1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
/*-----------------------------------------------------------------------------
*
* (c) The AQUA Project, Glasgow University, 1995-1998
* (c) The GHC Team, 1999
*
* Dynamically expanding linear hash tables, as described in
* Per-\AAke Larson, ``Dynamic Hash Tables,'' CACM 31(4), April 1988,
* pp. 446 -- 457.
* -------------------------------------------------------------------------- */
#include "PosixSource.h"
#include "Rts.h"
#include "Hash.h"
#include "RtsUtils.h"
#include "xxhash.h"
#include <string.h>
#define HSEGSIZE 1024 /* Size of a single hash table segment */
/* Also the minimum size of a hash table */
#define HDIRSIZE 1024 /* Size of the segment directory */
/* Maximum hash table size is HSEGSIZE * HDIRSIZE */
#define HLOAD 5 /* Maximum average load of a single hash bucket */
#define HCHUNK (1024 * sizeof(W_) / sizeof(HashList))
/* Number of HashList cells to allocate in one go */
/* Linked list of (key, data) pairs for separate chaining */
typedef struct hashlist {
StgWord key;
const void *data;
struct hashlist *next; /* Next cell in bucket chain (same hash value) */
} HashList;
typedef struct chunklist {
HashList *chunk;
struct chunklist *next;
} HashListChunk;
struct hashtable {
int split; /* Next bucket to split when expanding */
int max; /* Max bucket of smaller table */
int mask1; /* Mask for doing the mod of h_1 (smaller table) */
int mask2; /* Mask for doing the mod of h_2 (larger table) */
int kcount; /* Number of keys */
int bcount; /* Number of buckets */
HashList **dir[HDIRSIZE]; /* Directory of segments */
HashList *freeList; /* free list of HashLists */
HashListChunk *chunks;
};
/* Create an identical structure, but is distinct on a type level,
* for string hash table. Since it's a direct embedding of
* a hashtable and not a reference, there shouldn't be
* any overhead post-compilation. */
struct strhashtable { struct hashtable table; };
/* -----------------------------------------------------------------------------
* Hash first using the smaller table. If the bucket is less than the
* next bucket to be split, re-hash using the larger table.
* -------------------------------------------------------------------------- */
int
hashWord(const HashTable *table, StgWord key)
{
int bucket;
/* Strip the boring zero bits */
key >>= sizeof(StgWord);
/* Mod the size of the hash table (a power of 2) */
bucket = key & table->mask1;
if (bucket < table->split) {
/* Mod the size of the expanded hash table (also a power of 2) */
bucket = key & table->mask2;
}
return bucket;
}
int
hashStr(const HashTable *table, StgWord w)
{
const char *key = (char*) w;
#if defined(x86_64_HOST_ARCH)
StgWord h = XXH64 (key, strlen(key), 1048583);
#else
StgWord h = XXH32 (key, strlen(key), 1048583);
#endif
/* Mod the size of the hash table (a power of 2) */
int bucket = h & table->mask1;
if (bucket < table->split) {
/* Mod the size of the expanded hash table (also a power of 2) */
bucket = h & table->mask2;
}
return bucket;
}
STATIC_INLINE int
compareWord(StgWord key1, StgWord key2)
{
return (key1 == key2);
}
STATIC_INLINE int
compareStr(StgWord key1, StgWord key2)
{
return (strcmp((char *)key1, (char *)key2) == 0);
}
/* -----------------------------------------------------------------------------
* Allocate a new segment of the dynamically growing hash table.
* -------------------------------------------------------------------------- */
STATIC_INLINE void
allocSegment(HashTable *table, int segment)
{
table->dir[segment] = stgMallocBytes(HSEGSIZE * sizeof(HashList *),
"allocSegment");
}
/* -----------------------------------------------------------------------------
* Expand the larger hash table by one bucket, and split one bucket
* from the smaller table into two parts. Only the bucket referenced
* by @table->split@ is affected by the expansion.
* -------------------------------------------------------------------------- */
STATIC_INLINE void
expand(HashTable *table, HashFunction f)
{
int oldsegment;
int oldindex;
int newbucket;
int newsegment;
int newindex;
HashList *hl;
HashList *next;
HashList *old, *new;
if (table->split + table->max >= HDIRSIZE * HSEGSIZE)
/* Wow! That's big. Too big, so don't expand. */
return;
/* Calculate indices of bucket to split */
oldsegment = table->split / HSEGSIZE;
oldindex = table->split % HSEGSIZE;
newbucket = table->max + table->split;
/* And the indices of the new bucket */
newsegment = newbucket / HSEGSIZE;
newindex = newbucket % HSEGSIZE;
if (newindex == 0)
allocSegment(table, newsegment);
if (++table->split == table->max) {
table->split = 0;
table->max *= 2;
table->mask1 = table->mask2;
table->mask2 = table->mask2 << 1 | 1;
}
table->bcount++;
/* Split the bucket, paying no attention to the original order */
old = new = NULL;
for (hl = table->dir[oldsegment][oldindex]; hl != NULL; hl = next) {
next = hl->next;
if (f(table, hl->key) == newbucket) {
hl->next = new;
new = hl;
} else {
hl->next = old;
old = hl;
}
}
table->dir[oldsegment][oldindex] = old;
table->dir[newsegment][newindex] = new;
return;
}
STATIC_INLINE void*
lookupHashTable_inlined(const HashTable *table, StgWord key,
HashFunction f, CompareFunction cmp)
{
int bucket;
int segment;
int index;
HashList *hl;
bucket = f(table, key);
segment = bucket / HSEGSIZE;
index = bucket % HSEGSIZE;
for (hl = table->dir[segment][index]; hl != NULL; hl = hl->next) {
if (cmp(hl->key, key))
return (void *) hl->data;
}
/* It's not there */
return NULL;
}
void *
lookupHashTable_(const HashTable *table, StgWord key,
HashFunction f, CompareFunction cmp)
{
return lookupHashTable_inlined(table, key, f, cmp);
}
void *
lookupHashTable(const HashTable *table, StgWord key)
{
return lookupHashTable_inlined(table, key, hashWord, compareWord);
}
void *
lookupStrHashTable(const StrHashTable* table, const char* key)
{
return lookupHashTable_inlined(&table->table, (StgWord) key,
hashStr, compareStr);
}
// Puts up to szKeys keys of the hash table into the given array. Returns the
// actual amount of keys that have been retrieved.
//
// If the table is modified concurrently, the function behavior is undefined.
//
int keysHashTable(HashTable *table, StgWord keys[], int szKeys) {
int segment, index;
int k = 0;
HashList *hl;
/* The last bucket with something in it is table->max + table->split - 1 */
segment = (table->max + table->split - 1) / HSEGSIZE;
index = (table->max + table->split - 1) % HSEGSIZE;
while (segment >= 0 && k < szKeys) {
while (index >= 0 && k < szKeys) {
hl = table->dir[segment][index];
while (hl && k < szKeys) {
keys[k] = hl->key;
k += 1;
hl = hl->next;
}
index--;
}
segment--;
index = HSEGSIZE - 1;
}
return k;
}
/* -----------------------------------------------------------------------------
* We allocate the hashlist cells in large chunks to cut down on malloc
* overhead. Although we keep a free list of hashlist cells, we make
* no effort to actually return the space to the malloc arena.
* -------------------------------------------------------------------------- */
static HashList *
allocHashList (HashTable *table)
{
HashList *hl, *p;
HashListChunk *cl;
if ((hl = table->freeList) != NULL) {
table->freeList = hl->next;
} else {
hl = stgMallocBytes(HCHUNK * sizeof(HashList), "allocHashList");
cl = stgMallocBytes(sizeof (*cl), "allocHashList: chunkList");
cl->chunk = hl;
cl->next = table->chunks;
table->chunks = cl;
table->freeList = hl + 1;
for (p = table->freeList; p < hl + HCHUNK - 1; p++)
p->next = p + 1;
p->next = NULL;
}
return hl;
}
static void
freeHashList (HashTable *table, HashList *hl)
{
hl->next = table->freeList;
table->freeList = hl;
}
STATIC_INLINE void
insertHashTable_inlined(HashTable *table, StgWord key,
const void *data, HashFunction f)
{
int bucket;
int segment;
int index;
HashList *hl;
// Disable this assert; sometimes it's useful to be able to
// overwrite entries in the hash table.
// ASSERT(lookupHashTable(table, key) == NULL);
/* When the average load gets too high, we expand the table */
if (++table->kcount >= HLOAD * table->bcount)
expand(table, f);
bucket = f(table, key);
segment = bucket / HSEGSIZE;
index = bucket % HSEGSIZE;
hl = allocHashList(table);
hl->key = key;
hl->data = data;
hl->next = table->dir[segment][index];
table->dir[segment][index] = hl;
}
void
insertHashTable_(HashTable *table, StgWord key,
const void *data, HashFunction f)
{
return insertHashTable_inlined(table, key, data, f);
}
void
insertHashTable(HashTable *table, StgWord key, const void *data)
{
insertHashTable_inlined(table, key, data, hashWord);
}
void
insertStrHashTable(StrHashTable *table, const char * key, const void *data)
{
insertHashTable_inlined(&table->table, (StgWord) key, data, hashStr);
}
STATIC_INLINE void*
removeHashTable_inlined(HashTable *table, StgWord key, const void *data,
HashFunction f, CompareFunction cmp)
{
int bucket;
int segment;
int index;
HashList *hl;
HashList *prev = NULL;
bucket = f(table, key);
segment = bucket / HSEGSIZE;
index = bucket % HSEGSIZE;
for (hl = table->dir[segment][index]; hl != NULL; hl = hl->next) {
if (cmp(hl->key, key) && (data == NULL || hl->data == data)) {
if (prev == NULL)
table->dir[segment][index] = hl->next;
else
prev->next = hl->next;
freeHashList(table,hl);
table->kcount--;
return (void *) hl->data;
}
prev = hl;
}
/* It's not there */
ASSERT(data == NULL);
return NULL;
}
void*
removeHashTable_(HashTable *table, StgWord key, const void *data,
HashFunction f, CompareFunction cmp)
{
return removeHashTable_inlined(table, key, data, f, cmp);
}
void *
removeHashTable(HashTable *table, StgWord key, const void *data)
{
return removeHashTable_inlined(table, key, data, hashWord, compareWord);
}
void *
removeStrHashTable(StrHashTable *table, const char * key, const void *data)
{
return removeHashTable_inlined(&table->table, (StgWord) key,
data, hashStr, compareStr);
}
/* -----------------------------------------------------------------------------
* When we free a hash table, we are also good enough to free the
* data part of each (key, data) pair, as long as our caller can tell
* us how to do it.
* -------------------------------------------------------------------------- */
void
freeHashTable(HashTable *table, void (*freeDataFun)(void *) )
{
long segment;
long index;
HashList *hl;
HashList *next;
HashListChunk *cl, *cl_next;
/* The last bucket with something in it is table->max + table->split - 1 */
segment = (table->max + table->split - 1) / HSEGSIZE;
index = (table->max + table->split - 1) % HSEGSIZE;
while (segment >= 0) {
while (index >= 0) {
for (hl = table->dir[segment][index]; hl != NULL; hl = next) {
next = hl->next;
if (freeDataFun != NULL)
(*freeDataFun)((void *) hl->data);
}
index--;
}
stgFree(table->dir[segment]);
segment--;
index = HSEGSIZE - 1;
}
for (cl = table->chunks; cl != NULL; cl = cl_next) {
cl_next = cl->next;
stgFree(cl->chunk);
stgFree(cl);
}
stgFree(table);
}
/* -----------------------------------------------------------------------------
* Map a function over all the keys/values in a HashTable
* -------------------------------------------------------------------------- */
void
mapHashTable(HashTable *table, void *data, MapHashFn fn)
{
long segment;
long index;
HashList *hl;
/* The last bucket with something in it is table->max + table->split - 1 */
segment = (table->max + table->split - 1) / HSEGSIZE;
index = (table->max + table->split - 1) % HSEGSIZE;
while (segment >= 0) {
while (index >= 0) {
for (hl = table->dir[segment][index]; hl != NULL; hl = hl->next) {
fn(data, hl->key, hl->data);
}
index--;
}
segment--;
index = HSEGSIZE - 1;
}
}
/* -----------------------------------------------------------------------------
* When we initialize a hash table, we set up the first segment as well,
* initializing all of the first segment's hash buckets to NULL.
* -------------------------------------------------------------------------- */
HashTable *
allocHashTable(void)
{
HashTable *table;
HashList **hb;
table = stgMallocBytes(sizeof(HashTable),"allocHashTable");
allocSegment(table, 0);
for (hb = table->dir[0]; hb < table->dir[0] + HSEGSIZE; hb++)
*hb = NULL;
table->split = 0;
table->max = HSEGSIZE;
table->mask1 = HSEGSIZE - 1;
table->mask2 = 2 * HSEGSIZE - 1;
table->kcount = 0;
table->bcount = HSEGSIZE;
table->freeList = NULL;
table->chunks = NULL;
return table;
}
void
exitHashTable(void)
{
/* nothing to do */
}
int keyCountHashTable (HashTable *table)
{
return table->kcount;
}
|