summaryrefslogtreecommitdiff
path: root/rts/CheckUnload.c
blob: 98f184b84c7bb4a3ba85d0b1f6f059d55815951b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/* ----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 2013-
 *
 * Check whether dynamically-loaded object code can be safely
 * unloaded, by searching for references to it from the heap and RTS
 * data structures.
 *
 * --------------------------------------------------------------------------*/

#include "PosixSource.h"
#include "Rts.h"

#include "RtsUtils.h"
#include "Hash.h"
#include "LinkerInternals.h"
#include "CheckUnload.h"
#include "sm/Storage.h"
#include "sm/GCThread.h"

//
// Code that we unload may be referenced from:
//   - info pointers in heap objects and stack frames
//   - pointers to static objects from the heap
//   - StablePtrs to static objects
//
// We can find live static objects after a major GC, so we don't have
// to look at every closure pointer in the heap.  However, we do have
// to look at every info pointer.  So this is like a heap census
// traversal: we look at the header of every object, but not its
// contents.
//
// On the assumption that there aren't many different info pointers in
// a typical heap, we insert addresses into a hash table.  The
// first time we see an address, we check it against the pending
// unloadable objects and if it lies within any of them, we mark that
// object as referenced so that it won't get unloaded in this round.
//

static void checkAddress (HashTable *addrs, void *addr)
{
    ObjectCode *oc;

    if (!lookupHashTable(addrs, (W_)addr)) {
        insertHashTable(addrs, (W_)addr, addr);

        for (oc = unloaded_objects; oc; oc = oc->next) {
            if ((W_)addr >= (W_)oc->image &&
                (W_)addr <  (W_)oc->image + oc->fileSize) {
                oc->referenced = 1;
                break;
            }
        }
    }
}

static void searchStackChunk (HashTable *addrs, StgPtr sp, StgPtr stack_end)
{
    StgPtr p;
    const StgRetInfoTable *info;

    p = sp;
    while (p < stack_end) {
        info = get_ret_itbl((StgClosure *)p);

        switch (info->i.type) {
        case RET_SMALL:
        case RET_BIG:
            checkAddress(addrs, (void*)info);
            break;

        default:
            break;
        }

        p += stack_frame_sizeW((StgClosure*)p);
    }
}


static void searchHeapBlocks (HashTable *addrs, bdescr *bd)
{
    StgPtr p;
    StgInfoTable *info;
    nat size;
    rtsBool prim;

    for (; bd != NULL; bd = bd->link) {

        if (bd->flags & BF_PINNED) {
            // Assume that objects in PINNED blocks cannot refer to
            continue;
        }

	p = bd->start;
	while (p < bd->free) {
	    info = get_itbl((StgClosure *)p);
            prim = rtsFalse;

	    switch (info->type) {

	    case THUNK:
                size = thunk_sizeW_fromITBL(info);
		break;

	    case THUNK_1_1:
	    case THUNK_0_2:
	    case THUNK_2_0:
		size = sizeofW(StgThunkHeader) + 2;
		break;

	    case THUNK_1_0:
	    case THUNK_0_1:
	    case THUNK_SELECTOR:
		size = sizeofW(StgThunkHeader) + 1;
		break;

	    case CONSTR:
	    case FUN:
            case FUN_1_0:
	    case FUN_0_1:
	    case FUN_1_1:
	    case FUN_0_2:
	    case FUN_2_0:
	    case CONSTR_1_0:
	    case CONSTR_0_1:
	    case CONSTR_1_1:
	    case CONSTR_0_2:
	    case CONSTR_2_0:
		size = sizeW_fromITBL(info);
		break;

	    case IND_PERM:
	    case BLACKHOLE:
	    case BLOCKING_QUEUE:
                prim = rtsTrue;
                size = sizeW_fromITBL(info);
		break;

            case IND:
		// Special case/Delicate Hack: INDs don't normally
		// appear, since we're doing this heap census right
		// after GC.  However, GarbageCollect() also does
		// resurrectThreads(), which can update some
		// blackholes when it calls raiseAsync() on the
		// resurrected threads.  So we know that any IND will
		// be the size of a BLACKHOLE.
                prim = rtsTrue;
                size = BLACKHOLE_sizeW();
		break;

	    case BCO:
                prim = rtsTrue;
		size = bco_sizeW((StgBCO *)p);
		break;

            case MVAR_CLEAN:
            case MVAR_DIRTY:
            case TVAR:
            case WEAK:
	    case PRIM:
	    case MUT_PRIM:
	    case MUT_VAR_CLEAN:
	    case MUT_VAR_DIRTY:
		prim = rtsTrue;
		size = sizeW_fromITBL(info);
		break;

	    case AP:
                prim = rtsTrue;
                size = ap_sizeW((StgAP *)p);
		break;

	    case PAP:
                prim = rtsTrue;
                size = pap_sizeW((StgPAP *)p);
		break;

	    case AP_STACK:
            {
                StgAP_STACK *ap = (StgAP_STACK *)p;
                prim = rtsTrue;
                size = ap_stack_sizeW(ap);
                searchStackChunk(addrs, (StgPtr)ap->payload,
                                 (StgPtr)ap->payload + ap->size);
                break;
            }

	    case ARR_WORDS:
		prim = rtsTrue;
		size = arr_words_sizeW((StgArrWords*)p);
		break;
		
	    case MUT_ARR_PTRS_CLEAN:
	    case MUT_ARR_PTRS_DIRTY:
	    case MUT_ARR_PTRS_FROZEN:
	    case MUT_ARR_PTRS_FROZEN0:
		prim = rtsTrue;
		size = mut_arr_ptrs_sizeW((StgMutArrPtrs *)p);
		break;

	    case SMALL_MUT_ARR_PTRS_CLEAN:
	    case SMALL_MUT_ARR_PTRS_DIRTY:
	    case SMALL_MUT_ARR_PTRS_FROZEN:
	    case SMALL_MUT_ARR_PTRS_FROZEN0:
		prim = rtsTrue;
		size = small_mut_arr_ptrs_sizeW((StgSmallMutArrPtrs *)p);
		break;
		
	    case TSO:
		prim = rtsTrue;
                size = sizeofW(StgTSO);
		break;

            case STACK: {
                StgStack *stack = (StgStack*)p;
                prim = rtsTrue;
                searchStackChunk(addrs, stack->sp,
                                 stack->stack + stack->stack_size);
                size = stack_sizeW(stack);
		break;
            }

            case TREC_CHUNK:
		prim = rtsTrue;
		size = sizeofW(StgTRecChunk);
		break;

	    default:
		barf("heapCensus, unknown object: %d", info->type);
	    }
	    
            if (!prim) {
                checkAddress(addrs,info);
            }

	    p += size;
	}
    }
}

//
// Check whether we can unload any object code.  This is called at the
// appropriate point during a GC, where all the heap data is nice and
// packed together and we have a linked list of the static objects.
//
// The check involves a complete heap traversal, but you only pay for
// this (a) when you have called unloadObj(), and (b) at a major GC,
// which is much more expensive than the traversal we're doing here.
//
void checkUnload (StgClosure *static_objects)
{
  nat g, n;
  HashTable *addrs;
  StgClosure* p;
  const StgInfoTable *info;
  ObjectCode *oc, *prev, *next;
  gen_workspace *ws;
  StgClosure* link;

  if (unloaded_objects == NULL) return;

  // Mark every unloadable object as unreferenced initially
  for (oc = unloaded_objects; oc; oc = oc->next) {
      IF_DEBUG(linker, debugBelch("Checking whether to unload %" PATH_FMT "\n",
                                  oc->fileName));
      oc->referenced = rtsFalse;
  }

  addrs = allocHashTable();

  for (p = static_objects; p != END_OF_STATIC_LIST; p = link) {
      checkAddress(addrs, p);
      info = get_itbl(p);
      link = *STATIC_LINK(info, p);
  }

  // CAFs on revertible_caf_list are not on static_objects
  for (p = (StgClosure*)revertible_caf_list;
       p != END_OF_STATIC_LIST;
       p = ((StgIndStatic *)p)->static_link) {
      checkAddress(addrs, p);
  }

  for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
      searchHeapBlocks (addrs, generations[g].blocks);
      searchHeapBlocks (addrs, generations[g].large_objects);

      for (n = 0; n < n_capabilities; n++) {
          ws = &gc_threads[n]->gens[g];
          searchHeapBlocks(addrs, ws->todo_bd);
          searchHeapBlocks(addrs, ws->part_list);
          searchHeapBlocks(addrs, ws->scavd_list);
      }
  }

  // Look through the unloadable objects, and any object that is still
  // marked as unreferenced can be physically unloaded, because we
  // have no references to it.
  prev = NULL;
  for (oc = unloaded_objects; oc; oc = next) {
      next = oc->next;
      if (oc->referenced == 0) {
          if (prev == NULL) {
              unloaded_objects = oc->next;
          } else {
              prev->next = oc->next;
          }
          IF_DEBUG(linker, debugBelch("Unloading object file %" PATH_FMT "\n",
                                      oc->fileName));
          freeObjectCode(oc);
      } else {
          IF_DEBUG(linker, debugBelch("Object file still in use: %"
                                      PATH_FMT "\n", oc->fileName));
          prev = oc;
      }
  }

  freeHashTable(addrs, NULL);
}