1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
|
/* -----------------------------------------------------------------------------
* Bytecode interpreter
*
* Copyright (c) The GHC Team, 1994-2002.
* ---------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "RtsAPI.h"
#include "RtsUtils.h"
#include "Closures.h"
#include "TSO.h"
#include "Schedule.h"
#include "RtsFlags.h"
#include "LdvProfile.h"
#include "Updates.h"
#include "Sanity.h"
#include "Liveness.h"
#include "Prelude.h"
#include "Bytecodes.h"
#include "Printer.h"
#include "Disassembler.h"
#include "Interpreter.h"
#include <string.h> /* for memcpy */
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#include "ffi.h"
/* --------------------------------------------------------------------------
* The bytecode interpreter
* ------------------------------------------------------------------------*/
/* Gather stats about entry, opcode, opcode-pair frequencies. For
tuning the interpreter. */
/* #define INTERP_STATS */
/* Sp points to the lowest live word on the stack. */
#define BCO_NEXT instrs[bciPtr++]
#define BCO_NEXT_32 (bciPtr += 2, (((StgWord) instrs[bciPtr-2]) << 16) + ((StgWord) instrs[bciPtr-1]))
#define BCO_NEXT_64 (bciPtr += 4, (((StgWord) instrs[bciPtr-4]) << 48) + (((StgWord) instrs[bciPtr-3]) << 32) + (((StgWord) instrs[bciPtr-2]) << 16) + ((StgWord) instrs[bciPtr-1]))
#if WORD_SIZE_IN_BITS == 32
#define BCO_NEXT_WORD BCO_NEXT_32
#elif WORD_SIZE_IN_BITS == 64
#define BCO_NEXT_WORD BCO_NEXT_64
#else
#error Cannot cope with WORD_SIZE_IN_BITS being nether 32 nor 64
#endif
#define BCO_GET_LARGE_ARG ((bci & bci_FLAG_LARGE_ARGS) ? BCO_NEXT_WORD : BCO_NEXT)
#define BCO_PTR(n) (W_)ptrs[n]
#define BCO_LIT(n) literals[n]
#define LOAD_STACK_POINTERS \
Sp = cap->r.rCurrentTSO->sp; \
/* We don't change this ... */ \
SpLim = cap->r.rCurrentTSO->stack + RESERVED_STACK_WORDS;
#define SAVE_STACK_POINTERS \
ASSERT(Sp > SpLim); \
cap->r.rCurrentTSO->sp = Sp
#define RETURN_TO_SCHEDULER(todo,retcode) \
SAVE_STACK_POINTERS; \
cap->r.rCurrentTSO->what_next = (todo); \
threadPaused(cap,cap->r.rCurrentTSO); \
cap->r.rRet = (retcode); \
return cap;
#define RETURN_TO_SCHEDULER_NO_PAUSE(todo,retcode) \
SAVE_STACK_POINTERS; \
cap->r.rCurrentTSO->what_next = (todo); \
cap->r.rRet = (retcode); \
return cap;
STATIC_INLINE StgPtr
allocate_NONUPD (int n_words)
{
return allocate(stg_max(sizeofW(StgHeader)+MIN_PAYLOAD_SIZE, n_words));
}
int rts_stop_next_breakpoint = 0;
int rts_stop_on_exception = 0;
#ifdef INTERP_STATS
/* Hacky stats, for tuning the interpreter ... */
int it_unknown_entries[N_CLOSURE_TYPES];
int it_total_unknown_entries;
int it_total_entries;
int it_retto_BCO;
int it_retto_UPDATE;
int it_retto_other;
int it_slides;
int it_insns;
int it_BCO_entries;
int it_ofreq[27];
int it_oofreq[27][27];
int it_lastopc;
#define INTERP_TICK(n) (n)++
void interp_startup ( void )
{
int i, j;
it_retto_BCO = it_retto_UPDATE = it_retto_other = 0;
it_total_entries = it_total_unknown_entries = 0;
for (i = 0; i < N_CLOSURE_TYPES; i++)
it_unknown_entries[i] = 0;
it_slides = it_insns = it_BCO_entries = 0;
for (i = 0; i < 27; i++) it_ofreq[i] = 0;
for (i = 0; i < 27; i++)
for (j = 0; j < 27; j++)
it_oofreq[i][j] = 0;
it_lastopc = 0;
}
void interp_shutdown ( void )
{
int i, j, k, o_max, i_max, j_max;
debugBelch("%d constrs entered -> (%d BCO, %d UPD, %d ??? )\n",
it_retto_BCO + it_retto_UPDATE + it_retto_other,
it_retto_BCO, it_retto_UPDATE, it_retto_other );
debugBelch("%d total entries, %d unknown entries \n",
it_total_entries, it_total_unknown_entries);
for (i = 0; i < N_CLOSURE_TYPES; i++) {
if (it_unknown_entries[i] == 0) continue;
debugBelch(" type %2d: unknown entries (%4.1f%%) == %d\n",
i, 100.0 * ((double)it_unknown_entries[i]) /
((double)it_total_unknown_entries),
it_unknown_entries[i]);
}
debugBelch("%d insns, %d slides, %d BCO_entries\n",
it_insns, it_slides, it_BCO_entries);
for (i = 0; i < 27; i++)
debugBelch("opcode %2d got %d\n", i, it_ofreq[i] );
for (k = 1; k < 20; k++) {
o_max = 0;
i_max = j_max = 0;
for (i = 0; i < 27; i++) {
for (j = 0; j < 27; j++) {
if (it_oofreq[i][j] > o_max) {
o_max = it_oofreq[i][j];
i_max = i; j_max = j;
}
}
}
debugBelch("%d: count (%4.1f%%) %6d is %d then %d\n",
k, ((double)o_max) * 100.0 / ((double)it_insns), o_max,
i_max, j_max );
it_oofreq[i_max][j_max] = 0;
}
}
#else // !INTERP_STATS
#define INTERP_TICK(n) /* nothing */
#endif
static StgWord app_ptrs_itbl[] = {
(W_)&stg_ap_p_info,
(W_)&stg_ap_pp_info,
(W_)&stg_ap_ppp_info,
(W_)&stg_ap_pppp_info,
(W_)&stg_ap_ppppp_info,
(W_)&stg_ap_pppppp_info,
};
HsStablePtr rts_breakpoint_io_action; // points to the IO action which is executed on a breakpoint
// it is set in main/GHC.hs:runStmt
Capability *
interpretBCO (Capability* cap)
{
// Use of register here is primarily to make it clear to compilers
// that these entities are non-aliasable.
register StgPtr Sp; // local state -- stack pointer
register StgPtr SpLim; // local state -- stack lim pointer
register StgClosure *tagged_obj = 0, *obj;
nat n, m;
LOAD_STACK_POINTERS;
cap->r.rHpLim = (P_)1; // HpLim is the context-switch flag; when it
// goes to zero we must return to the scheduler.
// ------------------------------------------------------------------------
// Case 1:
//
// We have a closure to evaluate. Stack looks like:
//
// | XXXX_info |
// +---------------+
// Sp | -------------------> closure
// +---------------+
//
if (Sp[0] == (W_)&stg_enter_info) {
Sp++;
goto eval;
}
// ------------------------------------------------------------------------
// Case 2:
//
// We have a BCO application to perform. Stack looks like:
//
// | .... |
// +---------------+
// | arg1 |
// +---------------+
// | BCO |
// +---------------+
// Sp | RET_BCO |
// +---------------+
//
else if (Sp[0] == (W_)&stg_apply_interp_info) {
obj = UNTAG_CLOSURE((StgClosure *)Sp[1]);
Sp += 2;
goto run_BCO_fun;
}
// ------------------------------------------------------------------------
// Case 3:
//
// We have an unboxed value to return. See comment before
// do_return_unboxed, below.
//
else {
goto do_return_unboxed;
}
// Evaluate the object on top of the stack.
eval:
tagged_obj = (StgClosure*)Sp[0]; Sp++;
eval_obj:
obj = UNTAG_CLOSURE(tagged_obj);
INTERP_TICK(it_total_evals);
IF_DEBUG(interpreter,
debugBelch(
"\n---------------------------------------------------------------\n");
debugBelch("Evaluating: "); printObj(obj);
debugBelch("Sp = %p\n", Sp);
debugBelch("\n" );
printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
debugBelch("\n\n");
);
IF_DEBUG(sanity,checkStackChunk(Sp, cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size));
switch ( get_itbl(obj)->type ) {
case IND:
case IND_OLDGEN:
case IND_PERM:
case IND_OLDGEN_PERM:
case IND_STATIC:
{
tagged_obj = ((StgInd*)obj)->indirectee;
goto eval_obj;
}
case CONSTR:
case CONSTR_1_0:
case CONSTR_0_1:
case CONSTR_2_0:
case CONSTR_1_1:
case CONSTR_0_2:
case CONSTR_STATIC:
case CONSTR_NOCAF_STATIC:
case FUN:
case FUN_1_0:
case FUN_0_1:
case FUN_2_0:
case FUN_1_1:
case FUN_0_2:
case FUN_STATIC:
case PAP:
// already in WHNF
break;
case BCO:
{
ASSERT(((StgBCO *)obj)->arity > 0);
break;
}
case AP: /* Copied from stg_AP_entry. */
{
nat i, words;
StgAP *ap;
ap = (StgAP*)obj;
words = ap->n_args;
// Stack check
if (Sp - (words+sizeofW(StgUpdateFrame)) < SpLim) {
Sp -= 2;
Sp[1] = (W_)tagged_obj;
Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
}
/* Ok; we're safe. Party on. Push an update frame. */
Sp -= sizeofW(StgUpdateFrame);
{
StgUpdateFrame *__frame;
__frame = (StgUpdateFrame *)Sp;
SET_INFO(__frame, (StgInfoTable *)&stg_upd_frame_info);
__frame->updatee = (StgClosure *)(ap);
}
/* Reload the stack */
Sp -= words;
for (i=0; i < words; i++) {
Sp[i] = (W_)ap->payload[i];
}
obj = UNTAG_CLOSURE((StgClosure*)ap->fun);
ASSERT(get_itbl(obj)->type == BCO);
goto run_BCO_fun;
}
default:
#ifdef INTERP_STATS
{
int j;
j = get_itbl(obj)->type;
ASSERT(j >= 0 && j < N_CLOSURE_TYPES);
it_unknown_entries[j]++;
it_total_unknown_entries++;
}
#endif
{
// Can't handle this object; yield to scheduler
IF_DEBUG(interpreter,
debugBelch("evaluating unknown closure -- yielding to sched\n");
printObj(obj);
);
Sp -= 2;
Sp[1] = (W_)tagged_obj;
Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
}
}
// ------------------------------------------------------------------------
// We now have an evaluated object (tagged_obj). The next thing to
// do is return it to the stack frame on top of the stack.
do_return:
obj = UNTAG_CLOSURE(tagged_obj);
ASSERT(closure_HNF(obj));
IF_DEBUG(interpreter,
debugBelch(
"\n---------------------------------------------------------------\n");
debugBelch("Returning: "); printObj(obj);
debugBelch("Sp = %p\n", Sp);
debugBelch("\n" );
printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
debugBelch("\n\n");
);
IF_DEBUG(sanity,checkStackChunk(Sp, cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size));
switch (get_itbl((StgClosure *)Sp)->type) {
case RET_SMALL: {
const StgInfoTable *info;
// NOTE: not using get_itbl().
info = ((StgClosure *)Sp)->header.info;
if (info == (StgInfoTable *)&stg_ap_v_info) {
n = 1; m = 0; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_f_info) {
n = 1; m = 1; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_d_info) {
n = 1; m = sizeofW(StgDouble); goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_l_info) {
n = 1; m = sizeofW(StgInt64); goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_n_info) {
n = 1; m = 1; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_p_info) {
n = 1; m = 1; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_pp_info) {
n = 2; m = 2; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_ppp_info) {
n = 3; m = 3; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_pppp_info) {
n = 4; m = 4; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_ppppp_info) {
n = 5; m = 5; goto do_apply;
}
if (info == (StgInfoTable *)&stg_ap_pppppp_info) {
n = 6; m = 6; goto do_apply;
}
goto do_return_unrecognised;
}
case UPDATE_FRAME:
// Returning to an update frame: do the update, pop the update
// frame, and continue with the next stack frame.
//
// NB. we must update with the *tagged* pointer. Some tags
// are not optional, and if we omit the tag bits when updating
// then bad things can happen (albeit very rarely). See #1925.
// What happened was an indirection was created with an
// untagged pointer, and this untagged pointer was propagated
// to a PAP by the GC, violating the invariant that PAPs
// always contain a tagged pointer to the function.
INTERP_TICK(it_retto_UPDATE);
UPD_IND(((StgUpdateFrame *)Sp)->updatee, tagged_obj);
Sp += sizeofW(StgUpdateFrame);
goto do_return;
case RET_BCO:
// Returning to an interpreted continuation: put the object on
// the stack, and start executing the BCO.
INTERP_TICK(it_retto_BCO);
Sp--;
Sp[0] = (W_)obj;
// NB. return the untagged object; the bytecode expects it to
// be untagged. XXX this doesn't seem right.
obj = (StgClosure*)Sp[2];
ASSERT(get_itbl(obj)->type == BCO);
goto run_BCO_return;
default:
do_return_unrecognised:
{
// Can't handle this return address; yield to scheduler
INTERP_TICK(it_retto_other);
IF_DEBUG(interpreter,
debugBelch("returning to unknown frame -- yielding to sched\n");
printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
);
Sp -= 2;
Sp[1] = (W_)tagged_obj;
Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
}
}
// -------------------------------------------------------------------------
// Returning an unboxed value. The stack looks like this:
//
// | .... |
// +---------------+
// | fv2 |
// +---------------+
// | fv1 |
// +---------------+
// | BCO |
// +---------------+
// | stg_ctoi_ret_ |
// +---------------+
// | retval |
// +---------------+
// | XXXX_info |
// +---------------+
//
// where XXXX_info is one of the stg_gc_unbx_r1_info family.
//
// We're only interested in the case when the real return address
// is a BCO; otherwise we'll return to the scheduler.
do_return_unboxed:
{
int offset;
ASSERT( Sp[0] == (W_)&stg_gc_unbx_r1_info
|| Sp[0] == (W_)&stg_gc_unpt_r1_info
|| Sp[0] == (W_)&stg_gc_f1_info
|| Sp[0] == (W_)&stg_gc_d1_info
|| Sp[0] == (W_)&stg_gc_l1_info
|| Sp[0] == (W_)&stg_gc_void_info // VoidRep
);
// get the offset of the stg_ctoi_ret_XXX itbl
offset = stack_frame_sizeW((StgClosure *)Sp);
switch (get_itbl((StgClosure *)Sp+offset)->type) {
case RET_BCO:
// Returning to an interpreted continuation: put the object on
// the stack, and start executing the BCO.
INTERP_TICK(it_retto_BCO);
obj = (StgClosure*)Sp[offset+1];
ASSERT(get_itbl(obj)->type == BCO);
goto run_BCO_return_unboxed;
default:
{
// Can't handle this return address; yield to scheduler
INTERP_TICK(it_retto_other);
IF_DEBUG(interpreter,
debugBelch("returning to unknown frame -- yielding to sched\n");
printStackChunk(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size);
);
RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
}
}
}
// not reached.
// -------------------------------------------------------------------------
// Application...
do_apply:
ASSERT(obj == UNTAG_CLOSURE(tagged_obj));
// we have a function to apply (obj), and n arguments taking up m
// words on the stack. The info table (stg_ap_pp_info or whatever)
// is on top of the arguments on the stack.
{
switch (get_itbl(obj)->type) {
case PAP: {
StgPAP *pap;
nat i, arity;
pap = (StgPAP *)obj;
// we only cope with PAPs whose function is a BCO
if (get_itbl(UNTAG_CLOSURE(pap->fun))->type != BCO) {
goto defer_apply_to_sched;
}
// Stack check: we're about to unpack the PAP onto the
// stack. The (+1) is for the (arity < n) case, where we
// also need space for an extra info pointer.
if (Sp - (pap->n_args + 1) < SpLim) {
Sp -= 2;
Sp[1] = (W_)tagged_obj;
Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
}
Sp++;
arity = pap->arity;
ASSERT(arity > 0);
if (arity < n) {
// n must be greater than 1, and the only kinds of
// application we support with more than one argument
// are all pointers...
//
// Shuffle the args for this function down, and put
// the appropriate info table in the gap.
for (i = 0; i < arity; i++) {
Sp[(int)i-1] = Sp[i];
// ^^^^^ careful, i-1 might be negative, but i in unsigned
}
Sp[arity-1] = app_ptrs_itbl[n-arity-1];
Sp--;
// unpack the PAP's arguments onto the stack
Sp -= pap->n_args;
for (i = 0; i < pap->n_args; i++) {
Sp[i] = (W_)pap->payload[i];
}
obj = UNTAG_CLOSURE(pap->fun);
goto run_BCO_fun;
}
else if (arity == n) {
Sp -= pap->n_args;
for (i = 0; i < pap->n_args; i++) {
Sp[i] = (W_)pap->payload[i];
}
obj = UNTAG_CLOSURE(pap->fun);
goto run_BCO_fun;
}
else /* arity > n */ {
// build a new PAP and return it.
StgPAP *new_pap;
new_pap = (StgPAP *)allocate(PAP_sizeW(pap->n_args + m));
SET_HDR(new_pap,&stg_PAP_info,CCCS);
new_pap->arity = pap->arity - n;
new_pap->n_args = pap->n_args + m;
new_pap->fun = pap->fun;
for (i = 0; i < pap->n_args; i++) {
new_pap->payload[i] = pap->payload[i];
}
for (i = 0; i < m; i++) {
new_pap->payload[pap->n_args + i] = (StgClosure *)Sp[i];
}
tagged_obj = (StgClosure *)new_pap;
Sp += m;
goto do_return;
}
}
case BCO: {
nat arity, i;
Sp++;
arity = ((StgBCO *)obj)->arity;
ASSERT(arity > 0);
if (arity < n) {
// n must be greater than 1, and the only kinds of
// application we support with more than one argument
// are all pointers...
//
// Shuffle the args for this function down, and put
// the appropriate info table in the gap.
for (i = 0; i < arity; i++) {
Sp[(int)i-1] = Sp[i];
// ^^^^^ careful, i-1 might be negative, but i in unsigned
}
Sp[arity-1] = app_ptrs_itbl[n-arity-1];
Sp--;
goto run_BCO_fun;
}
else if (arity == n) {
goto run_BCO_fun;
}
else /* arity > n */ {
// build a PAP and return it.
StgPAP *pap;
nat i;
pap = (StgPAP *)allocate(PAP_sizeW(m));
SET_HDR(pap, &stg_PAP_info,CCCS);
pap->arity = arity - n;
pap->fun = obj;
pap->n_args = m;
for (i = 0; i < m; i++) {
pap->payload[i] = (StgClosure *)Sp[i];
}
tagged_obj = (StgClosure *)pap;
Sp += m;
goto do_return;
}
}
// No point in us applying machine-code functions
default:
defer_apply_to_sched:
Sp -= 2;
Sp[1] = (W_)tagged_obj;
Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
}
// ------------------------------------------------------------------------
// Ok, we now have a bco (obj), and its arguments are all on the
// stack. We can start executing the byte codes.
//
// The stack is in one of two states. First, if this BCO is a
// function:
//
// | .... |
// +---------------+
// | arg2 |
// +---------------+
// | arg1 |
// +---------------+
//
// Second, if this BCO is a continuation:
//
// | .... |
// +---------------+
// | fv2 |
// +---------------+
// | fv1 |
// +---------------+
// | BCO |
// +---------------+
// | stg_ctoi_ret_ |
// +---------------+
// | retval |
// +---------------+
//
// where retval is the value being returned to this continuation.
// In the event of a stack check, heap check, or context switch,
// we need to leave the stack in a sane state so the garbage
// collector can find all the pointers.
//
// (1) BCO is a function: the BCO's bitmap describes the
// pointerhood of the arguments.
//
// (2) BCO is a continuation: BCO's bitmap describes the
// pointerhood of the free variables.
//
// Sadly we have three different kinds of stack/heap/cswitch check
// to do:
run_BCO_return:
// Heap check
if (doYouWantToGC()) {
Sp--; Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
}
// Stack checks aren't necessary at return points, the stack use
// is aggregated into the enclosing function entry point.
goto run_BCO;
run_BCO_return_unboxed:
// Heap check
if (doYouWantToGC()) {
RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
}
// Stack checks aren't necessary at return points, the stack use
// is aggregated into the enclosing function entry point.
goto run_BCO;
run_BCO_fun:
IF_DEBUG(sanity,
Sp -= 2;
Sp[1] = (W_)obj;
Sp[0] = (W_)&stg_apply_interp_info;
checkStackChunk(Sp,SpLim);
Sp += 2;
);
// Heap check
if (doYouWantToGC()) {
Sp -= 2;
Sp[1] = (W_)obj;
Sp[0] = (W_)&stg_apply_interp_info; // placeholder, really
RETURN_TO_SCHEDULER(ThreadInterpret, HeapOverflow);
}
// Stack check
if (Sp - INTERP_STACK_CHECK_THRESH < SpLim) {
Sp -= 2;
Sp[1] = (W_)obj;
Sp[0] = (W_)&stg_apply_interp_info; // placeholder, really
RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
}
goto run_BCO;
// Now, actually interpret the BCO... (no returning to the
// scheduler again until the stack is in an orderly state).
run_BCO:
INTERP_TICK(it_BCO_entries);
{
register int bciPtr = 0; /* instruction pointer */
register StgWord16 bci;
register StgBCO* bco = (StgBCO*)obj;
register StgWord16* instrs = (StgWord16*)(bco->instrs->payload);
register StgWord* literals = (StgWord*)(&bco->literals->payload[0]);
register StgPtr* ptrs = (StgPtr*)(&bco->ptrs->payload[0]);
int bcoSize;
bcoSize = BCO_NEXT_WORD;
IF_DEBUG(interpreter,debugBelch("bcoSize = %d\n", bcoSize));
#ifdef INTERP_STATS
it_lastopc = 0; /* no opcode */
#endif
nextInsn:
ASSERT(bciPtr < bcoSize);
IF_DEBUG(interpreter,
//if (do_print_stack) {
//debugBelch("\n-- BEGIN stack\n");
//printStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
//debugBelch("-- END stack\n\n");
//}
debugBelch("Sp = %p pc = %d ", Sp, bciPtr);
disInstr(bco,bciPtr);
if (0) { int i;
debugBelch("\n");
for (i = 8; i >= 0; i--) {
debugBelch("%d %p\n", i, (StgPtr)(*(Sp+i)));
}
debugBelch("\n");
}
//if (do_print_stack) checkStack(Sp,cap->r.rCurrentTSO->stack+cap->r.rCurrentTSO->stack_size,iSu);
);
INTERP_TICK(it_insns);
#ifdef INTERP_STATS
ASSERT( (int)instrs[bciPtr] >= 0 && (int)instrs[bciPtr] < 27 );
it_ofreq[ (int)instrs[bciPtr] ] ++;
it_oofreq[ it_lastopc ][ (int)instrs[bciPtr] ] ++;
it_lastopc = (int)instrs[bciPtr];
#endif
bci = BCO_NEXT;
/* We use the high 8 bits for flags, only the highest of which is
* currently allocated */
ASSERT((bci & 0xFF00) == (bci & 0x8000));
switch (bci & 0xFF) {
/* check for a breakpoint on the beginning of a let binding */
case bci_BRK_FUN:
{
int arg1_brk_array, arg2_array_index, arg3_freeVars;
StgArrWords *breakPoints;
int returning_from_break; // are we resuming execution from a breakpoint?
// if yes, then don't break this time around
StgClosure *ioAction; // the io action to run at a breakpoint
StgAP_STACK *new_aps; // a closure to save the top stack frame on the heap
int i;
int size_words;
arg1_brk_array = BCO_NEXT; // 1st arg of break instruction
arg2_array_index = BCO_NEXT; // 2nd arg of break instruction
arg3_freeVars = BCO_NEXT; // 3rd arg of break instruction
// check if we are returning from a breakpoint - this info
// is stored in the flags field of the current TSO
returning_from_break = cap->r.rCurrentTSO->flags & TSO_STOPPED_ON_BREAKPOINT;
// if we are returning from a break then skip this section
// and continue executing
if (!returning_from_break)
{
breakPoints = (StgArrWords *) BCO_PTR(arg1_brk_array);
// stop the current thread if either the
// "rts_stop_next_breakpoint" flag is true OR if the
// breakpoint flag for this particular expression is
// true
if (rts_stop_next_breakpoint == rtsTrue ||
breakPoints->payload[arg2_array_index] == rtsTrue)
{
// make sure we don't automatically stop at the
// next breakpoint
rts_stop_next_breakpoint = rtsFalse;
// allocate memory for a new AP_STACK, enough to
// store the top stack frame plus an
// stg_apply_interp_info pointer and a pointer to
// the BCO
size_words = BCO_BITMAP_SIZE(obj) + 2;
new_aps = (StgAP_STACK *) allocate (AP_STACK_sizeW(size_words));
SET_HDR(new_aps,&stg_AP_STACK_info,CCS_SYSTEM);
new_aps->size = size_words;
new_aps->fun = &stg_dummy_ret_closure;
// fill in the payload of the AP_STACK
new_aps->payload[0] = (StgClosure *)&stg_apply_interp_info;
new_aps->payload[1] = (StgClosure *)obj;
// copy the contents of the top stack frame into the AP_STACK
for (i = 2; i < size_words; i++)
{
new_aps->payload[i] = (StgClosure *)Sp[i-2];
}
// prepare the stack so that we can call the
// rts_breakpoint_io_action and ensure that the stack is
// in a reasonable state for the GC and so that
// execution of this BCO can continue when we resume
ioAction = (StgClosure *) deRefStablePtr (rts_breakpoint_io_action);
Sp -= 9;
Sp[8] = (W_)obj;
Sp[7] = (W_)&stg_apply_interp_info;
Sp[6] = (W_)&stg_noforceIO_info; // see [unreg] below
Sp[5] = (W_)new_aps; // the AP_STACK
Sp[4] = (W_)BCO_PTR(arg3_freeVars); // the info about local vars of the breakpoint
Sp[3] = (W_)False_closure; // True <=> a breakpoint
Sp[2] = (W_)&stg_ap_pppv_info;
Sp[1] = (W_)ioAction; // apply the IO action to its two arguments above
Sp[0] = (W_)&stg_enter_info; // get ready to run the IO action
// Note [unreg]: in unregisterised mode, the return
// convention for IO is different. The
// stg_noForceIO_info stack frame is necessary to
// account for this difference.
// set the flag in the TSO to say that we are now
// stopping at a breakpoint so that when we resume
// we don't stop on the same breakpoint that we
// already stopped at just now
cap->r.rCurrentTSO->flags |= TSO_STOPPED_ON_BREAKPOINT;
// stop this thread and return to the scheduler -
// eventually we will come back and the IO action on
// the top of the stack will be executed
RETURN_TO_SCHEDULER_NO_PAUSE(ThreadRunGHC, ThreadYielding);
}
}
// record that this thread is not stopped at a breakpoint anymore
cap->r.rCurrentTSO->flags &= ~TSO_STOPPED_ON_BREAKPOINT;
// continue normal execution of the byte code instructions
goto nextInsn;
}
case bci_STKCHECK: {
// Explicit stack check at the beginning of a function
// *only* (stack checks in case alternatives are
// propagated to the enclosing function).
StgWord stk_words_reqd = BCO_GET_LARGE_ARG + 1;
if (Sp - stk_words_reqd < SpLim) {
Sp -= 2;
Sp[1] = (W_)obj;
Sp[0] = (W_)&stg_apply_interp_info;
RETURN_TO_SCHEDULER(ThreadInterpret, StackOverflow);
} else {
goto nextInsn;
}
}
case bci_PUSH_L: {
int o1 = BCO_NEXT;
Sp[-1] = Sp[o1];
Sp--;
goto nextInsn;
}
case bci_PUSH_LL: {
int o1 = BCO_NEXT;
int o2 = BCO_NEXT;
Sp[-1] = Sp[o1];
Sp[-2] = Sp[o2];
Sp -= 2;
goto nextInsn;
}
case bci_PUSH_LLL: {
int o1 = BCO_NEXT;
int o2 = BCO_NEXT;
int o3 = BCO_NEXT;
Sp[-1] = Sp[o1];
Sp[-2] = Sp[o2];
Sp[-3] = Sp[o3];
Sp -= 3;
goto nextInsn;
}
case bci_PUSH_G: {
int o1 = BCO_NEXT;
Sp[-1] = BCO_PTR(o1);
Sp -= 1;
goto nextInsn;
}
case bci_PUSH_ALTS: {
int o_bco = BCO_NEXT;
Sp[-2] = (W_)&stg_ctoi_R1p_info;
Sp[-1] = BCO_PTR(o_bco);
Sp -= 2;
goto nextInsn;
}
case bci_PUSH_ALTS_P: {
int o_bco = BCO_NEXT;
Sp[-2] = (W_)&stg_ctoi_R1unpt_info;
Sp[-1] = BCO_PTR(o_bco);
Sp -= 2;
goto nextInsn;
}
case bci_PUSH_ALTS_N: {
int o_bco = BCO_NEXT;
Sp[-2] = (W_)&stg_ctoi_R1n_info;
Sp[-1] = BCO_PTR(o_bco);
Sp -= 2;
goto nextInsn;
}
case bci_PUSH_ALTS_F: {
int o_bco = BCO_NEXT;
Sp[-2] = (W_)&stg_ctoi_F1_info;
Sp[-1] = BCO_PTR(o_bco);
Sp -= 2;
goto nextInsn;
}
case bci_PUSH_ALTS_D: {
int o_bco = BCO_NEXT;
Sp[-2] = (W_)&stg_ctoi_D1_info;
Sp[-1] = BCO_PTR(o_bco);
Sp -= 2;
goto nextInsn;
}
case bci_PUSH_ALTS_L: {
int o_bco = BCO_NEXT;
Sp[-2] = (W_)&stg_ctoi_L1_info;
Sp[-1] = BCO_PTR(o_bco);
Sp -= 2;
goto nextInsn;
}
case bci_PUSH_ALTS_V: {
int o_bco = BCO_NEXT;
Sp[-2] = (W_)&stg_ctoi_V_info;
Sp[-1] = BCO_PTR(o_bco);
Sp -= 2;
goto nextInsn;
}
case bci_PUSH_APPLY_N:
Sp--; Sp[0] = (W_)&stg_ap_n_info;
goto nextInsn;
case bci_PUSH_APPLY_V:
Sp--; Sp[0] = (W_)&stg_ap_v_info;
goto nextInsn;
case bci_PUSH_APPLY_F:
Sp--; Sp[0] = (W_)&stg_ap_f_info;
goto nextInsn;
case bci_PUSH_APPLY_D:
Sp--; Sp[0] = (W_)&stg_ap_d_info;
goto nextInsn;
case bci_PUSH_APPLY_L:
Sp--; Sp[0] = (W_)&stg_ap_l_info;
goto nextInsn;
case bci_PUSH_APPLY_P:
Sp--; Sp[0] = (W_)&stg_ap_p_info;
goto nextInsn;
case bci_PUSH_APPLY_PP:
Sp--; Sp[0] = (W_)&stg_ap_pp_info;
goto nextInsn;
case bci_PUSH_APPLY_PPP:
Sp--; Sp[0] = (W_)&stg_ap_ppp_info;
goto nextInsn;
case bci_PUSH_APPLY_PPPP:
Sp--; Sp[0] = (W_)&stg_ap_pppp_info;
goto nextInsn;
case bci_PUSH_APPLY_PPPPP:
Sp--; Sp[0] = (W_)&stg_ap_ppppp_info;
goto nextInsn;
case bci_PUSH_APPLY_PPPPPP:
Sp--; Sp[0] = (W_)&stg_ap_pppppp_info;
goto nextInsn;
case bci_PUSH_UBX: {
int i;
int o_lits = BCO_NEXT;
int n_words = BCO_NEXT;
Sp -= n_words;
for (i = 0; i < n_words; i++) {
Sp[i] = (W_)BCO_LIT(o_lits+i);
}
goto nextInsn;
}
case bci_SLIDE: {
int n = BCO_NEXT;
int by = BCO_NEXT;
/* a_1, .. a_n, b_1, .. b_by, s => a_1, .. a_n, s */
while(--n >= 0) {
Sp[n+by] = Sp[n];
}
Sp += by;
INTERP_TICK(it_slides);
goto nextInsn;
}
case bci_ALLOC_AP: {
StgAP* ap;
int n_payload = BCO_NEXT;
ap = (StgAP*)allocate(AP_sizeW(n_payload));
Sp[-1] = (W_)ap;
ap->n_args = n_payload;
SET_HDR(ap, &stg_AP_info, CCS_SYSTEM/*ToDo*/)
Sp --;
goto nextInsn;
}
case bci_ALLOC_AP_NOUPD: {
StgAP* ap;
int n_payload = BCO_NEXT;
ap = (StgAP*)allocate(AP_sizeW(n_payload));
Sp[-1] = (W_)ap;
ap->n_args = n_payload;
SET_HDR(ap, &stg_AP_NOUPD_info, CCS_SYSTEM/*ToDo*/)
Sp --;
goto nextInsn;
}
case bci_ALLOC_PAP: {
StgPAP* pap;
int arity = BCO_NEXT;
int n_payload = BCO_NEXT;
pap = (StgPAP*)allocate(PAP_sizeW(n_payload));
Sp[-1] = (W_)pap;
pap->n_args = n_payload;
pap->arity = arity;
SET_HDR(pap, &stg_PAP_info, CCS_SYSTEM/*ToDo*/)
Sp --;
goto nextInsn;
}
case bci_MKAP: {
int i;
int stkoff = BCO_NEXT;
int n_payload = BCO_NEXT;
StgAP* ap = (StgAP*)Sp[stkoff];
ASSERT((int)ap->n_args == n_payload);
ap->fun = (StgClosure*)Sp[0];
// The function should be a BCO, and its bitmap should
// cover the payload of the AP correctly.
ASSERT(get_itbl(ap->fun)->type == BCO
&& BCO_BITMAP_SIZE(ap->fun) == ap->n_args);
for (i = 0; i < n_payload; i++)
ap->payload[i] = (StgClosure*)Sp[i+1];
Sp += n_payload+1;
IF_DEBUG(interpreter,
debugBelch("\tBuilt ");
printObj((StgClosure*)ap);
);
goto nextInsn;
}
case bci_MKPAP: {
int i;
int stkoff = BCO_NEXT;
int n_payload = BCO_NEXT;
StgPAP* pap = (StgPAP*)Sp[stkoff];
ASSERT((int)pap->n_args == n_payload);
pap->fun = (StgClosure*)Sp[0];
// The function should be a BCO
ASSERT(get_itbl(pap->fun)->type == BCO);
for (i = 0; i < n_payload; i++)
pap->payload[i] = (StgClosure*)Sp[i+1];
Sp += n_payload+1;
IF_DEBUG(interpreter,
debugBelch("\tBuilt ");
printObj((StgClosure*)pap);
);
goto nextInsn;
}
case bci_UNPACK: {
/* Unpack N ptr words from t.o.s constructor */
int i;
int n_words = BCO_NEXT;
StgClosure* con = (StgClosure*)Sp[0];
Sp -= n_words;
for (i = 0; i < n_words; i++) {
Sp[i] = (W_)con->payload[i];
}
goto nextInsn;
}
case bci_PACK: {
int i;
int o_itbl = BCO_NEXT;
int n_words = BCO_NEXT;
StgInfoTable* itbl = INFO_PTR_TO_STRUCT(BCO_LIT(o_itbl));
int request = CONSTR_sizeW( itbl->layout.payload.ptrs,
itbl->layout.payload.nptrs );
StgClosure* con = (StgClosure*)allocate_NONUPD(request);
ASSERT( itbl->layout.payload.ptrs + itbl->layout.payload.nptrs > 0);
SET_HDR(con, (StgInfoTable*)BCO_LIT(o_itbl), CCS_SYSTEM/*ToDo*/);
for (i = 0; i < n_words; i++) {
con->payload[i] = (StgClosure*)Sp[i];
}
Sp += n_words;
Sp --;
Sp[0] = (W_)con;
IF_DEBUG(interpreter,
debugBelch("\tBuilt ");
printObj((StgClosure*)con);
);
goto nextInsn;
}
case bci_TESTLT_P: {
unsigned int discr = BCO_NEXT;
int failto = BCO_GET_LARGE_ARG;
StgClosure* con = (StgClosure*)Sp[0];
if (GET_TAG(con) >= discr) {
bciPtr = failto;
}
goto nextInsn;
}
case bci_TESTEQ_P: {
unsigned int discr = BCO_NEXT;
int failto = BCO_GET_LARGE_ARG;
StgClosure* con = (StgClosure*)Sp[0];
if (GET_TAG(con) != discr) {
bciPtr = failto;
}
goto nextInsn;
}
case bci_TESTLT_I: {
// There should be an Int at Sp[1], and an info table at Sp[0].
int discr = BCO_NEXT;
int failto = BCO_GET_LARGE_ARG;
I_ stackInt = (I_)Sp[1];
if (stackInt >= (I_)BCO_LIT(discr))
bciPtr = failto;
goto nextInsn;
}
case bci_TESTEQ_I: {
// There should be an Int at Sp[1], and an info table at Sp[0].
int discr = BCO_NEXT;
int failto = BCO_GET_LARGE_ARG;
I_ stackInt = (I_)Sp[1];
if (stackInt != (I_)BCO_LIT(discr)) {
bciPtr = failto;
}
goto nextInsn;
}
case bci_TESTLT_D: {
// There should be a Double at Sp[1], and an info table at Sp[0].
int discr = BCO_NEXT;
int failto = BCO_GET_LARGE_ARG;
StgDouble stackDbl, discrDbl;
stackDbl = PK_DBL( & Sp[1] );
discrDbl = PK_DBL( & BCO_LIT(discr) );
if (stackDbl >= discrDbl) {
bciPtr = failto;
}
goto nextInsn;
}
case bci_TESTEQ_D: {
// There should be a Double at Sp[1], and an info table at Sp[0].
int discr = BCO_NEXT;
int failto = BCO_GET_LARGE_ARG;
StgDouble stackDbl, discrDbl;
stackDbl = PK_DBL( & Sp[1] );
discrDbl = PK_DBL( & BCO_LIT(discr) );
if (stackDbl != discrDbl) {
bciPtr = failto;
}
goto nextInsn;
}
case bci_TESTLT_F: {
// There should be a Float at Sp[1], and an info table at Sp[0].
int discr = BCO_NEXT;
int failto = BCO_GET_LARGE_ARG;
StgFloat stackFlt, discrFlt;
stackFlt = PK_FLT( & Sp[1] );
discrFlt = PK_FLT( & BCO_LIT(discr) );
if (stackFlt >= discrFlt) {
bciPtr = failto;
}
goto nextInsn;
}
case bci_TESTEQ_F: {
// There should be a Float at Sp[1], and an info table at Sp[0].
int discr = BCO_NEXT;
int failto = BCO_GET_LARGE_ARG;
StgFloat stackFlt, discrFlt;
stackFlt = PK_FLT( & Sp[1] );
discrFlt = PK_FLT( & BCO_LIT(discr) );
if (stackFlt != discrFlt) {
bciPtr = failto;
}
goto nextInsn;
}
// Control-flow ish things
case bci_ENTER:
// Context-switch check. We put it here to ensure that
// the interpreter has done at least *some* work before
// context switching: sometimes the scheduler can invoke
// the interpreter with context_switch == 1, particularly
// if the -C0 flag has been given on the cmd line.
if (cap->r.rHpLim == NULL) {
Sp--; Sp[0] = (W_)&stg_enter_info;
RETURN_TO_SCHEDULER(ThreadInterpret, ThreadYielding);
}
goto eval;
case bci_RETURN:
tagged_obj = (StgClosure *)Sp[0];
Sp++;
goto do_return;
case bci_RETURN_P:
Sp--;
Sp[0] = (W_)&stg_gc_unpt_r1_info;
goto do_return_unboxed;
case bci_RETURN_N:
Sp--;
Sp[0] = (W_)&stg_gc_unbx_r1_info;
goto do_return_unboxed;
case bci_RETURN_F:
Sp--;
Sp[0] = (W_)&stg_gc_f1_info;
goto do_return_unboxed;
case bci_RETURN_D:
Sp--;
Sp[0] = (W_)&stg_gc_d1_info;
goto do_return_unboxed;
case bci_RETURN_L:
Sp--;
Sp[0] = (W_)&stg_gc_l1_info;
goto do_return_unboxed;
case bci_RETURN_V:
Sp--;
Sp[0] = (W_)&stg_gc_void_info;
goto do_return_unboxed;
case bci_SWIZZLE: {
int stkoff = BCO_NEXT;
signed short n = (signed short)(BCO_NEXT);
Sp[stkoff] += (W_)n;
goto nextInsn;
}
case bci_CCALL: {
void *tok;
int stk_offset = BCO_NEXT;
int o_itbl = BCO_NEXT;
void(*marshall_fn)(void*) = (void (*)(void*))BCO_LIT(o_itbl);
int ret_dyn_size =
RET_DYN_BITMAP_SIZE + RET_DYN_NONPTR_REGS_SIZE
+ sizeofW(StgRetDyn);
/* the stack looks like this:
| | <- Sp + stk_offset
+-------------+
| |
| args |
| | <- Sp + ret_size + 1
+-------------+
| C fun | <- Sp + ret_size
+-------------+
| ret | <- Sp
+-------------+
ret is a placeholder for the return address, and may be
up to 2 words.
We need to copy the args out of the TSO, because when
we call suspendThread() we no longer own the TSO stack,
and it may move at any time - indeed suspendThread()
itself may do stack squeezing and move our args.
So we make a copy of the argument block.
*/
#define ROUND_UP_WDS(p) ((((StgWord)(p)) + sizeof(W_)-1)/sizeof(W_))
ffi_cif *cif = (ffi_cif *)marshall_fn;
nat nargs = cif->nargs;
nat ret_size;
nat i;
StgPtr p;
W_ ret[2]; // max needed
W_ *arguments[stk_offset]; // max needed
void *argptrs[nargs];
void (*fn)(void);
if (cif->rtype->type == FFI_TYPE_VOID) {
// necessary because cif->rtype->size == 1 for void,
// but the bytecode generator has not pushed a
// placeholder in this case.
ret_size = 0;
} else {
ret_size = ROUND_UP_WDS(cif->rtype->size);
}
memcpy(arguments, Sp+ret_size+1,
sizeof(W_) * (stk_offset-1-ret_size));
// libffi expects the args as an array of pointers to
// values, so we have to construct this array before making
// the call.
p = (StgPtr)arguments;
for (i = 0; i < nargs; i++) {
argptrs[i] = (void *)p;
// get the size from the cif
p += ROUND_UP_WDS(cif->arg_types[i]->size);
}
// this is the function we're going to call
fn = (void(*)(void))Sp[ret_size];
// Restore the Haskell thread's current value of errno
errno = cap->r.rCurrentTSO->saved_errno;
// There are a bunch of non-ptr words on the stack (the
// ccall args, the ccall fun address and space for the
// result), which we need to cover with an info table
// since we might GC during this call.
//
// We know how many (non-ptr) words there are before the
// next valid stack frame: it is the stk_offset arg to the
// CCALL instruction. So we build a RET_DYN stack frame
// on the stack frame to describe this chunk of stack.
//
Sp -= ret_dyn_size;
((StgRetDyn *)Sp)->liveness = R1_PTR | N_NONPTRS(stk_offset);
((StgRetDyn *)Sp)->info = (StgInfoTable *)&stg_gc_gen_info;
// save obj (pointer to the current BCO), since this
// might move during the call. We use the R1 slot in the
// RET_DYN frame for this, hence R1_PTR above.
((StgRetDyn *)Sp)->payload[0] = (StgClosure *)obj;
SAVE_STACK_POINTERS;
tok = suspendThread(&cap->r);
// We already made a copy of the arguments above.
ffi_call(cif, fn, ret, argptrs);
// And restart the thread again, popping the RET_DYN frame.
cap = (Capability *)((void *)((unsigned char*)resumeThread(tok) - STG_FIELD_OFFSET(Capability,r)));
LOAD_STACK_POINTERS;
// Re-load the pointer to the BCO from the RET_DYN frame,
// it might have moved during the call. Also reload the
// pointers to the components of the BCO.
obj = ((StgRetDyn *)Sp)->payload[0];
bco = (StgBCO*)obj;
instrs = (StgWord16*)(bco->instrs->payload);
literals = (StgWord*)(&bco->literals->payload[0]);
ptrs = (StgPtr*)(&bco->ptrs->payload[0]);
Sp += ret_dyn_size;
// Save the Haskell thread's current value of errno
cap->r.rCurrentTSO->saved_errno = errno;
// Copy the return value back to the TSO stack. It is at
// most 2 words large, and resides at arguments[0].
memcpy(Sp, ret, sizeof(W_) * stg_min(stk_offset,ret_size));
goto nextInsn;
}
case bci_JMP: {
/* BCO_NEXT modifies bciPtr, so be conservative. */
int nextpc = BCO_GET_LARGE_ARG;
bciPtr = nextpc;
goto nextInsn;
}
case bci_CASEFAIL:
barf("interpretBCO: hit a CASEFAIL");
// Errors
default:
barf("interpretBCO: unknown or unimplemented opcode %d",
(int)(bci & 0xFF));
} /* switch on opcode */
}
}
barf("interpretBCO: fell off end of the interpreter");
}
|