1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
|
/* ----------------------------------------------------------------------------
*
* (c) The GHC Team, 2013-
*
* Check whether dynamically-loaded object code can be safely
* unloaded, by searching for references to it from the heap and RTS
* data structures.
*
* --------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
#include "Hash.h"
#include "LinkerInternals.h"
#include "CheckUnload.h"
#include "sm/Storage.h"
#include "sm/GCThread.h"
#include "sm/HeapUtils.h"
//
// Note [Object unloading]
// ~~~~~~~~~~~~~~~~~~~~~~~
//
// Overview of object unloading:
//
// - In a major GC, for every static object we mark the object's object code and
// its dependencies as 'live'. This is done by `markObjectCode`, called by
// `evacuate`.
//
// - Marking object code is done using a global "section index table"
// (global_s_indices below). When we load an object code we add its section
// indices to the table. `markObjectCode` does binary search on this table to
// find object code for the marked object, and mark it and its dependencies.
//
// Dependency of an object code is simply other object code that the object
// code refers to in its code. We know these dependencies by the relocations
// present in the referent. This is recorded by lookupSymbolDependent.
//
// - global_s_indices is updated as we load and unload objects. When we load an
// object code we add its section indices to the table, we remove those
// indices when we unload.
//
// The table is sorted and old indices are removed in `checkUnload`, instead
// on every load/unload, to avoid quadratic behavior when we load a list of
// objects.
//
// - After a major GC `checkUnload` unloads objects that are (1) explicitly
// asked for unloading (via `unloadObj`) and (2) are not marked during GC.
//
// Note that, crucially, we don't unload an object code even if it's not
// reachable from the heap, unless it's explicitly asked for unloading (via
// `unloadObj`). This is a feature and not a but! Two use cases:
//
// - The user might request a symbol from a loaded object at any point with
// lookupSymbol (e.g. GHCi might do this).
//
// - Sometimes we load objects that are not Haskell objects.
//
// To avoid unloading objects that are unreachable but are not asked for
// unloading we maintain a "root set" of object code, `loaded_objects` below.
// `loadObj` adds the loaded objects (and its dependencies) to the list.
// `unloadObj` removes. After a major GC, `checkUnload` first marks the root set
// (`loaded_objects`) to avoid unloading objects that are not asked for
// unloading.
//
// Two other lists `objects` and `old_objects` are similar to large object lists
// in GC. Before a major GC we move `objects` to `old_objects`, and move marked
// objects back to `objects` during evacuation and when marking roots in
// `checkUnload`. Any objects in `old_objects` after that is unloaded.
//
// TODO: We currently don't unload objects when non-moving GC is enabled. The
// implementation would be similar to `nonmovingGcCafs`:
//
// - Maintain a "snapshot":
//
// - Copy `loaded_objects` as the root set of the snapshot
//
// - Stash `objects` to `old_objects` as the snapshot. We don't need a new
// list for this as `old_objects` won't be used by any other code when
// non-moving GC is enabled.
//
// - Copy `global_s_indices` table to be able to mark objects while mutators
// call `loadObj_` and `unloadObj_` concurrently.
//
// - Don't mark object code in `evacuate`, marking will be done in the
// non-moving collector.
//
// - After preparation, bump the object code mark bit (`object_code_mark_bit`
// below) and mark static objects using a version of `markObjectCode` that
// basically does the same thing but:
//
// - Needs to update `objects` list in a thread-safe way, as mutators will be
// concurrently calling `loadObj_` and add new stuff to `objects`.
// (alternatively we could have a new list for non-moving GC's objects list,
// and then merge it to the global list in the pause before moving to
// concurrent sweep phase)
//
// - Needs to use the copied `global_s_indices`
//
// - After marking anything left in `old_objects` are unreachable objects within
// the snapshot, unload those. The unload loop will be the same as in
// `checkUnload`. This step needs to happen in the final sync (before sweep
// begins) to avoid races when updating `global_s_indices`.
//
// - NOTE: We don't need write barriers in loadObj/unloadObj as we don't
// introduce a dependency from an already-loaded object to a newly loaded
// object and we don't delete existing dependencies.
//
uint8_t object_code_mark_bit = 0;
typedef struct {
W_ start;
W_ end;
ObjectCode *oc;
} OCSectionIndex;
typedef struct {
int capacity; // Doubled on resize
int n_sections;
bool sorted; // Invalidated on insertion. Sorted in checkUnload.
bool unloaded; // Whether we removed anything from the table in
// removeOCSectionIndices. If this is set we "compact" the
// table (remove unused entries) in `sortOCSectionIndices.
OCSectionIndex *indices;
} OCSectionIndices;
// List of currently live objects. Moved to `old_objects` before unload check.
// Marked objects moved back to this list in `markObjectLive`. Remaining objects
// are freed at the end of `checkUnload`.
//
// Double-linked list to be able to remove marked objects. List formed with
// `next` and `prev` fields of `ObjectCode`.
//
// Not static: used in Linker.c.
ObjectCode *objects = NULL;
// `objects` list is moved here before unload check. Marked objects are moved
// back to `objects`. Remaining objects are freed.
static ObjectCode *old_objects = NULL;
// Number of objects that we want to unload. When this value is 0 we skip static
// object marking during GC and `checkUnload`.
//
// Not static: we use this value to skip static object marking in evacuate when
// this is 0.
//
// Incremented in `unloadObj_`, decremented as we unload objects in
// `checkUnload`.
int n_unloaded_objects = 0;
// List of objects that we don't want to unload (i.e. we haven't called
// unloadObj on these yet). Used as root set for unload check in checkUnload.
// Objects are added with loadObj_ and removed with unloadObj_.
//
// List formed with `next_loaded_object` field of `ObjectCode`.
//
// Not static: used in Linker.c.
ObjectCode *loaded_objects;
// Section index table for currently loaded objects. New indices are added by
// `loadObj_`, indices of unloaded objects are removed in `checkUnload`. Used to
// map static closures to their ObjectCode.
static OCSectionIndices *global_s_indices = NULL;
static OCSectionIndices *createOCSectionIndices(void)
{
// TODO (osa): Maybe initialize as empty (without allocation) and allocate
// on first insertion?
OCSectionIndices *s_indices = stgMallocBytes(sizeof(OCSectionIndices), "OCSectionIndices");
int capacity = 1024;
s_indices->capacity = capacity;
s_indices->n_sections = 0;
s_indices->sorted = true;
s_indices->unloaded = false;
s_indices->indices = stgMallocBytes(capacity * sizeof(OCSectionIndex),
"OCSectionIndices::indices");
return s_indices;
}
static void freeOCSectionIndices(OCSectionIndices *s_indices)
{
free(s_indices->indices);
free(s_indices);
}
void initUnloadCheck()
{
global_s_indices = createOCSectionIndices();
}
void exitUnloadCheck()
{
freeOCSectionIndices(global_s_indices);
global_s_indices = NULL;
}
static int cmpSectionIndex(const void* indexa, const void *indexb)
{
W_ s1 = ((OCSectionIndex*)indexa)->start;
W_ s2 = ((OCSectionIndex*)indexb)->start;
if (s1 < s2) {
return -1;
} else if (s1 > s2) {
return 1;
}
return 0;
}
static void reserveOCSectionIndices(OCSectionIndices *s_indices, int len)
{
int current_capacity = s_indices->capacity;
int current_len = s_indices->n_sections;
if (current_capacity - current_len >= len) {
return;
}
// Round up to nearest power of 2
int new_capacity = 1 << (int)ceil(log2(current_len + len));
OCSectionIndex *old_indices = s_indices->indices;
OCSectionIndex *new_indices = stgMallocBytes(new_capacity * sizeof(OCSectionIndex),
"reserveOCSectionIndices");
for (int i = 0; i < current_len; ++i) {
new_indices[i] = old_indices[i];
}
s_indices->capacity = new_capacity;
s_indices->indices = new_indices;
free(old_indices);
}
// Insert object section indices of a single ObjectCode. Invalidates 'sorted'
// state.
void insertOCSectionIndices(ObjectCode *oc)
{
// after we finish the section table will no longer be sorted.
global_s_indices->sorted = false;
if (oc->type == DYNAMIC_OBJECT) {
// First count the ranges
int n_ranges = 0;
for (NativeCodeRange *ncr = oc->nc_ranges; ncr != NULL; ncr = ncr->next) {
n_ranges++;
}
// Next reserve the appropriate number of table entries...
reserveOCSectionIndices(global_s_indices, n_ranges);
// Now insert the new ranges...
int s_i = global_s_indices->n_sections;
for (NativeCodeRange *ncr = oc->nc_ranges; ncr != NULL; ncr = ncr->next) {
OCSectionIndex *ent = &global_s_indices->indices[s_i];
ent->start = (W_)ncr->start;
ent->end = (W_)ncr->end;
ent->oc = oc;
s_i++;
}
global_s_indices->n_sections = s_i;
} else {
reserveOCSectionIndices(global_s_indices, oc->n_sections);
int s_i = global_s_indices->n_sections;
for (int i = 0; i < oc->n_sections; i++) {
if (oc->sections[i].kind != SECTIONKIND_OTHER) {
OCSectionIndex *ent = &global_s_indices->indices[s_i];
ent->start = (W_)oc->sections[i].start;
ent->end = (W_)oc->sections[i].start + oc->sections[i].size;
ent->oc = oc;
s_i++;
}
}
global_s_indices->n_sections = s_i;
}
// Add object to 'objects' list
if (objects != NULL) {
objects->prev = oc;
}
oc->next = objects;
objects = oc;
}
static int findSectionIdx(OCSectionIndices *s_indices, const void *addr);
static void removeOCSectionIndices(OCSectionIndices *s_indices, ObjectCode *oc)
{
// To avoid quadratic behavior in checkUnload we set `oc` fields of indices
// of unloaded objects NULL here. Removing unused entries is done in
// `sortOCSectionIndices`.
s_indices->unloaded = true;
for (int i = 0; i < oc->n_sections; i++) {
if (oc->sections[i].kind != SECTIONKIND_OTHER) {
int section_idx = findSectionIdx(s_indices, oc->sections[i].start);
if (section_idx != -1) {
s_indices->indices[section_idx].oc = NULL;
}
}
}
}
static void sortOCSectionIndices(OCSectionIndices *s_indices) {
if (s_indices->sorted) {
return;
}
qsort(s_indices->indices,
s_indices->n_sections,
sizeof(OCSectionIndex),
cmpSectionIndex);
s_indices->sorted = true;
}
static void removeRemovedOCSections(OCSectionIndices *s_indices) {
if (!s_indices->unloaded) {
return;
}
int next_free_idx = 0;
for (int i = 0; i < s_indices->n_sections; ++i) {
if (s_indices->indices[i].oc == NULL) {
// free entry, skip
} else if (i == next_free_idx) {
++next_free_idx;
} else {
s_indices->indices[next_free_idx] = s_indices->indices[i];
++next_free_idx;
}
}
s_indices->n_sections = next_free_idx;
s_indices->unloaded = true;
}
// Returns -1 if not found
static int findSectionIdx(OCSectionIndices *s_indices, const void *addr) {
ASSERT(s_indices->sorted);
W_ w_addr = (W_)addr;
if (s_indices->n_sections <= 0) {
return -1;
}
if (w_addr < s_indices->indices[0].start) {
return -1;
}
int left = 0, right = s_indices->n_sections;
while (left + 1 < right) {
int mid = (left + right)/2;
W_ w_mid = s_indices->indices[mid].start;
if (w_mid <= w_addr) {
left = mid;
} else {
right = mid;
}
}
ASSERT(w_addr >= s_indices->indices[left].start);
if (w_addr < s_indices->indices[left].end) {
return left;
}
return -1;
}
static ObjectCode *findOC(OCSectionIndices *s_indices, const void *addr) {
int oc_idx = findSectionIdx(s_indices, addr);
if (oc_idx == -1) {
return NULL;
}
return s_indices->indices[oc_idx].oc;
}
static bool markObjectLive(void *data STG_UNUSED, StgWord key, const void *value STG_UNUSED) {
ObjectCode *oc = (ObjectCode*)key;
if (oc->mark == object_code_mark_bit) {
return true; // for hash table iteration
}
oc->mark = object_code_mark_bit;
// Remove from 'old_objects' list
if (oc->prev != NULL) {
// TODO(osa): Maybe 'prev' should be a pointer to the referencing
// *field* ? (instead of referencing *object*)
oc->prev->next = oc->next;
} else {
old_objects = oc->next;
}
if (oc->next != NULL) {
oc->next->prev = oc->prev;
}
// Add it to 'objects' list
oc->prev = NULL;
oc->next = objects;
if (objects != NULL) {
objects->prev = oc;
}
objects = oc;
// Mark its dependencies
iterHashTable(oc->dependencies, NULL, markObjectLive);
return true; // for hash table iteration
}
void markObjectCode(const void *addr)
{
if (global_s_indices == NULL) {
return;
}
// This should be checked at the call site
ASSERT(!HEAP_ALLOCED(addr));
ObjectCode *oc = findOC(global_s_indices, addr);
if (oc != NULL) {
// Mark the object code and its dependencies
markObjectLive(NULL, (W_)oc, NULL);
}
}
// Returns whether or not the GC that follows needs to mark code for potential
// unloading.
bool prepareUnloadCheck()
{
if (global_s_indices == NULL) {
return false;
}
removeRemovedOCSections(global_s_indices);
sortOCSectionIndices(global_s_indices);
ASSERT(old_objects == NULL);
object_code_mark_bit = ~object_code_mark_bit;
old_objects = objects;
objects = NULL;
return true;
}
void checkUnload()
{
if (global_s_indices == NULL) {
return;
}
// At this point we've marked all dynamically loaded static objects
// (including their dependencies) during GC, but not the root set of object
// code (loaded_objects). Mark the roots first, then unload any unmarked
// objects.
OCSectionIndices *s_indices = global_s_indices;
ASSERT(s_indices->sorted);
// Mark roots
for (ObjectCode *oc = loaded_objects; oc != NULL; oc = oc->next_loaded_object) {
markObjectLive(NULL, (W_)oc, NULL);
}
// Free unmarked objects
ObjectCode *next = NULL;
for (ObjectCode *oc = old_objects; oc != NULL; oc = next) {
next = oc->next;
ASSERT(oc->status == OBJECT_UNLOADED);
removeOCSectionIndices(s_indices, oc);
// Symbols should be removed by unloadObj_.
// NB (osa): If this assertion doesn't hold then freeObjectCode below
// will corrupt symhash as keys of that table live in ObjectCodes. If
// you see a segfault in a hash table operation in linker (in non-debug
// RTS) then it's probably becuse this assertion did not hold.
ASSERT(oc->symbols == NULL);
freeObjectCode(oc);
n_unloaded_objects -= 1;
}
old_objects = NULL;
}
|