summaryrefslogtreecommitdiff
path: root/rts/HeapStackCheck.cmm
blob: 461cf13df10685cb584b08115f96f838cfdb9bbe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 1998-2004
 *
 * Canned Heap-Check and Stack-Check sequences.
 *
 * This file is written in a subset of C--, extended with various
 * features specific to GHC.  It is compiled by GHC directly.  For the
 * syntax of .cmm files, see the parser in ghc/compiler/GHC/Cmm/Parser.y.
 *
 * ---------------------------------------------------------------------------*/

#include "Cmm.h"
#include "Updates.h"
#include "SMPClosureOps.h"

#if defined(__PIC__)
import pthread_mutex_unlock;
#endif
import EnterCriticalSection;
import LeaveCriticalSection;

/* Stack/Heap Check Failure
 * ------------------------
 *
 * Both heap and stack check failures end up in the same place, so
 * that we can share the code for the failure case when a proc needs
 * both a stack check and a heap check (a common case).
 *
 * So when we get here, we have to tell the difference between a stack
 * check failure and a heap check failure.  The code for the checks
 * looks like this:

        if (Sp - 16 < SpLim) goto c1Tf;
        Hp = Hp + 16;
        if (Hp > HpLim) goto c1Th;
        ...
    c1Th:
        HpAlloc = 16;
        goto c1Tf;
    c1Tf: jump stg_gc_enter_1 ();

 * Note that Sp is not decremented by the check, whereas Hp is.  The
 * reasons for this seem to be largely historic, I can't think of a
 * good reason not to decrement Sp at the check too. (--SDM)
 *
 * Note that HpLim may be set to zero arbitrarily by the timer signal
 * or another processor to trigger a context switch via heap check
 * failure.
 *
 * The job of these fragments (stg_gc_enter_1 and friends) is to
 *   1. Leave no slop in the heap, so Hp must be retreated if it was
 *      incremented by the check.  No-slop is a requirement for LDV
 *      profiling, at least.
 *   2. If a heap check failed, try to grab another heap block from
 *      the nursery and continue.
 *   3. otherwise, return to the scheduler with StackOverflow,
 *      HeapOverflow, or ThreadYielding as appropriate.
 *
 * We can tell whether Hp was incremented, because HpAlloc is
 * non-zero: HpAlloc is required to be zero at all times unless a
 * heap-check just failed, which is why the stack-check failure case
 * does not set HpAlloc (see code fragment above).  So that covers (1).
 * HpAlloc is zeroed in LOAD_THREAD_STATE().
 *
 * If Hp > HpLim, then either (a) we have reached the end of the
 * current heap block, or (b) HpLim == 0 and we should yield.  Hence
 * check Hp > HpLim first, and then HpLim == 0 to decide whether to
 * return ThreadYielding or try to grab another heap block from the
 * nursery.
 *
 * If Hp <= HpLim, then this must be a StackOverflow.  The scheduler
 * will either increase the size of our stack, or raise an exception if
 * the stack is already too big.
 */

#define PRE_RETURN(why,what_next)                       \
  StgTSO_what_next(CurrentTSO) = what_next::I16;        \
  StgRegTable_rRet(BaseReg) = why;                      \
  R1 = BaseReg;

/* Remember that the return address is *removed* when returning to a
 * ThreadRunGHC thread.
 */

stg_gc_noregs
{
    W_ ret;

    DEBUG_ONLY(foreign "C" heapCheckFail());
    if (Hp > HpLim) {
        Hp = Hp - HpAlloc/*in bytes*/;
        if (HpLim == 0) {
                ret = ThreadYielding;
                goto sched;
        }
        if (HpAlloc <= BLOCK_SIZE
            && bdescr_link(CurrentNursery) != NULL) {
            HpAlloc = 0;
            CLOSE_NURSERY();
            Capability_total_allocated(MyCapability()) =
              Capability_total_allocated(MyCapability()) +
              BYTES_TO_WDS(bdescr_free(CurrentNursery) -
                           bdescr_start(CurrentNursery));
            CurrentNursery = bdescr_link(CurrentNursery);
            bdescr_free(CurrentNursery) = bdescr_start(CurrentNursery);
            OPEN_NURSERY();
            if (Capability_context_switch(MyCapability()) != 0 :: CInt ||
                Capability_interrupt(MyCapability())      != 0 :: CInt ||
                (StgTSO_alloc_limit(CurrentTSO) `lt` (0::I64) &&
                 (TO_W_(StgTSO_flags(CurrentTSO)) & TSO_ALLOC_LIMIT) != 0)) {
                ret = ThreadYielding;
                goto sched;
            } else {
                jump %ENTRY_CODE(Sp(0)) [];
            }
        } else {
            ret = HeapOverflow;
            goto sched;
        }
    } else {
        if (CHECK_GC()) {
            ret = HeapOverflow;
        } else {
            ret = StackOverflow;
        }
    }
  sched:
    PRE_RETURN(ret,ThreadRunGHC);
    jump stg_returnToSched [R1];
}

#define HP_GENERIC                              \
    PRE_RETURN(HeapOverflow, ThreadRunGHC)      \
    jump stg_returnToSched [R1];

#define BLOCK_GENERIC                           \
    PRE_RETURN(ThreadBlocked,  ThreadRunGHC)    \
    jump stg_returnToSched [R1];

#define YIELD_GENERIC                           \
    PRE_RETURN(ThreadYielding, ThreadRunGHC)    \
    jump stg_returnToSched [R1];

#define BLOCK_BUT_FIRST(c)                      \
    PRE_RETURN(ThreadBlocked, ThreadRunGHC)     \
    R2 = c;                                     \
    jump stg_returnToSchedButFirst [R1,R2,R3];

#define YIELD_TO_INTERPRETER                    \
    PRE_RETURN(ThreadYielding, ThreadInterpret) \
    jump stg_returnToSchedNotPaused [R1];

/* -----------------------------------------------------------------------------
   Heap checks in thunks/functions.

   In these cases, node always points to the function closure.  This gives
   us an easy way to return to the function: just leave R1 on the top of
   the stack, and have the scheduler enter it to return.

   There are canned sequences for 'n' pointer values in registers.
   -------------------------------------------------------------------------- */

INFO_TABLE_RET ( stg_enter, RET_SMALL, W_ info_ptr, P_ closure )
    return (/* no return values */)
{
    ENTER(closure);
}

__stg_gc_enter_1 (P_ node)
{
    jump stg_gc_noregs (stg_enter_info, node) ();
}

/* -----------------------------------------------------------------------------
   Canned heap checks for primitives.

   We can't use stg_gc_fun because primitives are not functions, so
   these fragments let us save some boilerplate heap-check-failure
   code in a few common cases.
   -------------------------------------------------------------------------- */

stg_gc_prim (W_ fun)
{
    call stg_gc_noregs ();
    jump fun();
}

stg_gc_prim_p (P_ arg, W_ fun)
{
    call stg_gc_noregs ();
    jump fun(arg);
}

stg_gc_prim_pp (P_ arg1, P_ arg2, W_ fun)
{
    call stg_gc_noregs ();
    jump fun(arg1,arg2);
}

stg_gc_prim_n (W_ arg, W_ fun)
{
    call stg_gc_noregs ();
    jump fun(arg);
}

INFO_TABLE_RET(stg_gc_prim_p_ll, RET_SMALL, W_ info, P_ arg, W_ fun)
    /* explicit stack */
{
    W_ fun;
    P_ arg;
    fun = Sp(2);
    arg = Sp(1);
    Sp_adj(3);
    R1 = arg;
    jump fun [R1];
}

stg_gc_prim_p_ll
{
    W_ fun;
    P_ arg;
    fun = R2;
    arg = R1;
    Sp_adj(-3);
    Sp(2) = fun;
    Sp(1) = arg;
    Sp(0) = stg_gc_prim_p_ll_info;
    jump stg_gc_noregs [];
}

/* -----------------------------------------------------------------------------
   Info tables for returning values of various types.  These are used
   when we want to push a frame on the stack that will return a value
   to the frame underneath it.
   -------------------------------------------------------------------------- */

INFO_TABLE_RET ( stg_ret_v, RET_SMALL, W_ info_ptr )
    return (/* no return values */)
{
    return ();
}

INFO_TABLE_RET ( stg_ret_p, RET_SMALL, W_ info_ptr, P_ ptr )
    return (/* no return values */)
{
    return (ptr);
}

INFO_TABLE_RET ( stg_ret_n, RET_SMALL, W_ info_ptr, W_ nptr )
    return (/* no return values */)
{
    return (nptr);
}

INFO_TABLE_RET ( stg_ret_f, RET_SMALL, W_ info_ptr, F_ f )
    return (/* no return values */)
{
    return (f);
}

INFO_TABLE_RET ( stg_ret_d, RET_SMALL, W_ info_ptr, D_ d )
    return (/* no return values */)
{
    return (d);
}

INFO_TABLE_RET ( stg_ret_l, RET_SMALL, W_ info_ptr, L_ l )
    return (/* no return values */)
{
    return (l);
}

/* -----------------------------------------------------------------------------
   Canned heap-check failures for case alts, where we have some values
   in registers or on the stack according to the NativeReturn
   convention.
   -------------------------------------------------------------------------- */


/*-- void return ------------------------------------------------------------ */

/*-- R1 is a GC pointer, but we don't enter it ----------------------- */

stg_gc_unpt_r1 return (P_ ptr) /* NB. return convention */
{
    jump stg_gc_noregs (stg_ret_p_info, ptr) ();
}

/*-- R1 is unboxed -------------------------------------------------- */

stg_gc_unbx_r1 return (W_ nptr) /* NB. return convention */
{
    jump stg_gc_noregs (stg_ret_n_info, nptr) ();
}

/*-- F1 contains a float ------------------------------------------------- */

stg_gc_f1 return (F_ f)
{
    jump stg_gc_noregs (stg_ret_f_info, f) ();
}

/*-- D1 contains a double ------------------------------------------------- */

stg_gc_d1 return (D_ d)
{
    jump stg_gc_noregs (stg_ret_d_info, d) ();
}


/*-- L1 contains an int64 ------------------------------------------------- */

stg_gc_l1 return (L_ l)
{
    jump stg_gc_noregs (stg_ret_l_info, l) ();
}

/*-- Unboxed tuples with multiple pointers -------------------------------- */

stg_gc_pp return (P_ arg1, P_ arg2)
{
    call stg_gc_noregs();
    return (arg1,arg2);
}

stg_gc_ppp return (P_ arg1, P_ arg2, P_ arg3)
{
    call stg_gc_noregs();
    return (arg1,arg2,arg3);
}

stg_gc_pppp return (P_ arg1, P_ arg2, P_ arg3, P_ arg4)
{
    call stg_gc_noregs();
    return (arg1,arg2,arg3,arg4);
}

/* -----------------------------------------------------------------------------
   Generic function entry heap check code.

   At a function entry point, the arguments are as per the calling convention,
   i.e. some in regs and some on the stack.  There may or may not be
   a pointer to the function closure in R1 - if there isn't, then the heap
   check failure code in the function will arrange to load it.

   The function's argument types are described in its info table, so we
   can just jump to this bit of generic code to save away all the
   registers and return to the scheduler.

   This code arranges the stack like this:

         |        ....         |
         |        args         |
         +---------------------+
         |      f_closure      |
         +---------------------+
         |        size         |
         +---------------------+
         |   stg_gc_fun_info   |
         +---------------------+

   The size is the number of words of arguments on the stack, and is cached
   in the frame in order to simplify stack walking: otherwise the size of
   this stack frame would have to be calculated by looking at f's info table.

   -------------------------------------------------------------------------- */

__stg_gc_fun /* explicit stack */
{
    W_ size;
    W_ info;
    W_ type;

    info = %GET_FUN_INFO(UNTAG(R1));

    // cache the size
    type = TO_W_(StgFunInfoExtra_fun_type(info));
    if (type == ARG_GEN) {
        size = BITMAP_SIZE(StgFunInfoExtra_bitmap(info));
    } else {
        if (type == ARG_GEN_BIG) {
#if defined(TABLES_NEXT_TO_CODE)
            // bitmap field holds an offset
            size = StgLargeBitmap_size(
                      TO_W_(StgFunInfoExtraRev_bitmap_offset(info))
                      + %GET_ENTRY(UNTAG(R1)) /* ### */ );
#else
            size = StgLargeBitmap_size( StgFunInfoExtra_bitmap(info) );
#endif
        } else {
            size = BITMAP_SIZE(W_[stg_arg_bitmaps + WDS(type)]);
        }
    }

#if defined(NO_ARG_REGS)
    // we don't have to save any registers away
    Sp_adj(-3);
    Sp(2) = R1;
    Sp(1) = size;
    Sp(0) = stg_gc_fun_info;
    jump stg_gc_noregs [];
#else
    W_ type;
    type = TO_W_(StgFunInfoExtra_fun_type(info));
    // cache the size
    if (type == ARG_GEN || type == ARG_GEN_BIG) {
        // regs already saved by the heap check code
        Sp_adj(-3);
        Sp(2) = R1;
        Sp(1) = size;
        Sp(0) = stg_gc_fun_info;
        // DEBUG_ONLY(foreign "C" debugBelch("stg_fun_gc_gen(ARG_GEN)"););
        jump stg_gc_noregs [];
    } else {
        jump W_[stg_stack_save_entries + WDS(type)] [*]; // all regs live
            // jumps to stg_gc_noregs after saving stuff
    }
#endif /* !NO_ARG_REGS */
}


/* -----------------------------------------------------------------------------
   Generic Apply (return point)

   The dual to stg_fun_gc_gen (above): this fragment returns to the
   function, passing arguments in the stack and in registers
   appropriately.  The stack layout is given above.
   -------------------------------------------------------------------------- */

INFO_TABLE_RET ( stg_gc_fun, RET_FUN )
    /* explicit stack */
{
    R1 = Sp(2);
    Sp_adj(3);
#if defined(NO_ARG_REGS)
    // Minor optimisation: there are no argument registers to load up,
    // so we can just jump straight to the function's entry point.
    jump %GET_ENTRY(UNTAG(R1)) [R1];
#else
    W_ info;
    W_ type;

    info = %GET_FUN_INFO(UNTAG(R1));
    type = TO_W_(StgFunInfoExtra_fun_type(info));
    if (type == ARG_GEN || type == ARG_GEN_BIG) {
        jump StgFunInfoExtra_slow_apply(info) [R1];
    } else {
        if (type == ARG_BCO) {
            // cover this case just to be on the safe side
            Sp_adj(-2);
            Sp(1) = R1;
            Sp(0) = stg_apply_interp_info;
            jump stg_yield_to_interpreter [];
        } else {
            jump W_[stg_ap_stack_entries + WDS(type)] [R1];
        }
    }
#endif
}

/* -----------------------------------------------------------------------------
   Yields
   -------------------------------------------------------------------------- */

stg_yield_noregs
{
    YIELD_GENERIC;
}

/* -----------------------------------------------------------------------------
   Yielding to the interpreter... top of stack says what to do next.
   -------------------------------------------------------------------------- */

stg_yield_to_interpreter
{
    YIELD_TO_INTERPRETER;
}

/* -----------------------------------------------------------------------------
   Blocks
   -------------------------------------------------------------------------- */

stg_block_noregs
{
    BLOCK_GENERIC;
}

/* -----------------------------------------------------------------------------
 * takeMVar/putMVar-specific blocks
 *
 * Stack layout for a thread blocked in takeMVar/readMVar:
 *
 *       ret. addr
 *       ptr to MVar   (R1)
 *       stg_block_takemvar_info (or stg_block_readmvar_info)
 *
 * Stack layout for a thread blocked in putMVar:
 *
 *       ret. addr
 *       ptr to Value  (R2)
 *       ptr to MVar   (R1)
 *       stg_block_putmvar_info
 *
 * See PrimOps.cmm for a description of the workings of take/putMVar.
 *
 * -------------------------------------------------------------------------- */

INFO_TABLE_RET ( stg_block_takemvar, RET_SMALL, W_ info_ptr, P_ mvar )
    return ()
{
    jump stg_takeMVarzh(mvar);
}

// code fragment executed just before we return to the scheduler
stg_block_takemvar_finally
{
    W_ r1, r3;
    r1 = R1;
    r3 = R3;
    unlockClosure(R3, stg_MVAR_DIRTY_info);
    R1 = r1;
    R3 = r3;
    jump StgReturn [R1];
}

stg_block_takemvar /* mvar passed in R1 */
{
    Sp_adj(-2);
    Sp(1) = R1;
    Sp(0) = stg_block_takemvar_info;
    R3 = R1; // mvar communicated to stg_block_takemvar_finally in R3
    BLOCK_BUT_FIRST(stg_block_takemvar_finally);
}

INFO_TABLE_RET ( stg_block_readmvar, RET_SMALL, W_ info_ptr, P_ mvar )
    return ()
{
    jump stg_readMVarzh(mvar);
}

// code fragment executed just before we return to the scheduler
stg_block_readmvar_finally
{
    W_ r1, r3;
    r1 = R1;
    r3 = R3;
    unlockClosure(R3, stg_MVAR_DIRTY_info);
    R1 = r1;
    R3 = r3;
    jump StgReturn [R1];
}

stg_block_readmvar /* mvar passed in R1 */
{
    Sp_adj(-2);
    Sp(1) = R1;
    Sp(0) = stg_block_readmvar_info;
    R3 = R1; // mvar communicated to stg_block_readmvar_finally in R3
    BLOCK_BUT_FIRST(stg_block_readmvar_finally);
}

INFO_TABLE_RET( stg_block_putmvar, RET_SMALL, W_ info_ptr,
                P_ mvar, P_ val )
    return ()
{
    jump stg_putMVarzh(mvar, val);
}

// code fragment executed just before we return to the scheduler
stg_block_putmvar_finally
{
    W_ r1, r3;
    r1 = R1;
    r3 = R3;
    unlockClosure(R3, stg_MVAR_DIRTY_info);
    R1 = r1;
    R3 = r3;
    jump StgReturn [R1];
}

stg_block_putmvar (P_ mvar, P_ val)
{
    push (stg_block_putmvar_info, mvar, val) {
      R3 = R1; // mvar communicated to stg_block_putmvar_finally in R3
      BLOCK_BUT_FIRST(stg_block_putmvar_finally);
   }
}

stg_block_blackhole (P_ node)
{
    Sp_adj(-2);
    Sp(1) = node;
    Sp(0) = stg_enter_info;
    BLOCK_GENERIC;
}

INFO_TABLE_RET ( stg_block_throwto, RET_SMALL, W_ info_ptr,
                 P_ tso, P_ exception )
    return ()
{
    jump stg_killThreadzh(tso, exception);
}

stg_block_throwto_finally
{
    // unlock the throwto message, but only if it wasn't already
    // unlocked.  It may have been unlocked if we revoked the message
    // due to an exception being raised during threadPaused().
    if (StgHeader_info(StgTSO_block_info(CurrentTSO)) == stg_WHITEHOLE_info) {
        W_ r1;
        r1 = R1;
        unlockClosure(StgTSO_block_info(CurrentTSO), stg_MSG_THROWTO_info);
        R1 = r1;
    }
    jump StgReturn [R1];
}

stg_block_throwto (P_ tso, P_ exception)
{
    push (stg_block_throwto_info, tso, exception) {
       BLOCK_BUT_FIRST(stg_block_throwto_finally);
    }
}

#if defined(mingw32_HOST_OS)
INFO_TABLE_RET ( stg_block_async, RET_SMALL, W_ info_ptr, W_ ares )
    return ()
{
    W_ len, errC;

    len = TO_W_(StgAsyncIOResult_len(ares));
    errC = TO_W_(StgAsyncIOResult_errCode(ares));
    ccall free(ares "ptr");
    return (len, errC);
}

stg_block_async
{
    Sp_adj(-2);
    Sp(0) = stg_block_async_info;
    BLOCK_GENERIC;
}

/* Used by threadDelay implementation; it would be desirable to get rid of
 * this free()'ing void return continuation.
 */
INFO_TABLE_RET ( stg_block_async_void, RET_SMALL, W_ info_ptr, W_ ares )
    return ()
{
    ccall free(ares "ptr");
    return ();
}

stg_block_async_void
{
    Sp_adj(-2);
    Sp(0) = stg_block_async_void_info;
    BLOCK_GENERIC;
}

#endif


/* -----------------------------------------------------------------------------
   STM-specific waiting
   -------------------------------------------------------------------------- */

stg_block_stmwait
{
    // When blocking on an MVar we have to be careful to only release
    // the lock on the MVar at the very last moment (using
    // BLOCK_BUT_FIRST()), since when we release the lock another
    // Capability can wake up the thread, which modifies its stack and
    // other state.  This is not a problem for STM, because STM
    // wakeups are non-destructive; the waker simply calls
    // tryWakeupThread() which sends a message to the owner
    // Capability.  So the moment we release this lock we might start
    // getting wakeup messages, but that's perfectly harmless.
    //
    // Furthermore, we *must* release these locks, just in case an
    // exception is raised in this thread by
    // maybePerformBlockedException() while exiting to the scheduler,
    // which will abort the transaction, which needs to obtain a lock
    // on all the TVars to remove the thread from the queues.
    //
    ccall stmWaitUnlock(MyCapability() "ptr", R3 "ptr");
    BLOCK_GENERIC;
}