require cap->lock
 * -------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
STATIC_INLINE void
newReturningTask (Capability *cap, Task *task)
{
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->next == NULL);
    if (cap->returning_tasks_hd) {
        ASSERT(cap->returning_tasks_tl->next == NULL);
        cap->returning_tasks_tl->next = task;
    } else {
        cap->returning_tasks_hd = task;
    }
    cap->returning_tasks_tl = task;

    // See Note [Data race in shouldYieldCapability] in Schedule.c.
    RELAXED_ADD(&cap->n_returning_tasks, 1);

    ASSERT_RETURNING_TASKS(cap,task);
}

STATIC_INLINE Task *
popReturningTask (Capability *cap)
{
    ASSERT_LOCK_HELD(&cap->lock);
    Task *task;
    task = cap->returning_tasks_hd;
    ASSERT(task);
    cap->returning_tasks_hd = task->next;
    if (!cap->returning_tasks_hd) {
        cap->returning_tasks_tl = NULL;
    }
    task->next = NULL;

    // See Note [Data race in shouldYieldCapability] in Schedule.c.
    RELAXED_ADD(&cap->n_returning_tasks, -1);

    ASSERT_RETURNING_TASKS(cap,task);
    return task;
}
#endif

/* ----------------------------------------------------------------------------
 * Initialisation
 *
 * The Capability is initially marked not free.
 * ------------------------------------------------------------------------- */

static void
initCapability (Capability *cap, uint32_t i)
{
    uint32_t g;

    cap->no = i;
    cap->node = capNoToNumaNode(i);
    cap->in_haskell        = false;
    cap->idle              = 0;
    cap->disabled          = false;

    cap->run_queue_hd      = END_TSO_QUEUE;
    cap->run_queue_tl      = END_TSO_QUEUE;
    cap->n_run_queue       = 0;

#if defined(THREADED_RTS)
    initMutex(&cap->lock);
    cap->running_task      = NULL; // indicates cap is free
    cap->spare_workers     = NULL;
    cap->n_spare_workers   = 0;
    cap->suspended_ccalls  = NULL;
    cap->n_suspended_ccalls = 0;
    cap->returning_tasks_hd = NULL;
    cap->returning_tasks_tl = NULL;
    cap->n_returning_tasks  = 0;
    cap->inbox              = (Message*)END_TSO_QUEUE;
    cap->putMVars           = NULL;
    cap->sparks             = allocSparkPool();
    cap->spark_stats.created    = 0;
    cap->spark_stats.dud        = 0;
    cap->spark_stats.overflowed = 0;
    cap->spark_stats.converted  = 0;
    cap->spark_stats.gcd        = 0;
    cap->spark_stats.fizzled    = 0;
#if !defined(mingw32_HOST_OS)
    cap->io_manager_control_wr_fd = -1;
#endif
#endif
    cap->total_allocated        = 0;

    cap->f.stgEagerBlackholeInfo = (W_)&__stg_EAGER_BLACKHOLE_info;
    cap->f.stgGCEnter1     = (StgFunPtr)__stg_gc_enter_1;
    cap->f.stgGCFun        = (StgFunPtr)__stg_gc_fun;

    cap->mut_lists  = stgMallocBytes(sizeof(bdescr *) *
                                     RtsFlags.GcFlags.generations,
                                     "initCapability");
    cap->saved_mut_lists = stgMallocBytes(sizeof(bdescr *) *
                                          RtsFlags.GcFlags.generations,
                                          "initCapability");


    // At this point storage manager is not initialized yet, so this will be
    // initialized in initStorage().
    cap->upd_rem_set.queue.blocks = NULL;

    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
        cap->mut_lists[g] = NULL;
    }

    cap->weak_ptr_list_hd = NULL;
    cap->weak_ptr_list_tl = NULL;
    cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
    cap->free_trec_chunks = END_STM_CHUNK_LIST;
    cap->free_trec_headers = NO_TREC;
    cap->transaction_tokens = 0;
    cap->context_switch = 0;
    cap->interrupt = 0;
    cap->pinned_object_block = NULL;
    cap->pinned_object_blocks = NULL;
    cap->pinned_object_empty = NULL;

#if defined(PROFILING)
    cap->r.rCCCS = CCS_SYSTEM;
#else
    cap->r.rCCCS = NULL;
#endif

    // cap->r.rCurrentTSO is charged for calls to allocate(), so we
    // don't want it set when not running a Haskell thread.
    cap->r.rCurrentTSO = NULL;

    traceCapCreate(cap);
    traceCapsetAssignCap(CAPSET_OSPROCESS_DEFAULT, i);
    traceCapsetAssignCap(CAPSET_CLOCKDOMAIN_DEFAULT, i);
#if defined(THREADED_RTS)
    traceSparkCounters(cap);
#endif
}

/* ---------------------------------------------------------------------------
 * Function:  initCapabilities()
 *
 * Purpose:   set up the Capability handling. For the THREADED_RTS build,
 *            we keep a table of them, the size of which is
 *            controlled by the user via the RTS flag -N.
 *
 * ------------------------------------------------------------------------- */
void initCapabilities (void)
{
    uint32_t i;

    /* Declare a couple capability sets representing the process and
       clock domain. Each capability will get added to these capsets. */
    traceCapsetCreate(CAPSET_OSPROCESS_DEFAULT, CapsetTypeOsProcess);
    traceCapsetCreate(CAPSET_CLOCKDOMAIN_DEFAULT, CapsetTypeClockdomain);

    // Initialise NUMA
    if (!RtsFlags.GcFlags.numa) {
        n_numa_nodes = 1;
        for (i = 0; i < MAX_NUMA_NODES; i++) {
            numa_map[i] = 0;
        }
    } else if (RtsFlags.DebugFlags.numa) {
        // n_numa_nodes was set by RtsFlags.c
    } else {
        uint32_t nNodes = osNumaNodes();
        if (nNodes > MAX_NUMA_NODES) {
            barf("Too many NUMA nodes (max %d)", MAX_NUMA_NODES);
        }
        StgWord mask = RtsFlags.GcFlags.numaMask & osNumaMask();
        uint32_t logical = 0, physical = 0;
        for (; physical < MAX_NUMA_NODES; physical++) {
            if (mask & 1) {
                numa_map[logical++] = physical;
            }
            mask = mask >> 1;
        }
        n_numa_nodes = logical;
        if (logical == 0) {
            barf("available NUMA node set is empty");
        }
    }

#if defined(THREADED_RTS)

#if !defined(REG_Base)
    // We can't support multiple CPUs if BaseReg is not a register
    if (RtsFlags.ParFlags.nCapabilities > 1) {
        errorBelch("warning: multiple CPUs not supported in this build, reverting to 1");
        RtsFlags.ParFlags.nCapabilities = 1;
    }
#endif

    n_capabilities = 0;
    moreCapabilities(0, RtsFlags.ParFlags.nCapabilities);
    n_capabilities = RtsFlags.ParFlags.nCapabilities;

#else /* !THREADED_RTS */

    n_capabilities = 1;
    capabilities = stgMallocBytes(sizeof(Capability*), "initCapabilities");
    capabilities[0] = &MainCapability;

    initCapability(&MainCapability, 0);

#endif

    enabled_capabilities = n_capabilities;

    // There are no free capabilities to begin with.  We will start
    // a worker Task to each Capability, which will quickly put the
    // Capability on the free list when it finds nothing to do.
    for (i = 0; i < n_numa_nodes; i++) {
        last_free_capability[i] = capabilities[0];
    }
}

void
moreCapabilities (uint32_t from USED_IF_THREADS, uint32_t to USED_IF_THREADS)
{
#if defined(THREADED_RTS)
    Capability **new_capabilities = stgMallocBytes(to * sizeof(Capability*), "moreCapabilities");

    // We must disable the timer while we do this since the tick handler may
    // call contextSwitchAllCapabilities, which may see the capabilities array
    // as we free it. The alternative would be to protect the capabilities
    // array with a lock but this seems more expensive than necessary.
    // See #17289.
    stopTimer();

    if (to == 1) {
        // THREADED_RTS must work on builds that don't have a mutable
        // BaseReg (eg. unregisterised), so in this case
        // capabilities[0] must coincide with &MainCapability.
        new_capabilities[0] = &MainCapability;
        initCapability(&MainCapability, 0);
    }
    else
    {
        for (uint32_t i = 0; i < to; i++) {
            if (i < from) {
                new_capabilities[i] = capabilities[i];
            } else {
                new_capabilities[i] = stgMallocBytes(sizeof(Capability),
                                                     "moreCapabilities");
                initCapability(new_capabilities[i], i);
            }
        }
    }

    debugTrace(DEBUG_sched, "allocated %d more capabilities", to - from);

    Capability **old_capabilities = ACQUIRE_LOAD(&capabilities);
    RELEASE_STORE(&capabilities, new_capabilities);
    if (old_capabilities != NULL) {
        stgFree(old_capabilities);
    }

    startTimer();
#endif
}

/* ----------------------------------------------------------------------------
 * setContextSwitches: cause all capabilities to context switch as
 * soon as possible.
 * ------------------------------------------------------------------------- */

void contextSwitchAllCapabilities(void)
{
    uint32_t i;
    for (i=0; i < n_capabilities; i++) {
        contextSwitchCapability(capabilities[i]);
    }
}

void interruptAllCapabilities(void)
{
    uint32_t i;
    for (i=0; i < n_capabilities; i++) {
        interruptCapability(capabilities[i]);
    }
}

/* ----------------------------------------------------------------------------
 * Give a Capability to a Task.  The task must currently be sleeping
 * on its condition variable.
 *
 * Requires cap->lock (modifies cap->running_task).
 *
 * When migrating a Task, the migrater must take task->lock before
 * modifying task->cap, to synchronise with the waking up Task.
 * Additionally, the migrater should own the Capability (when
 * migrating the run queue), or cap->lock (when migrating
 * returning_workers).
 *
 * ------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
static void
giveCapabilityToTask (Capability *cap USED_IF_DEBUG, Task *task)
{
    ASSERT_LOCK_HELD(&cap->lock);
    ASSERT(task->cap == cap);
    debugTrace(DEBUG_sched, "passing capability %d to %s %#" FMT_HexWord64,
               cap->no, task->incall->tso ? "bound task" : "worker",
               serialisableTaskId(task));
    ACQUIRE_LOCK(&task->lock);
    if (task->wakeup == false) {
        task->wakeup = true;
        // the wakeup flag is needed because signalCondition() doesn't
        // flag the condition if the thread is already running, but we want
        // it to be sticky.
        signalCondition(&task->cond);
    }
    RELEASE_LOCK(&task->lock);
}
#endif

/* ----------------------------------------------------------------------------
 * releaseCapability
 *
 * The current Task (cap->task) releases the Capability.  The Capability is
 * marked free, and if there is any work to do, an appropriate Task is woken up.
 *
 * The caller must hold cap->lock and will still hold it after
 * releaseCapability returns.
 *
 * N.B. May need to take all_tasks_mutex.
 *
 * ------------------------------------------------------------------------- */

#if defined(THREADED_RTS)
void
releaseCapability_ (Capability* cap,
                    bool always_wakeup)
{
    Task *task;

    task = cap->running_task;

    ASSERT_PARTIAL_CAPABILITY_INVARIANTS(cap,task);
    ASSERT_RETURNING_TASKS(cap,task);
    ASSERT_LOCK_HELD(&cap->lock);

    RELAXED_STORE(&cap->running_task, NULL);

    // Check to see whether a worker thread can be given
    // the go-ahead to return the result of an external call..
    if (cap->n_returning_tasks != 0) {
        giveCapabilityToTask(cap,cap->returning_tasks_hd);
        // The Task pops itself from the queue (see waitForCapability())
        return;
    }

    // If there is a pending sync, then we should just leave the Capability
    // free.  The thread trying to sync will be about to call
    // waitForCapability().
    //
    // Note: this is *after* we check for a returning task above,
    // because the task attempting to acquire all the capabilities may
    // be currently in waitForCapability() waiting for this
    // capability, in which case simply setting it as free would not
    // wake up the waiting task.
    PendingSync *sync = SEQ_CST_LOAD(&pending_sync);
    if (sync && (sync->type != SYNC_GC_PAR || sync->idle[cap->no])) {
        debugTrace(DEBUG_sched, "sync pending, freeing capability %d", cap->no);
        return;
    }

    // If the next thread on the run queue is a bound thread,
    // give this Capability to the appropriate Task.
    if (!emptyRunQueue(cap) && peekRunQueue(cap)->bound) {
        // Make sure we're not about to try to wake ourselves up
        // ASSERT(task != cap->run_queue_hd->bound);
        // assertion is false: in schedule() we force a yield after
        // ThreadBlocked, but the thread may be back on the run queue
        // by now.
        task = peekRunQueue(cap)->bound->task;
        giveCapabilityToTask(cap, task);
        return;
    }

    if (!cap->spare_workers) {
        // Create a worker thread if we don't have one.  If the system
        // is interrupted, we only create a worker task if there
        // are threads that need to be completed.  If the system is
        // shutting down, we never create a new worker.
        if (RELAXED_LOAD(&sched_state) < SCHED_SHUTTING_DOWN || !emptyRunQueue(cap)) {
            debugTrace(DEBUG_sched,
                       "starting new worker on capability %d", cap->no);
            startWorkerTask(cap);
            return;
        }
    }

    // If we have an unbound thread on the run queue, or if there's
    // anything else to do, give the Capability to a worker thread.
    if (always_wakeup ||
        !emptyRunQueue(cap) || !emptyInbox(cap) ||
        (!cap->disabled && !emptySparkPoolCap(cap)) || globalWorkToDo()) {
        if (cap->spare_workers) {
            giveCapabilityToTask(cap, cap->spare_workers);
            // The worker Task pops itself from the queue;
            return;
        }
    }

#if defined(PROFILING)
    cap->r.rCCCS = CCS_IDLE;
#endif
    RELAXED_STORE(&last_free_capability[cap->node], cap);
    debugTrace(DEBUG_sched, "freeing capability %d", cap->no);
}

void
releaseCapability (Capability* cap USED_IF_THREADS)
{
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap, false);
    RELEASE_LOCK(&cap->lock);
}

void
releaseAndWakeupCapability (Capability* cap USED_IF_THREADS)
{
    ACQUIRE_LOCK(&cap->lock);
    releaseCapability_(cap, true);
    RELEASE_LOCK(&cap->lock);
}

static void
enqueueWorker (Capability* cap USED_IF_THREADS)
{
    Task *task;

    task = cap->running_task;

    // If the Task is stopped, we shouldn't be yielding, we should
    // be just exiting.
    ASSERT(!task->stopped);
    ASSERT(task->worker);

    if (cap->n_spare_workers < MAX_SPARE_WORKERS)
    {
        task->next = cap->spare_workers;
        cap->spare_workers = task;
        cap->n_spare_workers++;
    }
    else
    {
        debugTrace(DEBUG_sched, "%d spare workers already, exiting",
                   cap->n_spare_workers);
        releaseCapability_(cap,false);
        // hold the lock until after workerTaskStop; c.f. scheduleWorker()
        workerTaskStop(task);
        RELEASE_LOCK(&cap->lock);
        shutdownThread();
    }
}

#endif

/*
 * Note [Benign data race due to work-pushing]
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * #17276 points out a tricky data race (noticed by ThreadSanitizer) between
 * waitForWorkerCapability and schedulePushWork. In short, schedulePushWork
 * works as follows:
 *
 *  1. collect the set of all idle capabilities, take cap->lock of each.
 *
 *  2. sort through each TSO on the calling capability's run queue and push
 *     some to idle capabilities. This may (if the TSO is a bound thread)
 *     involve setting tso->bound->task->cap despite not holding
 *     tso->bound->task->lock.
 *
 *  3. release cap->lock of all idle capabilities.
 *
 * Now, step 2 is in principle safe since the capability of the caller of
 * schedulePushWork *owns* the TSO and therefore the Task to which it is bound.
 * Furthermore, step 3 ensures that the write in step (2) will be visible to
 * any core which starts execution of the previously-idle capability.
 *
 * However, this argument doesn't quite work for waitForWorkerCapability, which
 * reads task->cap *without* first owning the capability which owns `task`.
 * For this reason, we check again whether the task has been migrated to
 * another capability after taking task->cap->lock. See Note [migrated bound
 * threads] above.
 *
 */

/* ----------------------------------------------------------------------------
 * waitForWorkerCapability(task)
 *
 * waits to be given a Capability, and then returns the Capability.  The task
 * must be either a worker (and on a cap->spare_workers queue), or a bound Task.
 * ------------------------------------------------------------------------- */

#if defined(THREADED_RTS)

static Capability * waitForWorkerCapability (Task *task)
{
    Capability *cap;

    for (;;) {
        ACQUIRE_LOCK(&task->lock);
        // task->lock held, cap->lock not held
        if (!task->wakeup) waitCondition(&task->cond, &task->lock);
        // The happens-after matches the happens-before in
        // schedulePushWork, which does owns 'task' when it sets 'task->cap'.
        TSAN_ANNOTATE_HAPPENS_AFTER(&task->cap);
        cap = task->cap;

        // See Note [Benign data race due to work-pushing].
        TSAN_ANNOTATE_BENIGN_RACE(&task->cap, "we will double-check this below");
        task->wakeup = false;
        RELEASE_LOCK(&task->lock);

        debugTrace(DEBUG_sched, "woken up on capability %d", cap->no);

        ACQUIRE_LOCK(&cap->lock);
        if (cap->running_task != NULL) {
            debugTrace(DEBUG_sched,
                       "capability %d is owned by another task", cap->no);
            RELEASE_LOCK(&cap->lock);
            continue;
        }

        if (task->cap != cap) {
            // see Note [migrated bound threads]
            debugTrace(DEBUG_sched,
                       "task has been migrated to cap %d", task->cap->no);
            RELEASE_LOCK(&cap->lock);
            continue;
        }

        if (task->incall->tso == NULL) {
            ASSERT(cap->spare_workers != NULL);
            // if we're not at the front of the queue, release it
                // again.  This is unlikely to happen.
            if (cap->spare_workers != task) {
                giveCapabilityToTask(cap,cap->spare_workers);
                RELEASE_LOCK(&cap->lock);
                continue;
            }
            cap->spare_workers = task->next;
            task->next = NULL;
            cap->n_spare_workers--;
        }

        RELAXED_STORE(&cap->running_task, task);
        RELEASE_LOCK(&cap->lock);
        break;
    }

    return cap;
}

#endif /* THREADED_RTS */

/* ----------------------------------------------------------------------------
 * waitForReturnCapability (Task *task)
 *
 * The Task should be on the cap->returning_tasks queue of a Capability.  This
 * function waits for the Task to be woken up, and returns the Capability that
 * it was woken up on.
 *
 * ------------------------------------------------------------------------- */

#if defined(THREADED_RTS)

static Capability * waitForReturnCapability (Task *task)
{
    Capability *cap;

    for (;;) {
        ACQUIRE_LOCK(&task->lock);
        // task->lock held, cap->lock not held
        if (!task->wakeup) waitCondition(&task->cond, &task->lock);
        cap = task->cap;
        task->wakeup = false;
        RELEASE_LOCK(&task->lock);

        // now check whether we should wake up...
        ACQUIRE_LOCK(&cap->lock);
        if (cap->running_task == NULL) {
            if (cap->returning_tasks_hd != task) {
                giveCapabilityToTask(cap,cap->returning_tasks_hd);
                RELEASE_LOCK(&cap->lock);
                continue;
            }
            RELAXED_STORE(&cap->running_task, task);
            popReturningTask(cap);
            RELEASE_LOCK(&cap->lock);
            break;
        }
        RELEASE_LOCK(&cap->lock);
    }

    return cap;
}

#endif /* THREADED_RTS */

#if defined(THREADED_RTS)

/* ----------------------------------------------------------------------------
 * capability_is_busy (Capability *cap)
 *
 * A predicate for determining whether the given Capability is currently running
 * a Task. This can be safely called without holding the Capability's lock
 * although the result may be inaccurate if it races with the scheduler.
 * Consequently there is a TSAN suppression for it.
 *
 * ------------------------------------------------------------------------- */
static bool capability_is_busy(const Capability * cap)
{
    return RELAXED_LOAD(&cap->running_task) != NULL;
}


/* ----------------------------------------------------------------------------
 * find_capability_for_task
 *
 * Given a Task, identify a reasonable Capability to run it on. We try to
 * find an idle capability if possible.
 *
 * ------------------------------------------------------------------------- */

static Capability * find_capability_for_task(const Task * task)
{
    if (task->preferred_capability != -1) {
        // Does the task have a preferred capability? If so, use it
        return capabilities[task->preferred_capability %
                            enabled_capabilities];
    } else {
        // Try last_free_capability first
        Capability *cap = RELAXED_LOAD(&last_free_capability[task->node]);

        // N.B. There is a data race here since we are loking at
        // cap->running_task without taking cap->lock. However, this is
        // benign since the result is merely guiding our search heuristic.
        if (!capability_is_busy(cap)) {
            return cap;
        } else {
            // The last_free_capability is already busy, search for a free
            // capability on this node.
            for (uint32_t i = task->node; i < enabled_capabilities;
                  i += n_numa_nodes) {
                // visits all the capabilities on this node, because
                // cap[i]->node == i % n_numa_nodes
                if (!RELAXED_LOAD(&capabilities[i]->running_task)) {
                    return capabilities[i];
                }
            }

            // Can't find a free one, use last_free_capability.
            return RELAXED_LOAD(&last_free_capability[task->node]);
        }
    }
}
#endif /* THREADED_RTS */

/* ----------------------------------------------------------------------------
 * waitForCapability (Capability **pCap, Task *task)
 *
 * Purpose:  when an OS thread returns from an external call,
 * it calls waitForCapability() (via Schedule.resumeThread())
 * to wait for permission to enter the RTS & communicate the
 * result of the external call back to the Haskell thread that
 * made it.
 *
 * pCap is strictly an output.
 *
 * ------------------------------------------------------------------------- */

void waitForCapability (Capability **pCap, Task *task)
{
#if !defined(THREADED_RTS)

    MainCapability.running_task = task;
    task->cap = &MainCapability;
    *pCap = &MainCapability;

#else
    Capability *cap = *pCap;

    if (cap == NULL) {
        cap = find_capability_for_task(task);

        // record the Capability as the one this Task is now associated with.
        task->cap = cap;
    } else {
        ASSERT(task->cap == cap);
    }

    debugTrace(DEBUG_sched, "returning; I want capability %d", cap->no);

    ACQUIRE_LOCK(&cap->lock);
    if (!cap->running_task) {
        // It's free; just grab it
        RELAXED_STORE(&cap->running_task, task);
        RELEASE_LOCK(&cap->lock);
    } else {
        newReturningTask(cap,task);
        RELEASE_LOCK(&cap->lock);
        cap = waitForReturnCapability(task);
    }

#if defined(PROFILING)
    cap->r.rCCCS = CCS_SYSTEM;
#endif

    ASSERT_FULL_CAPABILITY_INVARIANTS(cap, task);

    debugTrace(DEBUG_sched, "resuming capability %d", cap->no);

    *pCap = cap;
#endif
}

/* ----------------------------------------------------------------------------
 * yieldCapability
 *
 * Give up the Capability, and return when we have it again.  This is called
 * when either we know that the Capability should be given to another Task, or
 * there is nothing to do right now.  One of the following is true:
 *
 *    - The current Task is a worker, and there's a bound thread at the head of
 *      the run queue (or vice versa)
 *
 *    - The run queue is empty.  We'll be woken up again when there's work to
 *      do.
 *
 *    - Another Task is trying to do parallel GC (pending_sync == SYNC_GC_PAR).
 *      We should become a GC worker for a while.
 *
 *    - Another Task is trying to acquire all the Capabilities (pending_sync !=
 *      SYNC_GC_PAR), either to do a sequential GC, forkProcess, or
 *      setNumCapabilities.  We should give up the Capability temporarily.
 *
 * When yieldCapability returns *pCap will have been updated to the new
 * capability held by the caller.
 *
 * ------------------------------------------------------------------------- */

#if defined(THREADED_RTS)

/* See Note [GC livelock] in Schedule.c for why we have gcAllowed
   and return the bool */
bool /* Did we GC? */
yieldCapability
    ( Capability** pCap     // [in/out] Task's owned capability. Set to the
                            //          newly owned capability on return.
                            //          Precondition:
                            //              pCap != NULL
                            //              && *pCap != NULL
    , Task *task            // [in] This thread's task.
    , bool gcAllowed
    )
{
    Capability *cap = *pCap;

    if (gcAllowed)
    {
        PendingSync *sync = SEQ_CST_LOAD(&pending_sync);

        if (sync) {
            switch (sync->type) {
            case SYNC_GC_PAR:
                if (! sync->idle[cap->no]) {
                    traceEventGcStart(cap);
                    gcWorkerThread(cap);
                    traceEventGcEnd(cap);
                    traceSparkCounters(cap);
                    // See Note [migrated bound threads 2]
                    if (task->cap == cap) {
                        return true;
                    }
                }
                break;

            case SYNC_FLUSH_UPD_REM_SET:
                debugTrace(DEBUG_nonmoving_gc, "Flushing update remembered set blocks...");
                break;

            case SYNC_FLUSH_EVENT_LOG:
                /* N.B. the actual flushing is performed by flushEventLog */
                break;

            default:
                break;
            }
        }
    }

    debugTrace(DEBUG_sched, "giving up capability %d", cap->no);

    // We must now release the capability and wait to be woken up again.
    task->wakeup = false;

    ACQUIRE_LOCK(&cap->lock);

    // If this is a worker thread, put it on the spare_workers queue
    if (isWorker(task)) {
        enqueueWorker(cap);
    }

    releaseCapability_(cap, false);

    if (isWorker(task) || isBoundTask(task)) {
        RELEASE_LOCK(&cap->lock);
        cap = waitForWorkerCapability(task);
    } else {
        // Not a worker Task, or a bound Task.  The only way we can be woken up
        // again is to put ourselves on the returning_tasks queue, so that's
        // what we do.  We still hold cap->lock at this point
        // The Task waiting for this Capability does not have it
        // yet, so we can be sure to be woken up later. (see #10545)
        newReturningTask(cap,task);
        RELEASE_LOCK(&cap->lock);
        cap = waitForReturnCapability(task);
    }

    debugTrace(DEBUG_sched, "resuming capability %d", cap->no);
    ASSERT(cap->running_task == task);

#if defined(PROFILING)
    cap->r.rCCCS = CCS_SYSTEM;
#endif

    *pCap = cap;

    ASSERT_FULL_CAPABILITY_INVARIANTS(cap,task);

    return false;
}

#endif /* THREADED_RTS */

/*
 * Note [migrated bound threads]
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * There's a tricky case where:
 *    - cap A is running an unbound thread T1
 *    - there is a bound thread T2 at the head of the run queue on cap A
 *    - T1 makes a safe foreign call, the task bound to T2 is woken up on cap A
 *    - T1 returns quickly grabbing A again (T2 is still waking up on A)
 *    - T1 blocks, the scheduler migrates T2 to cap B
 *    - the task bound to T2 wakes up on cap B
 *
 * We take advantage of the following invariant:
 *
 *  - A bound thread can only be migrated by the holder of the
 *    Capability on which the bound thread currently lives.  So, if we
 *    hold Capability C, and task->cap == C, then task cannot be
 *    migrated under our feet.
 *
 * See also Note [Benign data race due to work-pushing].
 *
 *
 * Note [migrated bound threads 2]
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * Second tricky case;
 *   - A bound Task becomes a GC thread
 *   - scheduleDoGC() migrates the thread belonging to this Task,
 *     because the Capability it is on is disabled
 *   - after GC, gcWorkerThread() returns, but now we are
 *     holding a Capability that is not the same as task->cap
 *   - Hence we must check for this case and immediately give up the
 *     cap we hold.
 *
 */

/* ----------------------------------------------------------------------------
 * prodCapability
 *
 * If a Capability is currently idle, wake up a Task on it.  Used to
 * get every Capability into the GC.
 * ------------------------------------------------------------------------- */

#if defined(THREADED_RTS)

void
prodCapability (Capability *cap, Task *task)
{
    ACQUIRE_LOCK(&cap->lock);
    if (!cap->running_task) {
        cap->running_task = task;
        releaseCapability_(cap,true);
    }
    RELEASE_LOCK(&cap->lock);
}

#endif /* THREADED_RTS */

/* ----------------------------------------------------------------------------
 * tryGrabCapability
 *
 * Attempt to gain control of a Capability if it is free.
 *
 * ------------------------------------------------------------------------- */

#if defined(THREADED_RTS)

bool
tryGrabCapability (Capability *cap, Task *task)
{
    int r;
    // N.B. This is benign as we will check again after taking the lock.
    TSAN_ANNOTATE_BENIGN_RACE(&cap->running_task, "tryGrabCapability (cap->running_task)");
    if (RELAXED_LOAD(&cap->running_task) != NULL) return false;

    r = TRY_ACQUIRE_LOCK(&cap->lock);
    if (r != 0) return false;
    if (cap->running_task != NULL) {
        RELEASE_LOCK(&cap->lock);
        return false;
    }
    task->cap = cap;
    RELAXED_STORE(&cap->running_task, task);
    RELEASE_LOCK(&cap->lock);
    return true;
}


#endif /* THREADED_RTS */

/* ----------------------------------------------------------------------------
 * shutdownCapability
 *
 * At shutdown time, we want to let everything exit as cleanly as
 * possible.  For each capability, we let its run queue drain, and
 * allow the workers to stop.
 *
 * This function should be called when interrupted and
 * sched_state = SCHED_SHUTTING_DOWN, thus any worker that wakes up
 * will exit the scheduler and call taskStop(), and any bound thread
 * that wakes up will return to its caller.  Runnable threads are
 * killed.
 *
 * ------------------------------------------------------------------------- */

static void
shutdownCapability (Capability *cap USED_IF_THREADS,
                    Task *task USED_IF_THREADS,
                    bool safe USED_IF_THREADS)
{
#if defined(THREADED_RTS)
    uint32_t i;

    task->cap = cap;

    // Loop indefinitely until all the workers have exited and there
    // are no Haskell threads left.  We used to bail out after 50
    // iterations of this loop, but that occasionally left a worker
    // running which caused problems later (the closeMutex() below
    // isn't safe, for one thing).

    for (i = 0; /* i < 50 */; i++) {
        ASSERT(sched_state == SCHED_SHUTTING_DOWN);

        debugTrace(DEBUG_sched,
                   "shutting down capability %d, attempt %d", cap->no, i);
        ACQUIRE_LOCK(&cap->lock);
        if (cap->running_task) {
            RELEASE_LOCK(&cap->lock);
            debugTrace(DEBUG_sched, "not owner, yielding");
            yieldThread();
            continue;
        }
        cap->running_task = task;

        if (cap->spare_workers) {
            // Look for workers that have died without removing
            // themselves from the list; this could happen if the OS
            // summarily killed the thread, for example.  This
            // actually happens on Windows when the system is
            // terminating the program, and the RTS is running in a
            // DLL.
            Task *t, *prev;
            prev = NULL;
            for (t = cap->spare_workers; t != NULL; t = t->next) {
                if (!osThreadIsAlive(t->id)) {
                    debugTrace(DEBUG_sched,
                               "worker thread %p has died unexpectedly", (void *)(size_t)t->id);
                    cap->n_spare_workers--;
                    if (!prev) {
                        cap->spare_workers = t->next;
                    } else {
                        prev->next = t->next;
                    }
                    prev = t;
                }
            }
        }

        if (!emptyRunQueue(cap) || cap->spare_workers) {
            debugTrace(DEBUG_sched,
                       "runnable threads or workers still alive, yielding");
            releaseCapability_(cap,false); // this will wake up a worker
            RELEASE_LOCK(&cap->lock);
            yieldThread();
            continue;
        }

        // If "safe", then busy-wait for any threads currently doing
        // foreign calls.  If we're about to unload this DLL, for
        // example, we need to be sure that there are no OS threads
        // that will try to return to code that has been unloaded.
        // We can be a bit more relaxed when this is a standalone
        // program that is about to terminate, and let safe=false.
        if (cap->suspended_ccalls && safe) {
            debugTrace(DEBUG_sched,
                       "thread(s) are involved in foreign calls, yielding");
            cap->running_task = NULL;
            RELEASE_LOCK(&cap->lock);
            // The IO manager thread might have been slow to start up,
            // so the first attempt to kill it might not have
            // succeeded.  Just in case, try again - the kill message
            // will only be sent once.
            //
            // To reproduce this deadlock: run ffi002(threaded1)
            // repeatedly on a loaded machine.
            //
            // FIXME: stopIOManager is not a per-capability action. It shuts
            // down the I/O subsystem for all capabilities, but here we call
            // it once per cap, so this is accidentally quadratic, but mainly
            // it is confusing. Replace this with a per-capability stop, and
            // perhaps make it synchronous so it works the first time and we
            // don't have to come back and try again here.
            //
            stopIOManager();
            yieldThread();
            continue;
        }

        traceSparkCounters(cap);
        RELEASE_LOCK(&cap->lock);
        break;
    }
    // we now have the Capability, its run queue and spare workers
    // list are both empty.

    // ToDo: we can't drop this mutex, because there might still be
    // threads performing foreign calls that will eventually try to
    // return via resumeThread() and attempt to grab cap->lock.
    // closeMutex(&cap->lock);
#endif
}

void
shutdownCapabilities(Task *task, bool safe)
{
    uint32_t i;
    for (i=0; i < n_capabilities; i++) {
        ASSERT(task->incall->tso == NULL);
        shutdownCapability(capabilities[i], task, safe);
    }
#if defined(THREADED_RTS)
    ASSERT(checkSparkCountInvariant());
#endif
}

static void
freeCapability (Capability *cap)
{
    stgFree(cap->mut_lists);
    stgFree(cap->saved_mut_lists);
#if defined(THREADED_RTS)
    freeSparkPool(cap->sparks);
#endif
    traceCapsetRemoveCap(CAPSET_OSPROCESS_DEFAULT, cap->no);
    traceCapsetRemoveCap(CAPSET_CLOCKDOMAIN_DEFAULT, cap->no);
    traceCapDelete(cap);
}

void
freeCapabilities (void)
{
#if defined(THREADED_RTS)
    uint32_t i;
    for (i=0; i < n_capabilities; i++) {
        freeCapability(capabilities[i]);
        if (capabilities[i] != &MainCapability)
            stgFree(capabilities[i]);
    }
#else
    freeCapability(&MainCapability);
#endif
    stgFree(capabilities);
    traceCapsetDelete(CAPSET_OSPROCESS_DEFAULT);
    traceCapsetDelete(CAPSET_CLOCKDOMAIN_DEFAULT);
}

/* ---------------------------------------------------------------------------
   Mark everything directly reachable from the Capabilities.  When
   using multiple GC threads, each GC thread marks all Capabilities
   for which (c `mod` n == 0), for Capability c and thread n.
   ------------------------------------------------------------------------ */

void
markCapability (evac_fn evac, void *user, Capability *cap,
                bool no_mark_sparks USED_IF_THREADS)
{
    InCall *incall;

    // Each GC thread is responsible for following roots from the
    // Capability of the same number.  There will usually be the same
    // or fewer Capabilities as GC threads, but just in case there
    // are more, we mark every Capability whose number is the GC
    // thread's index plus a multiple of the number of GC threads.
    evac(user, (StgClosure **)(void *)&cap->run_queue_hd);
    evac(user, (StgClosure **)(void *)&cap->run_queue_tl);
#if defined(THREADED_RTS)
    evac(user, (StgClosure **)(void *)&cap->inbox);
#endif
    for (incall = cap->suspended_ccalls; incall != NULL;
         incall=incall->next) {
        evac(user, (StgClosure **)(void *)&incall->suspended_tso);
    }

#if defined(THREADED_RTS)
    if (!no_mark_sparks) {
        traverseSparkQueue (evac, user, cap);
    }
#endif

    // Free STM structures for this Capability
    stmPreGCHook(cap);
}

void
markCapabilities (evac_fn evac, void *user)
{
    uint32_t n;
    for (n = 0; n < n_capabilities; n++) {
        markCapability(evac, user, capabilities[n], false);
    }
}

#if defined(THREADED_RTS)
bool checkSparkCountInvariant (void)
{
    SparkCounters sparks = { 0, 0, 0, 0, 0, 0 };
    StgWord64 remaining = 0;
    uint32_t i;

    for (i = 0; i < n_capabilities; i++) {
        sparks.created   += capabilities[i]->spark_stats.created;
        sparks.dud       += capabilities[i]->spark_stats.dud;
        sparks.overflowed+= capabilities[i]->spark_stats.overflowed;
        sparks.converted += capabilities[i]->spark_stats.converted;
        sparks.gcd       += capabilities[i]->spark_stats.gcd;
        sparks.fizzled   += capabilities[i]->spark_stats.fizzled;
        remaining        += sparkPoolSize(capabilities[i]->sparks);
    }

    /* The invariant is
     *   created = converted + remaining + gcd + fizzled
     */
    debugTrace(DEBUG_sparks,"spark invariant: %ld == %ld + %ld + %ld + %ld "
                            "(created == converted + remaining + gcd + fizzled)",
                            sparks.created, sparks.converted, remaining,
                            sparks.gcd, sparks.fizzled);

    return (sparks.created ==
              sparks.converted + remaining + sparks.gcd + sparks.fizzled);

}
#endif