1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2011
*
* Out-of-line primitive operations
*
* This file contains the implementations of all the primitive
* operations ("primops") which are not expanded inline. See
* ghc/compiler/prelude/primops.txt.pp for a list of all the primops;
* this file contains code for most of those with the attribute
* out_of_line=True.
*
* Entry convention: the entry convention for a primop is that all the
* args are in Stg registers (R1, R2, etc.). This is to make writing
* the primops easier. (see compiler/codeGen/CgCallConv.hs).
*
* Return convention: results from a primop are generally returned
* using the ordinary unboxed tuple return convention. The C-- parser
* implements the RET_xxxx() macros to perform unboxed-tuple returns
* based on the prevailing return convention.
*
* This file is written in a subset of C--, extended with various
* features specific to GHC. It is compiled by GHC directly. For the
* syntax of .cmm files, see the parser in ghc/compiler/cmm/CmmParse.y.
*
* ---------------------------------------------------------------------------*/
#include "Cmm.h"
#ifdef __PIC__
import pthread_mutex_lock;
import pthread_mutex_unlock;
#endif
import base_ControlziExceptionziBase_nestedAtomically_closure;
import EnterCriticalSection;
import LeaveCriticalSection;
import ghczmprim_GHCziTypes_False_closure;
#if !defined(mingw32_HOST_OS)
import sm_mutex;
#endif
/*-----------------------------------------------------------------------------
Array Primitives
Basically just new*Array - the others are all inline macros.
The size arg is always passed in R1, and the result returned in R1.
The slow entry point is for returning from a heap check, the saved
size argument must be re-loaded from the stack.
-------------------------------------------------------------------------- */
/* for objects that are *less* than the size of a word, make sure we
* round up to the nearest word for the size of the array.
*/
stg_newByteArrayzh
{
W_ words, payload_words, n, p;
MAYBE_GC(NO_PTRS,stg_newByteArrayzh);
n = R1;
payload_words = ROUNDUP_BYTES_TO_WDS(n);
words = BYTES_TO_WDS(SIZEOF_StgArrWords) + payload_words;
("ptr" p) = foreign "C" allocate(MyCapability() "ptr",words) [];
TICK_ALLOC_PRIM(SIZEOF_StgArrWords,WDS(payload_words),0);
SET_HDR(p, stg_ARR_WORDS_info, CCCS);
StgArrWords_bytes(p) = n;
RET_P(p);
}
#define BA_ALIGN 16
#define BA_MASK (BA_ALIGN-1)
stg_newPinnedByteArrayzh
{
W_ words, n, bytes, payload_words, p;
MAYBE_GC(NO_PTRS,stg_newPinnedByteArrayzh);
n = R1;
bytes = n;
/* payload_words is what we will tell the profiler we had to allocate */
payload_words = ROUNDUP_BYTES_TO_WDS(bytes);
/* When we actually allocate memory, we need to allow space for the
header: */
bytes = bytes + SIZEOF_StgArrWords;
/* And we want to align to BA_ALIGN bytes, so we need to allow space
to shift up to BA_ALIGN - 1 bytes: */
bytes = bytes + BA_ALIGN - 1;
/* Now we convert to a number of words: */
words = ROUNDUP_BYTES_TO_WDS(bytes);
("ptr" p) = foreign "C" allocatePinned(MyCapability() "ptr", words) [];
TICK_ALLOC_PRIM(SIZEOF_StgArrWords,WDS(payload_words),0);
/* Now we need to move p forward so that the payload is aligned
to BA_ALIGN bytes: */
p = p + ((-p - SIZEOF_StgArrWords) & BA_MASK);
SET_HDR(p, stg_ARR_WORDS_info, CCCS);
StgArrWords_bytes(p) = n;
RET_P(p);
}
stg_newAlignedPinnedByteArrayzh
{
W_ words, n, bytes, payload_words, p, alignment;
MAYBE_GC(NO_PTRS,stg_newAlignedPinnedByteArrayzh);
n = R1;
alignment = R2;
/* we always supply at least word-aligned memory, so there's no
need to allow extra space for alignment if the requirement is less
than a word. This also prevents mischief with alignment == 0. */
if (alignment <= SIZEOF_W) { alignment = 1; }
bytes = n;
/* payload_words is what we will tell the profiler we had to allocate */
payload_words = ROUNDUP_BYTES_TO_WDS(bytes);
/* When we actually allocate memory, we need to allow space for the
header: */
bytes = bytes + SIZEOF_StgArrWords;
/* And we want to align to <alignment> bytes, so we need to allow space
to shift up to <alignment - 1> bytes: */
bytes = bytes + alignment - 1;
/* Now we convert to a number of words: */
words = ROUNDUP_BYTES_TO_WDS(bytes);
("ptr" p) = foreign "C" allocatePinned(MyCapability() "ptr", words) [];
TICK_ALLOC_PRIM(SIZEOF_StgArrWords,WDS(payload_words),0);
/* Now we need to move p forward so that the payload is aligned
to <alignment> bytes. Note that we are assuming that
<alignment> is a power of 2, which is technically not guaranteed */
p = p + ((-p - SIZEOF_StgArrWords) & (alignment - 1));
SET_HDR(p, stg_ARR_WORDS_info, CCCS);
StgArrWords_bytes(p) = n;
RET_P(p);
}
stg_newArrayzh
{
W_ words, n, init, arr, p, size;
/* Args: R1 = words, R2 = initialisation value */
n = R1;
MAYBE_GC(R2_PTR,stg_newArrayzh);
// the mark area contains one byte for each 2^MUT_ARR_PTRS_CARD_BITS words
// in the array, making sure we round up, and then rounding up to a whole
// number of words.
size = n + mutArrPtrsCardWords(n);
words = BYTES_TO_WDS(SIZEOF_StgMutArrPtrs) + size;
("ptr" arr) = foreign "C" allocate(MyCapability() "ptr",words) [R2];
TICK_ALLOC_PRIM(SIZEOF_StgMutArrPtrs, WDS(n), 0);
SET_HDR(arr, stg_MUT_ARR_PTRS_DIRTY_info, CCCS);
StgMutArrPtrs_ptrs(arr) = n;
StgMutArrPtrs_size(arr) = size;
// Initialise all elements of the the array with the value in R2
init = R2;
p = arr + SIZEOF_StgMutArrPtrs;
for:
if (p < arr + WDS(words)) {
W_[p] = init;
p = p + WDS(1);
goto for;
}
// Initialise the mark bits with 0
for2:
if (p < arr + WDS(size)) {
W_[p] = 0;
p = p + WDS(1);
goto for2;
}
RET_P(arr);
}
stg_unsafeThawArrayzh
{
// SUBTLETY TO DO WITH THE OLD GEN MUTABLE LIST
//
// A MUT_ARR_PTRS lives on the mutable list, but a MUT_ARR_PTRS_FROZEN
// normally doesn't. However, when we freeze a MUT_ARR_PTRS, we leave
// it on the mutable list for the GC to remove (removing something from
// the mutable list is not easy).
//
// So that we can tell whether a MUT_ARR_PTRS_FROZEN is on the mutable list,
// when we freeze it we set the info ptr to be MUT_ARR_PTRS_FROZEN0
// to indicate that it is still on the mutable list.
//
// So, when we thaw a MUT_ARR_PTRS_FROZEN, we must cope with two cases:
// either it is on a mut_list, or it isn't. We adopt the convention that
// the closure type is MUT_ARR_PTRS_FROZEN0 if it is on the mutable list,
// and MUT_ARR_PTRS_FROZEN otherwise. In fact it wouldn't matter if
// we put it on the mutable list more than once, but it would get scavenged
// multiple times during GC, which would be unnecessarily slow.
//
if (StgHeader_info(R1) != stg_MUT_ARR_PTRS_FROZEN0_info) {
SET_INFO(R1,stg_MUT_ARR_PTRS_DIRTY_info);
recordMutable(R1, R1);
// must be done after SET_INFO, because it ASSERTs closure_MUTABLE()
RET_P(R1);
} else {
SET_INFO(R1,stg_MUT_ARR_PTRS_DIRTY_info);
RET_P(R1);
}
}
stg_newArrayArrayzh
{
W_ words, n, arr, p, size;
/* Args: R1 = words */
n = R1;
MAYBE_GC(NO_PTRS,stg_newArrayArrayzh);
// the mark area contains one byte for each 2^MUT_ARR_PTRS_CARD_BITS words
// in the array, making sure we round up, and then rounding up to a whole
// number of words.
size = n + mutArrPtrsCardWords(n);
words = BYTES_TO_WDS(SIZEOF_StgMutArrPtrs) + size;
("ptr" arr) = foreign "C" allocate(MyCapability() "ptr",words) [];
TICK_ALLOC_PRIM(SIZEOF_StgMutArrPtrs, WDS(n), 0);
SET_HDR(arr, stg_MUT_ARR_PTRS_DIRTY_info, W_[CCCS]);
StgMutArrPtrs_ptrs(arr) = n;
StgMutArrPtrs_size(arr) = size;
// Initialise all elements of the array with a pointer to the new array
p = arr + SIZEOF_StgMutArrPtrs;
for:
if (p < arr + WDS(words)) {
W_[p] = arr;
p = p + WDS(1);
goto for;
}
// Initialise the mark bits with 0
for2:
if (p < arr + WDS(size)) {
W_[p] = 0;
p = p + WDS(1);
goto for2;
}
RET_P(arr);
}
/* -----------------------------------------------------------------------------
MutVar primitives
-------------------------------------------------------------------------- */
stg_newMutVarzh
{
W_ mv;
/* Args: R1 = initialisation value */
ALLOC_PRIM( SIZEOF_StgMutVar, R1_PTR, stg_newMutVarzh);
mv = Hp - SIZEOF_StgMutVar + WDS(1);
SET_HDR(mv,stg_MUT_VAR_DIRTY_info,CCCS);
StgMutVar_var(mv) = R1;
RET_P(mv);
}
stg_casMutVarzh
/* MutVar# s a -> a -> a -> State# s -> (# State#, Int#, a #) */
{
W_ mv, old, new, h;
mv = R1;
old = R2;
new = R3;
(h) = foreign "C" cas(mv + SIZEOF_StgHeader + OFFSET_StgMutVar_var,
old, new) [];
if (h != old) {
RET_NP(1,h);
} else {
if (GET_INFO(mv) == stg_MUT_VAR_CLEAN_info) {
foreign "C" dirty_MUT_VAR(BaseReg "ptr", mv "ptr") [];
}
RET_NP(0,h);
}
}
stg_atomicModifyMutVarzh
{
W_ mv, f, z, x, y, r, h;
/* Args: R1 :: MutVar#, R2 :: a -> (a,b) */
/* If x is the current contents of the MutVar#, then
We want to make the new contents point to
(sel_0 (f x))
and the return value is
(sel_1 (f x))
obviously we can share (f x).
z = [stg_ap_2 f x] (max (HS + 2) MIN_UPD_SIZE)
y = [stg_sel_0 z] (max (HS + 1) MIN_UPD_SIZE)
r = [stg_sel_1 z] (max (HS + 1) MIN_UPD_SIZE)
*/
#if MIN_UPD_SIZE > 1
#define THUNK_1_SIZE (SIZEOF_StgThunkHeader + WDS(MIN_UPD_SIZE))
#define TICK_ALLOC_THUNK_1() TICK_ALLOC_UP_THK(WDS(1),WDS(MIN_UPD_SIZE-1))
#else
#define THUNK_1_SIZE (SIZEOF_StgThunkHeader + WDS(1))
#define TICK_ALLOC_THUNK_1() TICK_ALLOC_UP_THK(WDS(1),0)
#endif
#if MIN_UPD_SIZE > 2
#define THUNK_2_SIZE (SIZEOF_StgThunkHeader + WDS(MIN_UPD_SIZE))
#define TICK_ALLOC_THUNK_2() TICK_ALLOC_UP_THK(WDS(2),WDS(MIN_UPD_SIZE-2))
#else
#define THUNK_2_SIZE (SIZEOF_StgThunkHeader + WDS(2))
#define TICK_ALLOC_THUNK_2() TICK_ALLOC_UP_THK(WDS(2),0)
#endif
#define SIZE (THUNK_2_SIZE + THUNK_1_SIZE + THUNK_1_SIZE)
HP_CHK_GEN_TICKY(SIZE, R1_PTR & R2_PTR, stg_atomicModifyMutVarzh);
mv = R1;
f = R2;
TICK_ALLOC_THUNK_2();
CCCS_ALLOC(THUNK_2_SIZE);
z = Hp - THUNK_2_SIZE + WDS(1);
SET_HDR(z, stg_ap_2_upd_info, CCCS);
LDV_RECORD_CREATE(z);
StgThunk_payload(z,0) = f;
TICK_ALLOC_THUNK_1();
CCCS_ALLOC(THUNK_1_SIZE);
y = z - THUNK_1_SIZE;
SET_HDR(y, stg_sel_0_upd_info, CCCS);
LDV_RECORD_CREATE(y);
StgThunk_payload(y,0) = z;
TICK_ALLOC_THUNK_1();
CCCS_ALLOC(THUNK_1_SIZE);
r = y - THUNK_1_SIZE;
SET_HDR(r, stg_sel_1_upd_info, CCCS);
LDV_RECORD_CREATE(r);
StgThunk_payload(r,0) = z;
retry:
x = StgMutVar_var(mv);
StgThunk_payload(z,1) = x;
#ifdef THREADED_RTS
(h) = foreign "C" cas(mv + SIZEOF_StgHeader + OFFSET_StgMutVar_var, x, y) [];
if (h != x) { goto retry; }
#else
StgMutVar_var(mv) = y;
#endif
if (GET_INFO(mv) == stg_MUT_VAR_CLEAN_info) {
foreign "C" dirty_MUT_VAR(BaseReg "ptr", mv "ptr") [];
}
RET_P(r);
}
/* -----------------------------------------------------------------------------
Weak Pointer Primitives
-------------------------------------------------------------------------- */
STRING(stg_weak_msg,"New weak pointer at %p\n")
stg_mkWeakzh
{
/* R1 = key
R2 = value
R3 = finalizer (or NULL)
*/
W_ w;
if (R3 == NULL) {
R3 = stg_NO_FINALIZER_closure;
}
ALLOC_PRIM( SIZEOF_StgWeak, R1_PTR & R2_PTR & R3_PTR, stg_mkWeakzh );
w = Hp - SIZEOF_StgWeak + WDS(1);
SET_HDR(w, stg_WEAK_info, CCCS);
// We don't care about cfinalizer here.
// Should StgWeak_cfinalizer(w) be stg_NO_FINALIZER_closure or
// something else?
StgWeak_key(w) = R1;
StgWeak_value(w) = R2;
StgWeak_finalizer(w) = R3;
StgWeak_cfinalizer(w) = stg_NO_FINALIZER_closure;
ACQUIRE_LOCK(sm_mutex);
StgWeak_link(w) = W_[weak_ptr_list];
W_[weak_ptr_list] = w;
RELEASE_LOCK(sm_mutex);
IF_DEBUG(weak, foreign "C" debugBelch(stg_weak_msg,w) []);
RET_P(w);
}
stg_mkWeakForeignEnvzh
{
/* R1 = key
R2 = value
R3 = finalizer
R4 = pointer
R5 = has environment (0 or 1)
R6 = environment
*/
W_ w, payload_words, words, p;
W_ key, val, fptr, ptr, flag, eptr;
key = R1;
val = R2;
fptr = R3;
ptr = R4;
flag = R5;
eptr = R6;
ALLOC_PRIM( SIZEOF_StgWeak, R1_PTR & R2_PTR, stg_mkWeakForeignEnvzh );
w = Hp - SIZEOF_StgWeak + WDS(1);
SET_HDR(w, stg_WEAK_info, CCCS);
payload_words = 4;
words = BYTES_TO_WDS(SIZEOF_StgArrWords) + payload_words;
("ptr" p) = foreign "C" allocate(MyCapability() "ptr", words) [];
TICK_ALLOC_PRIM(SIZEOF_StgArrWords,WDS(payload_words),0);
SET_HDR(p, stg_ARR_WORDS_info, CCCS);
StgArrWords_bytes(p) = WDS(payload_words);
StgArrWords_payload(p,0) = fptr;
StgArrWords_payload(p,1) = ptr;
StgArrWords_payload(p,2) = eptr;
StgArrWords_payload(p,3) = flag;
// We don't care about the value here.
// Should StgWeak_value(w) be stg_NO_FINALIZER_closure or something else?
StgWeak_key(w) = key;
StgWeak_value(w) = val;
StgWeak_finalizer(w) = stg_NO_FINALIZER_closure;
StgWeak_cfinalizer(w) = p;
ACQUIRE_LOCK(sm_mutex);
StgWeak_link(w) = W_[weak_ptr_list];
W_[weak_ptr_list] = w;
RELEASE_LOCK(sm_mutex);
IF_DEBUG(weak, foreign "C" debugBelch(stg_weak_msg,w) []);
RET_P(w);
}
stg_finalizzeWeakzh
{
/* R1 = weak ptr
*/
W_ w, f, arr;
w = R1;
// already dead?
if (GET_INFO(w) == stg_DEAD_WEAK_info) {
RET_NP(0,stg_NO_FINALIZER_closure);
}
// kill it
#ifdef PROFILING
// @LDV profiling
// A weak pointer is inherently used, so we do not need to call
// LDV_recordDead_FILL_SLOP_DYNAMIC():
// LDV_recordDead_FILL_SLOP_DYNAMIC((StgClosure *)w);
// or, LDV_recordDead():
// LDV_recordDead((StgClosure *)w, sizeofW(StgWeak) - sizeofW(StgProfHeader));
// Furthermore, when PROFILING is turned on, dead weak pointers are exactly as
// large as weak pointers, so there is no need to fill the slop, either.
// See stg_DEAD_WEAK_info in StgMiscClosures.hc.
#endif
//
// Todo: maybe use SET_HDR() and remove LDV_recordCreate()?
//
SET_INFO(w,stg_DEAD_WEAK_info);
LDV_RECORD_CREATE(w);
f = StgWeak_finalizer(w);
arr = StgWeak_cfinalizer(w);
StgDeadWeak_link(w) = StgWeak_link(w);
if (arr != stg_NO_FINALIZER_closure) {
foreign "C" runCFinalizer(StgArrWords_payload(arr,0),
StgArrWords_payload(arr,1),
StgArrWords_payload(arr,2),
StgArrWords_payload(arr,3)) [];
}
/* return the finalizer */
if (f == stg_NO_FINALIZER_closure) {
RET_NP(0,stg_NO_FINALIZER_closure);
} else {
RET_NP(1,f);
}
}
stg_deRefWeakzh
{
/* R1 = weak ptr */
W_ w, code, val;
w = R1;
if (GET_INFO(w) == stg_WEAK_info) {
code = 1;
val = StgWeak_value(w);
} else {
code = 0;
val = w;
}
RET_NP(code,val);
}
/* -----------------------------------------------------------------------------
Floating point operations.
-------------------------------------------------------------------------- */
stg_decodeFloatzuIntzh
{
W_ p;
F_ arg;
W_ mp_tmp1;
W_ mp_tmp_w;
STK_CHK_GEN( WDS(2), NO_PTRS, stg_decodeFloatzuIntzh );
mp_tmp1 = Sp - WDS(1);
mp_tmp_w = Sp - WDS(2);
/* arguments: F1 = Float# */
arg = F1;
/* Perform the operation */
foreign "C" __decodeFloat_Int(mp_tmp1 "ptr", mp_tmp_w "ptr", arg) [];
/* returns: (Int# (mantissa), Int# (exponent)) */
RET_NN(W_[mp_tmp1], W_[mp_tmp_w]);
}
stg_decodeDoublezu2Intzh
{
D_ arg;
W_ p;
W_ mp_tmp1;
W_ mp_tmp2;
W_ mp_result1;
W_ mp_result2;
STK_CHK_GEN( WDS(4), NO_PTRS, stg_decodeDoublezu2Intzh );
mp_tmp1 = Sp - WDS(1);
mp_tmp2 = Sp - WDS(2);
mp_result1 = Sp - WDS(3);
mp_result2 = Sp - WDS(4);
/* arguments: D1 = Double# */
arg = D1;
/* Perform the operation */
foreign "C" __decodeDouble_2Int(mp_tmp1 "ptr", mp_tmp2 "ptr",
mp_result1 "ptr", mp_result2 "ptr",
arg) [];
/* returns:
(Int# (mant sign), Word# (mant high), Word# (mant low), Int# (expn)) */
RET_NNNN(W_[mp_tmp1], W_[mp_tmp2], W_[mp_result1], W_[mp_result2]);
}
/* -----------------------------------------------------------------------------
* Concurrency primitives
* -------------------------------------------------------------------------- */
stg_forkzh
{
/* args: R1 = closure to spark */
MAYBE_GC(R1_PTR, stg_forkzh);
W_ closure;
W_ threadid;
closure = R1;
("ptr" threadid) = foreign "C" createIOThread( MyCapability() "ptr",
RtsFlags_GcFlags_initialStkSize(RtsFlags),
closure "ptr") [];
/* start blocked if the current thread is blocked */
StgTSO_flags(threadid) = %lobits16(
TO_W_(StgTSO_flags(threadid)) |
TO_W_(StgTSO_flags(CurrentTSO)) & (TSO_BLOCKEX | TSO_INTERRUPTIBLE));
foreign "C" scheduleThread(MyCapability() "ptr", threadid "ptr") [];
// context switch soon, but not immediately: we don't want every
// forkIO to force a context-switch.
Capability_context_switch(MyCapability()) = 1 :: CInt;
RET_P(threadid);
}
stg_forkOnzh
{
/* args: R1 = cpu, R2 = closure to spark */
MAYBE_GC(R2_PTR, stg_forkOnzh);
W_ cpu;
W_ closure;
W_ threadid;
cpu = R1;
closure = R2;
("ptr" threadid) = foreign "C" createIOThread( MyCapability() "ptr",
RtsFlags_GcFlags_initialStkSize(RtsFlags),
closure "ptr") [];
/* start blocked if the current thread is blocked */
StgTSO_flags(threadid) = %lobits16(
TO_W_(StgTSO_flags(threadid)) |
TO_W_(StgTSO_flags(CurrentTSO)) & (TSO_BLOCKEX | TSO_INTERRUPTIBLE));
foreign "C" scheduleThreadOn(MyCapability() "ptr", cpu, threadid "ptr") [];
// context switch soon, but not immediately: we don't want every
// forkIO to force a context-switch.
Capability_context_switch(MyCapability()) = 1 :: CInt;
RET_P(threadid);
}
stg_yieldzh
{
jump stg_yield_noregs;
}
stg_myThreadIdzh
{
/* no args. */
RET_P(CurrentTSO);
}
stg_labelThreadzh
{
/* args:
R1 = ThreadId#
R2 = Addr# */
#if defined(DEBUG) || defined(TRACING) || defined(DTRACE)
foreign "C" labelThread(MyCapability() "ptr", R1 "ptr", R2 "ptr") [];
#endif
jump %ENTRY_CODE(Sp(0));
}
stg_isCurrentThreadBoundzh
{
/* no args */
W_ r;
(r) = foreign "C" isThreadBound(CurrentTSO) [];
RET_N(r);
}
stg_threadStatuszh
{
/* args: R1 :: ThreadId# */
W_ tso;
W_ why_blocked;
W_ what_next;
W_ ret, cap, locked;
tso = R1;
what_next = TO_W_(StgTSO_what_next(tso));
why_blocked = TO_W_(StgTSO_why_blocked(tso));
// Note: these two reads are not atomic, so they might end up
// being inconsistent. It doesn't matter, since we
// only return one or the other. If we wanted to return the
// contents of block_info too, then we'd have to do some synchronisation.
if (what_next == ThreadComplete) {
ret = 16; // NB. magic, matches up with GHC.Conc.threadStatus
} else {
if (what_next == ThreadKilled) {
ret = 17;
} else {
ret = why_blocked;
}
}
cap = TO_W_(Capability_no(StgTSO_cap(tso)));
if ((TO_W_(StgTSO_flags(tso)) & TSO_LOCKED) != 0) {
locked = 1;
} else {
locked = 0;
}
RET_NNN(ret,cap,locked);
}
/* -----------------------------------------------------------------------------
* TVar primitives
* -------------------------------------------------------------------------- */
#define SP_OFF 0
// Catch retry frame ------------------------------------------------------------
INFO_TABLE_RET(stg_catch_retry_frame, CATCH_RETRY_FRAME,
#if defined(PROFILING)
W_ unused1, W_ unused2,
#endif
W_ unused3, P_ unused4, P_ unused5)
{
W_ r, frame, trec, outer;
frame = Sp;
trec = StgTSO_trec(CurrentTSO);
outer = StgTRecHeader_enclosing_trec(trec);
(r) = foreign "C" stmCommitNestedTransaction(MyCapability() "ptr", trec "ptr") [];
if (r != 0) {
/* Succeeded (either first branch or second branch) */
StgTSO_trec(CurrentTSO) = outer;
Sp = Sp + SIZEOF_StgCatchRetryFrame;
jump %ENTRY_CODE(Sp(SP_OFF));
} else {
/* Did not commit: re-execute */
W_ new_trec;
("ptr" new_trec) = foreign "C" stmStartTransaction(MyCapability() "ptr", outer "ptr") [];
StgTSO_trec(CurrentTSO) = new_trec;
if (StgCatchRetryFrame_running_alt_code(frame) != 0::I32) {
R1 = StgCatchRetryFrame_alt_code(frame);
} else {
R1 = StgCatchRetryFrame_first_code(frame);
}
jump stg_ap_v_fast;
}
}
// Atomically frame ------------------------------------------------------------
INFO_TABLE_RET(stg_atomically_frame, ATOMICALLY_FRAME,
#if defined(PROFILING)
W_ unused1, W_ unused2,
#endif
P_ code, P_ next_invariant_to_check, P_ result)
{
W_ frame, trec, valid, next_invariant, q, outer;
frame = Sp;
trec = StgTSO_trec(CurrentTSO);
result = R1;
outer = StgTRecHeader_enclosing_trec(trec);
if (outer == NO_TREC) {
/* First time back at the atomically frame -- pick up invariants */
("ptr" q) = foreign "C" stmGetInvariantsToCheck(MyCapability() "ptr", trec "ptr") [];
StgAtomicallyFrame_next_invariant_to_check(frame) = q;
StgAtomicallyFrame_result(frame) = result;
} else {
/* Second/subsequent time back at the atomically frame -- abort the
* tx that's checking the invariant and move on to the next one */
StgTSO_trec(CurrentTSO) = outer;
q = StgAtomicallyFrame_next_invariant_to_check(frame);
StgInvariantCheckQueue_my_execution(q) = trec;
foreign "C" stmAbortTransaction(MyCapability() "ptr", trec "ptr") [];
/* Don't free trec -- it's linked from q and will be stashed in the
* invariant if we eventually commit. */
q = StgInvariantCheckQueue_next_queue_entry(q);
StgAtomicallyFrame_next_invariant_to_check(frame) = q;
trec = outer;
}
q = StgAtomicallyFrame_next_invariant_to_check(frame);
if (q != END_INVARIANT_CHECK_QUEUE) {
/* We can't commit yet: another invariant to check */
("ptr" trec) = foreign "C" stmStartTransaction(MyCapability() "ptr", trec "ptr") [];
StgTSO_trec(CurrentTSO) = trec;
next_invariant = StgInvariantCheckQueue_invariant(q);
R1 = StgAtomicInvariant_code(next_invariant);
jump stg_ap_v_fast;
} else {
/* We've got no more invariants to check, try to commit */
(valid) = foreign "C" stmCommitTransaction(MyCapability() "ptr", trec "ptr") [];
if (valid != 0) {
/* Transaction was valid: commit succeeded */
StgTSO_trec(CurrentTSO) = NO_TREC;
R1 = StgAtomicallyFrame_result(frame);
Sp = Sp + SIZEOF_StgAtomicallyFrame;
jump %ENTRY_CODE(Sp(SP_OFF));
} else {
/* Transaction was not valid: try again */
("ptr" trec) = foreign "C" stmStartTransaction(MyCapability() "ptr", NO_TREC "ptr") [];
StgTSO_trec(CurrentTSO) = trec;
StgAtomicallyFrame_next_invariant_to_check(frame) = END_INVARIANT_CHECK_QUEUE;
R1 = StgAtomicallyFrame_code(frame);
jump stg_ap_v_fast;
}
}
}
INFO_TABLE_RET(stg_atomically_waiting_frame, ATOMICALLY_FRAME,
#if defined(PROFILING)
W_ unused1, W_ unused2,
#endif
P_ code, P_ next_invariant_to_check, P_ result)
{
W_ frame, trec, valid;
frame = Sp;
/* The TSO is currently waiting: should we stop waiting? */
(valid) = foreign "C" stmReWait(MyCapability() "ptr", CurrentTSO "ptr") [];
if (valid != 0) {
/* Previous attempt is still valid: no point trying again yet */
jump stg_block_noregs;
} else {
/* Previous attempt is no longer valid: try again */
("ptr" trec) = foreign "C" stmStartTransaction(MyCapability() "ptr", NO_TREC "ptr") [];
StgTSO_trec(CurrentTSO) = trec;
StgHeader_info(frame) = stg_atomically_frame_info;
R1 = StgAtomicallyFrame_code(frame);
jump stg_ap_v_fast;
}
}
// STM catch frame --------------------------------------------------------------
#define SP_OFF 0
/* Catch frames are very similar to update frames, but when entering
* one we just pop the frame off the stack and perform the correct
* kind of return to the activation record underneath us on the stack.
*/
INFO_TABLE_RET(stg_catch_stm_frame, CATCH_STM_FRAME,
#if defined(PROFILING)
W_ unused1, W_ unused2,
#endif
P_ unused3, P_ unused4)
{
W_ r, frame, trec, outer;
frame = Sp;
trec = StgTSO_trec(CurrentTSO);
outer = StgTRecHeader_enclosing_trec(trec);
(r) = foreign "C" stmCommitNestedTransaction(MyCapability() "ptr", trec "ptr") [];
if (r != 0) {
/* Commit succeeded */
StgTSO_trec(CurrentTSO) = outer;
Sp = Sp + SIZEOF_StgCatchSTMFrame;
jump %ENTRY_CODE(Sp(SP_OFF));
} else {
/* Commit failed */
W_ new_trec;
("ptr" new_trec) = foreign "C" stmStartTransaction(MyCapability() "ptr", outer "ptr") [];
StgTSO_trec(CurrentTSO) = new_trec;
R1 = StgCatchSTMFrame_code(frame);
jump stg_ap_v_fast;
}
}
// Primop definition ------------------------------------------------------------
stg_atomicallyzh
{
W_ frame;
W_ old_trec;
W_ new_trec;
// stmStartTransaction may allocate
MAYBE_GC (R1_PTR, stg_atomicallyzh);
/* Args: R1 = m :: STM a */
STK_CHK_GEN(SIZEOF_StgAtomicallyFrame + WDS(1), R1_PTR, stg_atomicallyzh);
old_trec = StgTSO_trec(CurrentTSO);
/* Nested transactions are not allowed; raise an exception */
if (old_trec != NO_TREC) {
R1 = base_ControlziExceptionziBase_nestedAtomically_closure;
jump stg_raisezh;
}
/* Set up the atomically frame */
Sp = Sp - SIZEOF_StgAtomicallyFrame;
frame = Sp;
SET_HDR(frame,stg_atomically_frame_info, CCCS);
StgAtomicallyFrame_code(frame) = R1;
StgAtomicallyFrame_result(frame) = NO_TREC;
StgAtomicallyFrame_next_invariant_to_check(frame) = END_INVARIANT_CHECK_QUEUE;
/* Start the memory transcation */
("ptr" new_trec) = foreign "C" stmStartTransaction(MyCapability() "ptr", old_trec "ptr") [R1];
StgTSO_trec(CurrentTSO) = new_trec;
/* Apply R1 to the realworld token */
jump stg_ap_v_fast;
}
// A closure representing "atomically x". This is used when a thread
// inside a transaction receives an asynchronous exception; see #5866.
// It is somewhat similar to the stg_raise closure.
//
INFO_TABLE(stg_atomically,1,0,THUNK_1_0,"atomically","atomically")
{
R1 = StgThunk_payload(R1,0);
jump stg_atomicallyzh;
}
stg_catchSTMzh
{
W_ frame;
/* Args: R1 :: STM a */
/* Args: R2 :: Exception -> STM a */
STK_CHK_GEN(SIZEOF_StgCatchSTMFrame + WDS(1), R1_PTR & R2_PTR, stg_catchSTMzh);
/* Set up the catch frame */
Sp = Sp - SIZEOF_StgCatchSTMFrame;
frame = Sp;
SET_HDR(frame, stg_catch_stm_frame_info, CCCS);
StgCatchSTMFrame_handler(frame) = R2;
StgCatchSTMFrame_code(frame) = R1;
/* Start a nested transaction to run the body of the try block in */
W_ cur_trec;
W_ new_trec;
cur_trec = StgTSO_trec(CurrentTSO);
("ptr" new_trec) = foreign "C" stmStartTransaction(MyCapability() "ptr", cur_trec "ptr");
StgTSO_trec(CurrentTSO) = new_trec;
/* Apply R1 to the realworld token */
jump stg_ap_v_fast;
}
stg_catchRetryzh
{
W_ frame;
W_ new_trec;
W_ trec;
// stmStartTransaction may allocate
MAYBE_GC (R1_PTR & R2_PTR, stg_catchRetryzh);
/* Args: R1 :: STM a */
/* Args: R2 :: STM a */
STK_CHK_GEN(SIZEOF_StgCatchRetryFrame + WDS(1), R1_PTR & R2_PTR, stg_catchRetryzh);
/* Start a nested transaction within which to run the first code */
trec = StgTSO_trec(CurrentTSO);
("ptr" new_trec) = foreign "C" stmStartTransaction(MyCapability() "ptr", trec "ptr") [R1,R2];
StgTSO_trec(CurrentTSO) = new_trec;
/* Set up the catch-retry frame */
Sp = Sp - SIZEOF_StgCatchRetryFrame;
frame = Sp;
SET_HDR(frame, stg_catch_retry_frame_info, CCCS);
StgCatchRetryFrame_running_alt_code(frame) = 0 :: CInt; // false;
StgCatchRetryFrame_first_code(frame) = R1;
StgCatchRetryFrame_alt_code(frame) = R2;
/* Apply R1 to the realworld token */
jump stg_ap_v_fast;
}
stg_retryzh
{
W_ frame_type;
W_ frame;
W_ trec;
W_ outer;
W_ r;
MAYBE_GC (NO_PTRS, stg_retryzh); // STM operations may allocate
// Find the enclosing ATOMICALLY_FRAME or CATCH_RETRY_FRAME
retry_pop_stack:
SAVE_THREAD_STATE();
(frame_type) = foreign "C" findRetryFrameHelper(MyCapability(), CurrentTSO "ptr") [];
LOAD_THREAD_STATE();
frame = Sp;
trec = StgTSO_trec(CurrentTSO);
outer = StgTRecHeader_enclosing_trec(trec);
if (frame_type == CATCH_RETRY_FRAME) {
// The retry reaches a CATCH_RETRY_FRAME before the atomic frame
ASSERT(outer != NO_TREC);
// Abort the transaction attempting the current branch
foreign "C" stmAbortTransaction(MyCapability() "ptr", trec "ptr") [];
foreign "C" stmFreeAbortedTRec(MyCapability() "ptr", trec "ptr") [];
if (!StgCatchRetryFrame_running_alt_code(frame) != 0::I32) {
// Retry in the first branch: try the alternative
("ptr" trec) = foreign "C" stmStartTransaction(MyCapability() "ptr", outer "ptr") [];
StgTSO_trec(CurrentTSO) = trec;
StgCatchRetryFrame_running_alt_code(frame) = 1 :: CInt; // true;
R1 = StgCatchRetryFrame_alt_code(frame);
jump stg_ap_v_fast;
} else {
// Retry in the alternative code: propagate the retry
StgTSO_trec(CurrentTSO) = outer;
Sp = Sp + SIZEOF_StgCatchRetryFrame;
goto retry_pop_stack;
}
}
// We've reached the ATOMICALLY_FRAME: attempt to wait
ASSERT(frame_type == ATOMICALLY_FRAME);
if (outer != NO_TREC) {
// We called retry while checking invariants, so abort the current
// invariant check (merging its TVar accesses into the parents read
// set so we'll wait on them)
foreign "C" stmAbortTransaction(MyCapability() "ptr", trec "ptr") [];
foreign "C" stmFreeAbortedTRec(MyCapability() "ptr", trec "ptr") [];
trec = outer;
StgTSO_trec(CurrentTSO) = trec;
outer = StgTRecHeader_enclosing_trec(trec);
}
ASSERT(outer == NO_TREC);
(r) = foreign "C" stmWait(MyCapability() "ptr", CurrentTSO "ptr", trec "ptr") [];
if (r != 0) {
// Transaction was valid: stmWait put us on the TVars' queues, we now block
StgHeader_info(frame) = stg_atomically_waiting_frame_info;
Sp = frame;
// Fix up the stack in the unregisterised case: the return convention is different.
R3 = trec; // passing to stmWaitUnblock()
jump stg_block_stmwait;
} else {
// Transaction was not valid: retry immediately
("ptr" trec) = foreign "C" stmStartTransaction(MyCapability() "ptr", outer "ptr") [];
StgTSO_trec(CurrentTSO) = trec;
R1 = StgAtomicallyFrame_code(frame);
Sp = frame;
jump stg_ap_v_fast;
}
}
stg_checkzh
{
W_ trec, closure;
/* Args: R1 = invariant closure */
MAYBE_GC (R1_PTR, stg_checkzh);
trec = StgTSO_trec(CurrentTSO);
closure = R1;
foreign "C" stmAddInvariantToCheck(MyCapability() "ptr",
trec "ptr",
closure "ptr") [];
jump %ENTRY_CODE(Sp(0));
}
stg_newTVarzh
{
W_ tv;
W_ new_value;
/* Args: R1 = initialisation value */
MAYBE_GC (R1_PTR, stg_newTVarzh);
new_value = R1;
("ptr" tv) = foreign "C" stmNewTVar(MyCapability() "ptr", new_value "ptr") [];
RET_P(tv);
}
stg_readTVarzh
{
W_ trec;
W_ tvar;
W_ result;
/* Args: R1 = TVar closure */
MAYBE_GC (R1_PTR, stg_readTVarzh); // Call to stmReadTVar may allocate
trec = StgTSO_trec(CurrentTSO);
tvar = R1;
("ptr" result) = foreign "C" stmReadTVar(MyCapability() "ptr", trec "ptr", tvar "ptr") [];
RET_P(result);
}
stg_readTVarIOzh
{
W_ result;
again:
result = StgTVar_current_value(R1);
if (%INFO_PTR(result) == stg_TREC_HEADER_info) {
goto again;
}
RET_P(result);
}
stg_writeTVarzh
{
W_ trec;
W_ tvar;
W_ new_value;
/* Args: R1 = TVar closure */
/* R2 = New value */
MAYBE_GC (R1_PTR & R2_PTR, stg_writeTVarzh); // Call to stmWriteTVar may allocate
trec = StgTSO_trec(CurrentTSO);
tvar = R1;
new_value = R2;
foreign "C" stmWriteTVar(MyCapability() "ptr", trec "ptr", tvar "ptr", new_value "ptr") [];
jump %ENTRY_CODE(Sp(0));
}
/* -----------------------------------------------------------------------------
* MVar primitives
*
* take & putMVar work as follows. Firstly, an important invariant:
*
* If the MVar is full, then the blocking queue contains only
* threads blocked on putMVar, and if the MVar is empty then the
* blocking queue contains only threads blocked on takeMVar.
*
* takeMvar:
* MVar empty : then add ourselves to the blocking queue
* MVar full : remove the value from the MVar, and
* blocking queue empty : return
* blocking queue non-empty : perform the first blocked putMVar
* from the queue, and wake up the
* thread (MVar is now full again)
*
* putMVar is just the dual of the above algorithm.
*
* How do we "perform a putMVar"? Well, we have to fiddle around with
* the stack of the thread waiting to do the putMVar. See
* stg_block_putmvar and stg_block_takemvar in HeapStackCheck.c for
* the stack layout, and the PerformPut and PerformTake macros below.
*
* It is important that a blocked take or put is woken up with the
* take/put already performed, because otherwise there would be a
* small window of vulnerability where the thread could receive an
* exception and never perform its take or put, and we'd end up with a
* deadlock.
*
* -------------------------------------------------------------------------- */
stg_isEmptyMVarzh
{
/* args: R1 = MVar closure */
if (StgMVar_value(R1) == stg_END_TSO_QUEUE_closure) {
RET_N(1);
} else {
RET_N(0);
}
}
stg_newMVarzh
{
/* args: none */
W_ mvar;
ALLOC_PRIM ( SIZEOF_StgMVar, NO_PTRS, stg_newMVarzh );
mvar = Hp - SIZEOF_StgMVar + WDS(1);
SET_HDR(mvar,stg_MVAR_DIRTY_info,CCCS);
// MVARs start dirty: generation 0 has no mutable list
StgMVar_head(mvar) = stg_END_TSO_QUEUE_closure;
StgMVar_tail(mvar) = stg_END_TSO_QUEUE_closure;
StgMVar_value(mvar) = stg_END_TSO_QUEUE_closure;
RET_P(mvar);
}
#define PerformTake(stack, value) \
W_ sp; \
sp = StgStack_sp(stack); \
W_[sp + WDS(1)] = value; \
W_[sp + WDS(0)] = stg_gc_unpt_r1_info;
#define PerformPut(stack,lval) \
W_ sp; \
sp = StgStack_sp(stack) + WDS(3); \
StgStack_sp(stack) = sp; \
lval = W_[sp - WDS(1)];
stg_takeMVarzh
{
W_ mvar, val, info, tso, q;
/* args: R1 = MVar closure */
mvar = R1;
#if defined(THREADED_RTS)
("ptr" info) = foreign "C" lockClosure(mvar "ptr") [];
#else
info = GET_INFO(mvar);
#endif
if (info == stg_MVAR_CLEAN_info) {
foreign "C" dirty_MVAR(BaseReg "ptr", mvar "ptr") [];
}
/* If the MVar is empty, put ourselves on its blocking queue,
* and wait until we're woken up.
*/
if (StgMVar_value(mvar) == stg_END_TSO_QUEUE_closure) {
// Note [mvar-heap-check] We want to do the heap check in the
// branch here, to avoid the conditional in the common case.
// However, we've already locked the MVar above, so we better
// be careful to unlock it again if the the heap check fails.
// Unfortunately we don't have an easy way to inject any code
// into the heap check generated by the code generator, so we
// have to do it in stg_gc_gen (see HeapStackCheck.cmm).
HP_CHK_GEN_TICKY(SIZEOF_StgMVarTSOQueue, R1_PTR, stg_takeMVarzh);
TICK_ALLOC_PRIM(SIZEOF_StgMVarTSOQueue, 0, 0);
CCCS_ALLOC(SIZEOF_StgMVarTSOQueue);
q = Hp - SIZEOF_StgMVarTSOQueue + WDS(1);
SET_HDR(q, stg_MVAR_TSO_QUEUE_info, CCS_SYSTEM);
StgMVarTSOQueue_link(q) = END_TSO_QUEUE;
StgMVarTSOQueue_tso(q) = CurrentTSO;
if (StgMVar_head(mvar) == stg_END_TSO_QUEUE_closure) {
StgMVar_head(mvar) = q;
} else {
StgMVarTSOQueue_link(StgMVar_tail(mvar)) = q;
foreign "C" recordClosureMutated(MyCapability() "ptr",
StgMVar_tail(mvar)) [];
}
StgTSO__link(CurrentTSO) = q;
StgTSO_block_info(CurrentTSO) = mvar;
StgTSO_why_blocked(CurrentTSO) = BlockedOnMVar::I16;
StgMVar_tail(mvar) = q;
R1 = mvar;
jump stg_block_takemvar;
}
/* we got the value... */
val = StgMVar_value(mvar);
q = StgMVar_head(mvar);
loop:
if (q == stg_END_TSO_QUEUE_closure) {
/* No further putMVars, MVar is now empty */
StgMVar_value(mvar) = stg_END_TSO_QUEUE_closure;
unlockClosure(mvar, stg_MVAR_DIRTY_info);
RET_P(val);
}
if (StgHeader_info(q) == stg_IND_info ||
StgHeader_info(q) == stg_MSG_NULL_info) {
q = StgInd_indirectee(q);
goto loop;
}
// There are putMVar(s) waiting... wake up the first thread on the queue
tso = StgMVarTSOQueue_tso(q);
StgMVar_head(mvar) = StgMVarTSOQueue_link(q);
if (StgMVar_head(mvar) == stg_END_TSO_QUEUE_closure) {
StgMVar_tail(mvar) = stg_END_TSO_QUEUE_closure;
}
ASSERT(StgTSO_why_blocked(tso) == BlockedOnMVar::I16);
ASSERT(StgTSO_block_info(tso) == mvar);
// actually perform the putMVar for the thread that we just woke up
W_ stack;
stack = StgTSO_stackobj(tso);
PerformPut(stack, StgMVar_value(mvar));
// indicate that the MVar operation has now completed.
StgTSO__link(tso) = stg_END_TSO_QUEUE_closure;
// no need to mark the TSO dirty, we have only written END_TSO_QUEUE.
foreign "C" tryWakeupThread(MyCapability() "ptr", tso) [];
unlockClosure(mvar, stg_MVAR_DIRTY_info);
RET_P(val);
}
stg_tryTakeMVarzh
{
W_ mvar, val, info, tso, q;
/* args: R1 = MVar closure */
mvar = R1;
#if defined(THREADED_RTS)
("ptr" info) = foreign "C" lockClosure(mvar "ptr") [];
#else
info = GET_INFO(mvar);
#endif
/* If the MVar is empty, put ourselves on its blocking queue,
* and wait until we're woken up.
*/
if (StgMVar_value(mvar) == stg_END_TSO_QUEUE_closure) {
#if defined(THREADED_RTS)
unlockClosure(mvar, info);
#endif
/* HACK: we need a pointer to pass back,
* so we abuse NO_FINALIZER_closure
*/
RET_NP(0, stg_NO_FINALIZER_closure);
}
if (info == stg_MVAR_CLEAN_info) {
foreign "C" dirty_MVAR(BaseReg "ptr", mvar "ptr") [];
}
/* we got the value... */
val = StgMVar_value(mvar);
q = StgMVar_head(mvar);
loop:
if (q == stg_END_TSO_QUEUE_closure) {
/* No further putMVars, MVar is now empty */
StgMVar_value(mvar) = stg_END_TSO_QUEUE_closure;
unlockClosure(mvar, stg_MVAR_DIRTY_info);
RET_NP(1, val);
}
if (StgHeader_info(q) == stg_IND_info ||
StgHeader_info(q) == stg_MSG_NULL_info) {
q = StgInd_indirectee(q);
goto loop;
}
// There are putMVar(s) waiting... wake up the first thread on the queue
tso = StgMVarTSOQueue_tso(q);
StgMVar_head(mvar) = StgMVarTSOQueue_link(q);
if (StgMVar_head(mvar) == stg_END_TSO_QUEUE_closure) {
StgMVar_tail(mvar) = stg_END_TSO_QUEUE_closure;
}
ASSERT(StgTSO_why_blocked(tso) == BlockedOnMVar::I16);
ASSERT(StgTSO_block_info(tso) == mvar);
// actually perform the putMVar for the thread that we just woke up
W_ stack;
stack = StgTSO_stackobj(tso);
PerformPut(stack, StgMVar_value(mvar));
// indicate that the MVar operation has now completed.
StgTSO__link(tso) = stg_END_TSO_QUEUE_closure;
// no need to mark the TSO dirty, we have only written END_TSO_QUEUE.
foreign "C" tryWakeupThread(MyCapability() "ptr", tso) [];
unlockClosure(mvar, stg_MVAR_DIRTY_info);
RET_NP(1,val);
}
stg_putMVarzh
{
W_ mvar, val, info, tso, q;
/* args: R1 = MVar, R2 = value */
mvar = R1;
val = R2;
#if defined(THREADED_RTS)
("ptr" info) = foreign "C" lockClosure(mvar "ptr") [];
#else
info = GET_INFO(mvar);
#endif
if (info == stg_MVAR_CLEAN_info) {
foreign "C" dirty_MVAR(BaseReg "ptr", mvar "ptr");
}
if (StgMVar_value(mvar) != stg_END_TSO_QUEUE_closure) {
// see Note [mvar-heap-check] above
HP_CHK_GEN_TICKY(SIZEOF_StgMVarTSOQueue, R1_PTR & R2_PTR, stg_putMVarzh);
TICK_ALLOC_PRIM(SIZEOF_StgMVarTSOQueue, 0, 0);
CCCS_ALLOC(SIZEOF_StgMVarTSOQueue);
q = Hp - SIZEOF_StgMVarTSOQueue + WDS(1);
SET_HDR(q, stg_MVAR_TSO_QUEUE_info, CCS_SYSTEM);
StgMVarTSOQueue_link(q) = END_TSO_QUEUE;
StgMVarTSOQueue_tso(q) = CurrentTSO;
if (StgMVar_head(mvar) == stg_END_TSO_QUEUE_closure) {
StgMVar_head(mvar) = q;
} else {
StgMVarTSOQueue_link(StgMVar_tail(mvar)) = q;
foreign "C" recordClosureMutated(MyCapability() "ptr",
StgMVar_tail(mvar)) [];
}
StgTSO__link(CurrentTSO) = q;
StgTSO_block_info(CurrentTSO) = mvar;
StgTSO_why_blocked(CurrentTSO) = BlockedOnMVar::I16;
StgMVar_tail(mvar) = q;
R1 = mvar;
R2 = val;
jump stg_block_putmvar;
}
q = StgMVar_head(mvar);
loop:
if (q == stg_END_TSO_QUEUE_closure) {
/* No further takes, the MVar is now full. */
StgMVar_value(mvar) = val;
unlockClosure(mvar, stg_MVAR_DIRTY_info);
jump %ENTRY_CODE(Sp(0));
}
if (StgHeader_info(q) == stg_IND_info ||
StgHeader_info(q) == stg_MSG_NULL_info) {
q = StgInd_indirectee(q);
goto loop;
}
// There are takeMVar(s) waiting: wake up the first one
tso = StgMVarTSOQueue_tso(q);
StgMVar_head(mvar) = StgMVarTSOQueue_link(q);
if (StgMVar_head(mvar) == stg_END_TSO_QUEUE_closure) {
StgMVar_tail(mvar) = stg_END_TSO_QUEUE_closure;
}
ASSERT(StgTSO_why_blocked(tso) == BlockedOnMVar::I16);
ASSERT(StgTSO_block_info(tso) == mvar);
// actually perform the takeMVar
W_ stack;
stack = StgTSO_stackobj(tso);
PerformTake(stack, val);
// indicate that the MVar operation has now completed.
StgTSO__link(tso) = stg_END_TSO_QUEUE_closure;
if (TO_W_(StgStack_dirty(stack)) == 0) {
foreign "C" dirty_STACK(MyCapability() "ptr", stack "ptr") [];
}
foreign "C" tryWakeupThread(MyCapability() "ptr", tso) [];
unlockClosure(mvar, stg_MVAR_DIRTY_info);
jump %ENTRY_CODE(Sp(0));
}
stg_tryPutMVarzh
{
W_ mvar, val, info, tso, q;
/* args: R1 = MVar, R2 = value */
mvar = R1;
val = R2;
#if defined(THREADED_RTS)
("ptr" info) = foreign "C" lockClosure(mvar "ptr") [];
#else
info = GET_INFO(mvar);
#endif
if (StgMVar_value(mvar) != stg_END_TSO_QUEUE_closure) {
#if defined(THREADED_RTS)
unlockClosure(mvar, info);
#endif
RET_N(0);
}
if (info == stg_MVAR_CLEAN_info) {
foreign "C" dirty_MVAR(BaseReg "ptr", mvar "ptr");
}
q = StgMVar_head(mvar);
loop:
if (q == stg_END_TSO_QUEUE_closure) {
/* No further takes, the MVar is now full. */
StgMVar_value(mvar) = val;
unlockClosure(mvar, stg_MVAR_DIRTY_info);
RET_N(1);
}
if (StgHeader_info(q) == stg_IND_info ||
StgHeader_info(q) == stg_MSG_NULL_info) {
q = StgInd_indirectee(q);
goto loop;
}
// There are takeMVar(s) waiting: wake up the first one
tso = StgMVarTSOQueue_tso(q);
StgMVar_head(mvar) = StgMVarTSOQueue_link(q);
if (StgMVar_head(mvar) == stg_END_TSO_QUEUE_closure) {
StgMVar_tail(mvar) = stg_END_TSO_QUEUE_closure;
}
ASSERT(StgTSO_why_blocked(tso) == BlockedOnMVar::I16);
ASSERT(StgTSO_block_info(tso) == mvar);
// actually perform the takeMVar
W_ stack;
stack = StgTSO_stackobj(tso);
PerformTake(stack, val);
// indicate that the MVar operation has now completed.
StgTSO__link(tso) = stg_END_TSO_QUEUE_closure;
if (TO_W_(StgStack_dirty(stack)) == 0) {
foreign "C" dirty_STACK(MyCapability() "ptr", stack "ptr") [];
}
foreign "C" tryWakeupThread(MyCapability() "ptr", tso) [];
unlockClosure(mvar, stg_MVAR_DIRTY_info);
RET_N(1);
}
/* -----------------------------------------------------------------------------
Stable pointer primitives
------------------------------------------------------------------------- */
stg_makeStableNamezh
{
W_ index, sn_obj;
ALLOC_PRIM( SIZEOF_StgStableName, R1_PTR, stg_makeStableNamezh );
(index) = foreign "C" lookupStableName(R1 "ptr") [];
/* Is there already a StableName for this heap object?
* stable_ptr_table is a pointer to an array of snEntry structs.
*/
if ( snEntry_sn_obj(W_[stable_ptr_table] + index*SIZEOF_snEntry) == NULL ) {
sn_obj = Hp - SIZEOF_StgStableName + WDS(1);
SET_HDR(sn_obj, stg_STABLE_NAME_info, CCCS);
StgStableName_sn(sn_obj) = index;
snEntry_sn_obj(W_[stable_ptr_table] + index*SIZEOF_snEntry) = sn_obj;
} else {
sn_obj = snEntry_sn_obj(W_[stable_ptr_table] + index*SIZEOF_snEntry);
}
RET_P(sn_obj);
}
stg_makeStablePtrzh
{
/* Args: R1 = a */
W_ sp;
MAYBE_GC(R1_PTR, stg_makeStablePtrzh);
("ptr" sp) = foreign "C" getStablePtr(R1 "ptr") [];
RET_N(sp);
}
stg_deRefStablePtrzh
{
/* Args: R1 = the stable ptr */
W_ r, sp;
sp = R1;
r = snEntry_addr(W_[stable_ptr_table] + sp*SIZEOF_snEntry);
RET_P(r);
}
/* -----------------------------------------------------------------------------
Bytecode object primitives
------------------------------------------------------------------------- */
stg_newBCOzh
{
/* R1 = instrs
R2 = literals
R3 = ptrs
R4 = arity
R5 = bitmap array
*/
W_ bco, bitmap_arr, bytes, words;
bitmap_arr = R5;
words = BYTES_TO_WDS(SIZEOF_StgBCO) + BYTE_ARR_WDS(bitmap_arr);
bytes = WDS(words);
ALLOC_PRIM( bytes, R1_PTR&R2_PTR&R3_PTR&R5_PTR, stg_newBCOzh );
bco = Hp - bytes + WDS(1);
SET_HDR(bco, stg_BCO_info, CCCS);
StgBCO_instrs(bco) = R1;
StgBCO_literals(bco) = R2;
StgBCO_ptrs(bco) = R3;
StgBCO_arity(bco) = HALF_W_(R4);
StgBCO_size(bco) = HALF_W_(words);
// Copy the arity/bitmap info into the BCO
W_ i;
i = 0;
for:
if (i < BYTE_ARR_WDS(bitmap_arr)) {
StgBCO_bitmap(bco,i) = StgArrWords_payload(bitmap_arr,i);
i = i + 1;
goto for;
}
RET_P(bco);
}
stg_mkApUpd0zh
{
// R1 = the BCO# for the AP
//
W_ ap;
// This function is *only* used to wrap zero-arity BCOs in an
// updatable wrapper (see ByteCodeLink.lhs). An AP thunk is always
// saturated and always points directly to a FUN or BCO.
ASSERT(%INFO_TYPE(%GET_STD_INFO(R1)) == HALF_W_(BCO) &&
StgBCO_arity(R1) == HALF_W_(0));
HP_CHK_GEN_TICKY(SIZEOF_StgAP, R1_PTR, stg_mkApUpd0zh);
TICK_ALLOC_UP_THK(0, 0);
CCCS_ALLOC(SIZEOF_StgAP);
ap = Hp - SIZEOF_StgAP + WDS(1);
SET_HDR(ap, stg_AP_info, CCCS);
StgAP_n_args(ap) = HALF_W_(0);
StgAP_fun(ap) = R1;
RET_P(ap);
}
stg_unpackClosurezh
{
/* args: R1 = closure to analyze */
// TODO: Consider the absence of ptrs or nonptrs as a special case ?
W_ info, ptrs, nptrs, p, ptrs_arr, nptrs_arr;
info = %GET_STD_INFO(UNTAG(R1));
// Some closures have non-standard layout, so we omit those here.
W_ type;
type = TO_W_(%INFO_TYPE(info));
switch [0 .. N_CLOSURE_TYPES] type {
case THUNK_SELECTOR : {
ptrs = 1;
nptrs = 0;
goto out;
}
case THUNK, THUNK_1_0, THUNK_0_1, THUNK_2_0, THUNK_1_1,
THUNK_0_2, THUNK_STATIC, AP, PAP, AP_STACK, BCO : {
ptrs = 0;
nptrs = 0;
goto out;
}
default: {
ptrs = TO_W_(%INFO_PTRS(info));
nptrs = TO_W_(%INFO_NPTRS(info));
goto out;
}}
out:
W_ ptrs_arr_sz, ptrs_arr_cards, nptrs_arr_sz;
nptrs_arr_sz = SIZEOF_StgArrWords + WDS(nptrs);
ptrs_arr_cards = mutArrPtrsCardWords(ptrs);
ptrs_arr_sz = SIZEOF_StgMutArrPtrs + WDS(ptrs) + WDS(ptrs_arr_cards);
ALLOC_PRIM (ptrs_arr_sz + nptrs_arr_sz, R1_PTR, stg_unpackClosurezh);
W_ clos;
clos = UNTAG(R1);
ptrs_arr = Hp - nptrs_arr_sz - ptrs_arr_sz + WDS(1);
nptrs_arr = Hp - nptrs_arr_sz + WDS(1);
SET_HDR(ptrs_arr, stg_MUT_ARR_PTRS_FROZEN_info, CCCS);
StgMutArrPtrs_ptrs(ptrs_arr) = ptrs;
StgMutArrPtrs_size(ptrs_arr) = ptrs + ptrs_arr_cards;
p = 0;
for:
if(p < ptrs) {
W_[ptrs_arr + SIZEOF_StgMutArrPtrs + WDS(p)] = StgClosure_payload(clos,p);
p = p + 1;
goto for;
}
/* We can leave the card table uninitialised, since the array is
allocated in the nursery. The GC will fill it in if/when the array
is promoted. */
SET_HDR(nptrs_arr, stg_ARR_WORDS_info, CCCS);
StgArrWords_bytes(nptrs_arr) = WDS(nptrs);
p = 0;
for2:
if(p < nptrs) {
W_[BYTE_ARR_CTS(nptrs_arr) + WDS(p)] = StgClosure_payload(clos, p+ptrs);
p = p + 1;
goto for2;
}
RET_NPP(info, ptrs_arr, nptrs_arr);
}
/* -----------------------------------------------------------------------------
Thread I/O blocking primitives
-------------------------------------------------------------------------- */
/* Add a thread to the end of the blocked queue. (C-- version of the C
* macro in Schedule.h).
*/
#define APPEND_TO_BLOCKED_QUEUE(tso) \
ASSERT(StgTSO__link(tso) == END_TSO_QUEUE); \
if (W_[blocked_queue_hd] == END_TSO_QUEUE) { \
W_[blocked_queue_hd] = tso; \
} else { \
foreign "C" setTSOLink(MyCapability() "ptr", W_[blocked_queue_tl] "ptr", tso) []; \
} \
W_[blocked_queue_tl] = tso;
stg_waitReadzh
{
/* args: R1 */
#ifdef THREADED_RTS
foreign "C" barf("waitRead# on threaded RTS") never returns;
#else
ASSERT(StgTSO_why_blocked(CurrentTSO) == NotBlocked::I16);
StgTSO_why_blocked(CurrentTSO) = BlockedOnRead::I16;
StgTSO_block_info(CurrentTSO) = R1;
// No locking - we're not going to use this interface in the
// threaded RTS anyway.
APPEND_TO_BLOCKED_QUEUE(CurrentTSO);
jump stg_block_noregs;
#endif
}
stg_waitWritezh
{
/* args: R1 */
#ifdef THREADED_RTS
foreign "C" barf("waitWrite# on threaded RTS") never returns;
#else
ASSERT(StgTSO_why_blocked(CurrentTSO) == NotBlocked::I16);
StgTSO_why_blocked(CurrentTSO) = BlockedOnWrite::I16;
StgTSO_block_info(CurrentTSO) = R1;
// No locking - we're not going to use this interface in the
// threaded RTS anyway.
APPEND_TO_BLOCKED_QUEUE(CurrentTSO);
jump stg_block_noregs;
#endif
}
STRING(stg_delayzh_malloc_str, "stg_delayzh")
stg_delayzh
{
#ifdef mingw32_HOST_OS
W_ ares;
CInt reqID;
#else
W_ t, prev, target;
#endif
#ifdef THREADED_RTS
foreign "C" barf("delay# on threaded RTS") never returns;
#else
/* args: R1 (microsecond delay amount) */
ASSERT(StgTSO_why_blocked(CurrentTSO) == NotBlocked::I16);
StgTSO_why_blocked(CurrentTSO) = BlockedOnDelay::I16;
#ifdef mingw32_HOST_OS
/* could probably allocate this on the heap instead */
("ptr" ares) = foreign "C" stgMallocBytes(SIZEOF_StgAsyncIOResult,
stg_delayzh_malloc_str);
(reqID) = foreign "C" addDelayRequest(R1);
StgAsyncIOResult_reqID(ares) = reqID;
StgAsyncIOResult_len(ares) = 0;
StgAsyncIOResult_errCode(ares) = 0;
StgTSO_block_info(CurrentTSO) = ares;
/* Having all async-blocked threads reside on the blocked_queue
* simplifies matters, so change the status to OnDoProc put the
* delayed thread on the blocked_queue.
*/
StgTSO_why_blocked(CurrentTSO) = BlockedOnDoProc::I16;
APPEND_TO_BLOCKED_QUEUE(CurrentTSO);
jump stg_block_async_void;
#else
W_ time;
(time) = foreign "C" getourtimeofday() [R1];
// getourtimeofday() returns a value in units of 10ms
// R1 is in microseconds, we need to (/ 10000), rounding up
target = time + 1 + (R1 + 10000-1) / 10000;
StgTSO_block_info(CurrentTSO) = target;
/* Insert the new thread in the sleeping queue. */
prev = NULL;
t = W_[sleeping_queue];
while:
if (t != END_TSO_QUEUE && StgTSO_block_info(t) < target) {
prev = t;
t = StgTSO__link(t);
goto while;
}
StgTSO__link(CurrentTSO) = t;
if (prev == NULL) {
W_[sleeping_queue] = CurrentTSO;
} else {
foreign "C" setTSOLink(MyCapability() "ptr", prev "ptr", CurrentTSO) [];
}
jump stg_block_noregs;
#endif
#endif /* !THREADED_RTS */
}
#ifdef mingw32_HOST_OS
STRING(stg_asyncReadzh_malloc_str, "stg_asyncReadzh")
stg_asyncReadzh
{
W_ ares;
CInt reqID;
#ifdef THREADED_RTS
foreign "C" barf("asyncRead# on threaded RTS") never returns;
#else
/* args: R1 = fd, R2 = isSock, R3 = len, R4 = buf */
ASSERT(StgTSO_why_blocked(CurrentTSO) == NotBlocked::I16);
StgTSO_why_blocked(CurrentTSO) = BlockedOnRead::I16;
/* could probably allocate this on the heap instead */
("ptr" ares) = foreign "C" stgMallocBytes(SIZEOF_StgAsyncIOResult,
stg_asyncReadzh_malloc_str)
[R1,R2,R3,R4];
(reqID) = foreign "C" addIORequest(R1, 0/*FALSE*/,R2,R3,R4 "ptr") [];
StgAsyncIOResult_reqID(ares) = reqID;
StgAsyncIOResult_len(ares) = 0;
StgAsyncIOResult_errCode(ares) = 0;
StgTSO_block_info(CurrentTSO) = ares;
APPEND_TO_BLOCKED_QUEUE(CurrentTSO);
jump stg_block_async;
#endif
}
STRING(stg_asyncWritezh_malloc_str, "stg_asyncWritezh")
stg_asyncWritezh
{
W_ ares;
CInt reqID;
#ifdef THREADED_RTS
foreign "C" barf("asyncWrite# on threaded RTS") never returns;
#else
/* args: R1 = fd, R2 = isSock, R3 = len, R4 = buf */
ASSERT(StgTSO_why_blocked(CurrentTSO) == NotBlocked::I16);
StgTSO_why_blocked(CurrentTSO) = BlockedOnWrite::I16;
("ptr" ares) = foreign "C" stgMallocBytes(SIZEOF_StgAsyncIOResult,
stg_asyncWritezh_malloc_str)
[R1,R2,R3,R4];
(reqID) = foreign "C" addIORequest(R1, 1/*TRUE*/,R2,R3,R4 "ptr") [];
StgAsyncIOResult_reqID(ares) = reqID;
StgAsyncIOResult_len(ares) = 0;
StgAsyncIOResult_errCode(ares) = 0;
StgTSO_block_info(CurrentTSO) = ares;
APPEND_TO_BLOCKED_QUEUE(CurrentTSO);
jump stg_block_async;
#endif
}
STRING(stg_asyncDoProczh_malloc_str, "stg_asyncDoProczh")
stg_asyncDoProczh
{
W_ ares;
CInt reqID;
#ifdef THREADED_RTS
foreign "C" barf("asyncDoProc# on threaded RTS") never returns;
#else
/* args: R1 = proc, R2 = param */
ASSERT(StgTSO_why_blocked(CurrentTSO) == NotBlocked::I16);
StgTSO_why_blocked(CurrentTSO) = BlockedOnDoProc::I16;
/* could probably allocate this on the heap instead */
("ptr" ares) = foreign "C" stgMallocBytes(SIZEOF_StgAsyncIOResult,
stg_asyncDoProczh_malloc_str)
[R1,R2];
(reqID) = foreign "C" addDoProcRequest(R1 "ptr",R2 "ptr") [];
StgAsyncIOResult_reqID(ares) = reqID;
StgAsyncIOResult_len(ares) = 0;
StgAsyncIOResult_errCode(ares) = 0;
StgTSO_block_info(CurrentTSO) = ares;
APPEND_TO_BLOCKED_QUEUE(CurrentTSO);
jump stg_block_async;
#endif
}
#endif
/* -----------------------------------------------------------------------------
* noDuplicate#
*
* noDuplicate# tries to ensure that none of the thunks under
* evaluation by the current thread are also under evaluation by
* another thread. It relies on *both* threads doing noDuplicate#;
* the second one will get blocked if they are duplicating some work.
*
* The idea is that noDuplicate# is used within unsafePerformIO to
* ensure that the IO operation is performed at most once.
* noDuplicate# calls threadPaused which acquires an exclusive lock on
* all the thunks currently under evaluation by the current thread.
*
* Consider the following scenario. There is a thunk A, whose
* evaluation requires evaluating thunk B, where thunk B is an
* unsafePerformIO. Two threads, 1 and 2, bother enter A. Thread 2
* is pre-empted before it enters B, and claims A by blackholing it
* (in threadPaused). Thread 1 now enters B, and calls noDuplicate#.
*
* thread 1 thread 2
* +-----------+ +---------------+
* | -------+-----> A <-------+------- |
* | update | BLACKHOLE | marked_update |
* +-----------+ +---------------+
* | | | |
* ... ...
* | | +---------------+
* +-----------+
* | ------+-----> B
* | update | BLACKHOLE
* +-----------+
*
* At this point: A is a blackhole, owned by thread 2. noDuplicate#
* calls threadPaused, which walks up the stack and
* - claims B on behalf of thread 1
* - then it reaches the update frame for A, which it sees is already
* a BLACKHOLE and is therefore owned by another thread. Since
* thread 1 is duplicating work, the computation up to the update
* frame for A is suspended, including thunk B.
* - thunk B, which is an unsafePerformIO, has now been reverted to
* an AP_STACK which could be duplicated - BAD!
* - The solution is as follows: before calling threadPaused, we
* leave a frame on the stack (stg_noDuplicate_info) that will call
* noDuplicate# again if the current computation is suspended and
* restarted.
*
* See the test program in concurrent/prog003 for a way to demonstrate
* this. It needs to be run with +RTS -N3 or greater, and the bug
* only manifests occasionally (once very 10 runs or so).
* -------------------------------------------------------------------------- */
INFO_TABLE_RET(stg_noDuplicate, RET_SMALL)
{
Sp_adj(1);
jump stg_noDuplicatezh;
}
stg_noDuplicatezh
{
STK_CHK_GEN( WDS(1), NO_PTRS, stg_noDuplicatezh );
// leave noDuplicate frame in case the current
// computation is suspended and restarted (see above).
Sp_adj(-1);
Sp(0) = stg_noDuplicate_info;
SAVE_THREAD_STATE();
ASSERT(StgTSO_what_next(CurrentTSO) == ThreadRunGHC::I16);
foreign "C" threadPaused (MyCapability() "ptr", CurrentTSO "ptr") [];
if (StgTSO_what_next(CurrentTSO) == ThreadKilled::I16) {
jump stg_threadFinished;
} else {
LOAD_THREAD_STATE();
ASSERT(StgTSO_what_next(CurrentTSO) == ThreadRunGHC::I16);
// remove the stg_noDuplicate frame if it is still there.
if (Sp(0) == stg_noDuplicate_info) {
Sp_adj(1);
}
jump %ENTRY_CODE(Sp(0));
}
}
/* -----------------------------------------------------------------------------
Misc. primitives
-------------------------------------------------------------------------- */
stg_getApStackValzh
{
W_ ap_stack, offset, val, ok;
/* args: R1 = AP_STACK, R2 = offset */
ap_stack = R1;
offset = R2;
if (%INFO_PTR(ap_stack) == stg_AP_STACK_info) {
ok = 1;
val = StgAP_STACK_payload(ap_stack,offset);
} else {
ok = 0;
val = R1;
}
RET_NP(ok,val);
}
// Write the cost center stack of the first argument on stderr; return
// the second. Possibly only makes sense for already evaluated
// things?
stg_traceCcszh
{
W_ ccs;
#ifdef PROFILING
ccs = StgHeader_ccs(UNTAG(R1));
foreign "C" fprintCCS_stderr(ccs "ptr") [R2];
#endif
R1 = R2;
ENTER();
}
stg_getSparkzh
{
W_ spark;
#ifndef THREADED_RTS
RET_NP(0,ghczmprim_GHCziTypes_False_closure);
#else
(spark) = foreign "C" findSpark(MyCapability());
if (spark != 0) {
RET_NP(1,spark);
} else {
RET_NP(0,ghczmprim_GHCziTypes_False_closure);
}
#endif
}
stg_numSparkszh
{
W_ n;
#ifdef THREADED_RTS
(n) = foreign "C" dequeElements(Capability_sparks(MyCapability()));
#else
n = 0;
#endif
RET_N(n);
}
stg_traceEventzh
{
W_ msg;
msg = R1;
#if defined(TRACING) || defined(DEBUG)
foreign "C" traceUserMsg(MyCapability() "ptr", msg "ptr") [];
#elif defined(DTRACE)
W_ enabled;
// We should go through the macro HASKELLEVENT_USER_MSG_ENABLED from
// RtsProbes.h, but that header file includes unistd.h, which doesn't
// work in Cmm
#if !defined(solaris2_TARGET_OS)
(enabled) = foreign "C" __dtrace_isenabled$HaskellEvent$user__msg$v1() [];
#else
// Solaris' DTrace can't handle the
// __dtrace_isenabled$HaskellEvent$user__msg$v1
// call above. This call is just for testing whether the user__msg
// probe is enabled, and is here for just performance optimization.
// Since preparation for the probe is not that complex I disable usage of
// this test above for Solaris and enable the probe usage manually
// here. Please note that this does not mean that the probe will be
// used during the runtime! You still need to enable it by consumption
// in your dtrace script as you do with any other probe.
enabled = 1;
#endif
if (enabled != 0) {
foreign "C" dtraceUserMsgWrapper(MyCapability() "ptr", msg "ptr") [];
}
#endif
jump %ENTRY_CODE(Sp(0));
}
|