1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
|
/* -----------------------------------------------------------------------------
*
* (c) The University of Glasgow 2006-2017
*
* Introspection into GHC's heap representation
*
* ---------------------------------------------------------------------------*/
#include "Rts.h"
#include "RtsAPI.h"
#include "Capability.h"
#include "Printer.h"
StgWord heap_view_closureSize(StgClosure *closure) {
ASSERT(LOOKS_LIKE_CLOSURE_PTR(closure));
return closure_sizeW(closure);
}
static void
heap_view_closure_ptrs_in_large_bitmap(StgClosure *ptrs[], StgWord *nptrs
, StgClosure **p, StgLargeBitmap *large_bitmap
, uint32_t size )
{
uint32_t i, j, b;
StgWord bitmap;
b = 0;
for (i = 0; i < size; b++) {
bitmap = large_bitmap->bitmap[b];
j = stg_min(size-i, BITS_IN(W_));
i += j;
for (; j > 0; j--, p++) {
if ((bitmap & 1) == 0) {
ptrs[(*nptrs)++] = *p;
}
bitmap = bitmap >> 1;
}
}
}
void heap_view_closure_ptrs_in_pap_payload(StgClosure *ptrs[], StgWord *nptrs
, StgClosure *fun, StgClosure **payload, StgWord size) {
StgWord bitmap;
const StgFunInfoTable *fun_info;
fun_info = get_fun_itbl(UNTAG_CLOSURE(fun));
// ASSERT(fun_info->i.type != PAP);
StgClosure **p = payload;
switch (fun_info->f.fun_type) {
case ARG_GEN:
bitmap = BITMAP_BITS(fun_info->f.b.bitmap);
goto small_bitmap;
case ARG_GEN_BIG:
heap_view_closure_ptrs_in_large_bitmap(ptrs, nptrs, payload,
GET_FUN_LARGE_BITMAP(fun_info), size);
break;
case ARG_BCO:
heap_view_closure_ptrs_in_large_bitmap(ptrs, nptrs, payload,
BCO_BITMAP(fun), size);
break;
default:
bitmap = BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]);
small_bitmap:
while (size > 0) {
if ((bitmap & 1) == 0) {
ptrs[(*nptrs)++] = *p;
}
bitmap = bitmap >> 1;
p++;
size--;
}
break;
}
}
StgMutArrPtrs *heap_view_closurePtrs(Capability *cap, StgClosure *closure) {
ASSERT(LOOKS_LIKE_CLOSURE_PTR(closure));
StgWord size = heap_view_closureSize(closure);
StgWord nptrs = 0;
StgWord i;
// First collect all pointers here, with the comfortable memory bound
// of the whole closure. Afterwards we know how many pointers are in
// the closure and then we can allocate space on the heap and copy them
// there
StgClosure *ptrs[size];
StgClosure **end;
StgClosure **ptr;
const StgInfoTable *info = get_itbl(closure);
switch (info->type) {
case INVALID_OBJECT:
barf("Invalid Object");
break;
// No pointers
case ARR_WORDS:
break;
// Default layout
case CONSTR_1_0:
case CONSTR_0_1:
case CONSTR_2_0:
case CONSTR_1_1:
case CONSTR_0_2:
case CONSTR:
case CONSTR_NOCAF:
case PRIM:
case FUN:
case FUN_1_0:
case FUN_0_1:
case FUN_1_1:
case FUN_2_0:
case FUN_0_2:
case FUN_STATIC:
end = closure->payload + info->layout.payload.ptrs;
for (ptr = closure->payload; ptr < end; ptr++) {
ptrs[nptrs++] = *ptr;
}
break;
case THUNK:
case THUNK_1_0:
case THUNK_0_1:
case THUNK_1_1:
case THUNK_2_0:
case THUNK_0_2:
case THUNK_STATIC:
end = ((StgThunk *)closure)->payload + info->layout.payload.ptrs;
for (ptr = ((StgThunk *)closure)->payload; ptr < end; ptr++) {
ptrs[nptrs++] = *ptr;
}
break;
case THUNK_SELECTOR:
ptrs[nptrs++] = ((StgSelector *)closure)->selectee;
break;
case AP:
ptrs[nptrs++] = ((StgAP *)closure)->fun;
heap_view_closure_ptrs_in_pap_payload(ptrs, &nptrs,
((StgAP *)closure)->fun,
((StgAP *)closure)->payload,
((StgAP *)closure)->n_args);
break;
case PAP:
ptrs[nptrs++] = ((StgPAP *)closure)->fun;
heap_view_closure_ptrs_in_pap_payload(ptrs, &nptrs,
((StgPAP *)closure)->fun,
((StgPAP *)closure)->payload,
((StgPAP *)closure)->n_args);
break;
case AP_STACK:
ptrs[nptrs++] = ((StgAP_STACK *)closure)->fun;
/*
The payload is a stack, which consists of a mixture of pointers
and non-pointers. We can't simply pretend it's all pointers,
because that will cause crashes in the GC later. We could
traverse the stack and extract pointers and non-pointers, but that
would be complicated, so let's just ignore the payload for now.
See #15375.
*/
break;
case BCO:
ptrs[nptrs++] = (StgClosure *)((StgBCO *)closure)->instrs;
ptrs[nptrs++] = (StgClosure *)((StgBCO *)closure)->literals;
ptrs[nptrs++] = (StgClosure *)((StgBCO *)closure)->ptrs;
break;
case IND:
case IND_STATIC:
case BLACKHOLE:
ptrs[nptrs++] = (StgClosure *)(((StgInd *)closure)->indirectee);
break;
case MUT_ARR_PTRS_CLEAN:
case MUT_ARR_PTRS_DIRTY:
case MUT_ARR_PTRS_FROZEN_CLEAN:
case MUT_ARR_PTRS_FROZEN_DIRTY:
for (i = 0; i < ((StgMutArrPtrs *)closure)->ptrs; ++i) {
ptrs[nptrs++] = ((StgMutArrPtrs *)closure)->payload[i];
}
break;
case SMALL_MUT_ARR_PTRS_CLEAN:
case SMALL_MUT_ARR_PTRS_DIRTY:
case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
for (i = 0; i < ((StgSmallMutArrPtrs *)closure)->ptrs; ++i) {
ptrs[nptrs++] = ((StgSmallMutArrPtrs *)closure)->payload[i];
}
break;
case MUT_VAR_CLEAN:
case MUT_VAR_DIRTY:
ptrs[nptrs++] = ((StgMutVar *)closure)->var;
break;
case MVAR_DIRTY:
case MVAR_CLEAN:
ptrs[nptrs++] = (StgClosure *)((StgMVar *)closure)->head;
ptrs[nptrs++] = (StgClosure *)((StgMVar *)closure)->tail;
ptrs[nptrs++] = ((StgMVar *)closure)->value;
break;
case WEAK:
ptrs[nptrs++] = (StgClosure *)((StgWeak *)closure)->cfinalizers;
ptrs[nptrs++] = (StgClosure *)((StgWeak *)closure)->key;
ptrs[nptrs++] = (StgClosure *)((StgWeak *)closure)->value;
ptrs[nptrs++] = (StgClosure *)((StgWeak *)closure)->finalizer;
ptrs[nptrs++] = (StgClosure *)((StgWeak *)closure)->link;
break;
default:
fprintf(stderr,"closurePtrs: Cannot handle type %s yet\n",
closure_type_names[info->type]);
break;
}
size = nptrs + mutArrPtrsCardTableSize(nptrs);
StgMutArrPtrs *arr =
(StgMutArrPtrs *)allocate(cap, sizeofW(StgMutArrPtrs) + size);
TICK_ALLOC_PRIM(sizeofW(StgMutArrPtrs), nptrs, 0);
SET_HDR(arr, &stg_MUT_ARR_PTRS_FROZEN_CLEAN_info, cap->r.rCCCS);
arr->ptrs = nptrs;
arr->size = size;
for (i = 0; i<nptrs; i++) {
arr->payload[i] = ptrs[i];
}
return arr;
}
|