summaryrefslogtreecommitdiff
path: root/rts/RaiseAsync.c
blob: 6510ce8b07cb711924d482395d1243a2a812bcb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
/* ---------------------------------------------------------------------------
 *
 * (c) The GHC Team, 1998-2006
 *
 * Asynchronous exceptions
 *
 * --------------------------------------------------------------------------*/

#include "PosixSource.h"
#include "Rts.h"

#include "sm/Storage.h"
#include "Threads.h"
#include "Trace.h"
#include "RaiseAsync.h"
#include "Schedule.h"
#include "Updates.h"
#include "STM.h"
#include "Sanity.h"
#include "Profiling.h"
#if defined(mingw32_HOST_OS)
#include "win32/IOManager.h"
#endif

static void raiseAsync (Capability *cap,
			StgTSO *tso,
			StgClosure *exception, 
			rtsBool stop_at_atomically,
			StgUpdateFrame *stop_here);

static void removeFromQueues(Capability *cap, StgTSO *tso);

static void blockedThrowTo (Capability *cap, StgTSO *source, StgTSO *target);

static void performBlockedException (Capability *cap, 
				     StgTSO *source, StgTSO *target);

/* -----------------------------------------------------------------------------
   throwToSingleThreaded

   This version of throwTo is safe to use if and only if one of the
   following holds:
   
     - !THREADED_RTS

     - all the other threads in the system are stopped (eg. during GC).

     - we surely own the target TSO (eg. we just took it from the
       run queue of the current capability, or we are running it).

   It doesn't cater for blocking the source thread until the exception
   has been raised.
   -------------------------------------------------------------------------- */

void
throwToSingleThreaded(Capability *cap, StgTSO *tso, StgClosure *exception)
{
    throwToSingleThreaded_(cap, tso, exception, rtsFalse);
}

void
throwToSingleThreaded_(Capability *cap, StgTSO *tso, StgClosure *exception, 
		       rtsBool stop_at_atomically)
{
    // Thread already dead?
    if (tso->what_next == ThreadComplete || tso->what_next == ThreadKilled) {
	return;
    }

    // Remove it from any blocking queues
    removeFromQueues(cap,tso);

    raiseAsync(cap, tso, exception, stop_at_atomically, NULL);
}

void
suspendComputation(Capability *cap, StgTSO *tso, StgUpdateFrame *stop_here)
{
    // Thread already dead?
    if (tso->what_next == ThreadComplete || tso->what_next == ThreadKilled) {
	return;
    }

    // Remove it from any blocking queues
    removeFromQueues(cap,tso);

    raiseAsync(cap, tso, NULL, rtsFalse, stop_here);
}

/* -----------------------------------------------------------------------------
   throwTo

   This function may be used to throw an exception from one thread to
   another, during the course of normal execution.  This is a tricky
   task: the target thread might be running on another CPU, or it
   may be blocked and could be woken up at any point by another CPU.
   We have some delicate synchronisation to do.

   There is a completely safe fallback scheme: it is always possible
   to just block the source TSO on the target TSO's blocked_exceptions
   queue.  This queue is locked using lockTSO()/unlockTSO().  It is
   checked at regular intervals: before and after running a thread
   (schedule() and threadPaused() respectively), and just before GC
   (scheduleDoGC()).  Activating a thread on this queue should be done
   using maybePerformBlockedException(): this is done in the context
   of the target thread, so the exception can be raised eagerly.

   This fallback scheme works even if the target thread is complete or
   killed: scheduleDoGC() will discover the blocked thread before the
   target is GC'd.

   Blocking the source thread on the target thread's blocked_exception
   queue is also employed when the target thread is currently blocking
   exceptions (ie. inside Control.Exception.block).

   We could use the safe fallback scheme exclusively, but that
   wouldn't be ideal: most calls to throwTo would block immediately,
   possibly until the next GC, which might require the deadlock
   detection mechanism to kick in.  So we try to provide promptness
   wherever possible.

   We can promptly deliver the exception if the target thread is:

     - runnable, on the same Capability as the source thread (because
       we own the run queue and therefore the target thread).
   
     - blocked, and we can obtain exclusive access to it.  Obtaining
       exclusive access to the thread depends on how it is blocked.

   We must also be careful to not trip over threadStackOverflow(),
   which might be moving the TSO to enlarge its stack.
   lockTSO()/unlockTSO() are used here too.

   Returns: 

   THROWTO_SUCCESS    exception was raised, ok to continue

   THROWTO_BLOCKED    exception was not raised; block the source
                      thread then call throwToReleaseTarget() when
		      the source thread is properly tidied away.

   -------------------------------------------------------------------------- */

nat
throwTo (Capability *cap,	// the Capability we hold 
	 StgTSO *source,	// the TSO sending the exception
	 StgTSO *target,        // the TSO receiving the exception
	 StgClosure *exception, // the exception closure
	 /*[out]*/ void **out USED_IF_THREADS)
{
    StgWord status;

    // follow ThreadRelocated links in the target first
    while (target->what_next == ThreadRelocated) {
	target = target->_link;
	// No, it might be a WHITEHOLE:
	// ASSERT(get_itbl(target)->type == TSO);
    }

    debugTrace(DEBUG_sched, "throwTo: from thread %lu to thread %lu",
	       (unsigned long)source->id, (unsigned long)target->id);

#ifdef DEBUG
    traceThreadStatus(DEBUG_sched, target);
#endif

    goto check_target;
retry:
    debugTrace(DEBUG_sched, "throwTo: retrying...");

check_target:
    // Thread already dead?
    if (target->what_next == ThreadComplete 
	|| target->what_next == ThreadKilled) {
	return THROWTO_SUCCESS;
    }

    status = target->why_blocked;
    
    switch (status) {
    case NotBlocked:
	/* if status==NotBlocked, and target->cap == cap, then
	   we own this TSO and can raise the exception.
	   
	   How do we establish this condition?  Very carefully.

	   Let 
	       P = (status == NotBlocked)
	       Q = (tso->cap == cap)
	       
	   Now, if P & Q are true, then the TSO is locked and owned by
	   this capability.  No other OS thread can steal it.

	   If P==0 and Q==1: the TSO is blocked, but attached to this
	   capabilty, and it can be stolen by another capability.
	   
	   If P==1 and Q==0: the TSO is runnable on another
	   capability.  At any time, the TSO may change from runnable
	   to blocked and vice versa, while it remains owned by
	   another capability.

	   Suppose we test like this:

	      p = P
	      q = Q
	      if (p && q) ...

	    this is defeated by another capability stealing a blocked
	    TSO from us to wake it up (Schedule.c:unblockOne()).  The
	    other thread is doing

	      Q = 0
	      P = 1

	    assuming arbitrary reordering, we could see this
	    interleaving:

	      start: P==0 && Q==1 
	      P = 1
	      p = P
	      q = Q
	      Q = 0
	      if (p && q) ...
	       
	    so we need a memory barrier:

	      p = P
	      mb()
	      q = Q
	      if (p && q) ...

	    this avoids the problematic case.  There are other cases
	    to consider, but this is the tricky one.

	    Note that we must be sure that unblockOne() does the
	    writes in the correct order: Q before P.  The memory
	    barrier ensures that if we have seen the write to P, we
	    have also seen the write to Q.
	*/
    {
	Capability *target_cap;

	write_barrier();
	target_cap = target->cap;
	if (target_cap == cap && (target->flags & TSO_BLOCKEX) == 0) {
	    // It's on our run queue and not blocking exceptions
	    raiseAsync(cap, target, exception, rtsFalse, NULL);
	    return THROWTO_SUCCESS;
	} else {
	    // Otherwise, just block on the blocked_exceptions queue
	    // of the target thread.  The queue will get looked at
	    // soon enough: it is checked before and after running a
	    // thread, and during GC.
	    lockTSO(target);

	    // Avoid race with threadStackOverflow, which may have
	    // just moved this TSO.
	    if (target->what_next == ThreadRelocated) {
		unlockTSO(target);
		target = target->_link;
		goto retry;
	    }
            // check again for ThreadComplete and ThreadKilled.  This
            // cooperates with scheduleHandleThreadFinished to ensure
            // that we never miss any threads that are throwing an
            // exception to a thread in the process of terminating.
            if (target->what_next == ThreadComplete
                || target->what_next == ThreadKilled) {
		unlockTSO(target);
                return THROWTO_SUCCESS;
            }
	    blockedThrowTo(cap,source,target);
	    *out = target;
	    return THROWTO_BLOCKED;
	}
    }

    case BlockedOnMVar:
    {
	/*
	  To establish ownership of this TSO, we need to acquire a
	  lock on the MVar that it is blocked on.
	*/
	StgMVar *mvar;
	StgInfoTable *info USED_IF_THREADS;
	
	mvar = (StgMVar *)target->block_info.closure;

	// ASSUMPTION: tso->block_info must always point to a
	// closure.  In the threaded RTS it does.
        switch (get_itbl(mvar)->type) {
        case MVAR_CLEAN:
        case MVAR_DIRTY:
            break;
        default:
            goto retry;
        }

	info = lockClosure((StgClosure *)mvar);

	if (target->what_next == ThreadRelocated) {
	    target = target->_link;
	    unlockClosure((StgClosure *)mvar,info);
	    goto retry;
	}
	// we have the MVar, let's check whether the thread
	// is still blocked on the same MVar.
	if (target->why_blocked != BlockedOnMVar
	    || (StgMVar *)target->block_info.closure != mvar) {
	    unlockClosure((StgClosure *)mvar, info);
	    goto retry;
	}

	if ((target->flags & TSO_BLOCKEX) &&
	    ((target->flags & TSO_INTERRUPTIBLE) == 0)) {
	    lockClosure((StgClosure *)target);
	    blockedThrowTo(cap,source,target);
	    unlockClosure((StgClosure *)mvar, info);
	    *out = target;
	    return THROWTO_BLOCKED; // caller releases TSO
	} else {
	    removeThreadFromMVarQueue(cap, mvar, target);
	    raiseAsync(cap, target, exception, rtsFalse, NULL);
	    unblockOne(cap, target);
	    unlockClosure((StgClosure *)mvar, info);
	    return THROWTO_SUCCESS;
	}
    }

    case BlockedOnBlackHole:
    {
	ACQUIRE_LOCK(&sched_mutex);
	// double checking the status after the memory barrier:
	if (target->why_blocked != BlockedOnBlackHole) {
	    RELEASE_LOCK(&sched_mutex);
	    goto retry;
	}

	if (target->flags & TSO_BLOCKEX) {
	    lockTSO(target);
	    blockedThrowTo(cap,source,target);
	    RELEASE_LOCK(&sched_mutex);
	    *out = target;
	    return THROWTO_BLOCKED; // caller releases TSO
	} else {
	    removeThreadFromQueue(cap, &blackhole_queue, target);
	    raiseAsync(cap, target, exception, rtsFalse, NULL);
	    unblockOne(cap, target);
	    RELEASE_LOCK(&sched_mutex);
	    return THROWTO_SUCCESS;
	}
    }

    case BlockedOnException:
    {
	StgTSO *target2;
	StgInfoTable *info;

	/*
	  To obtain exclusive access to a BlockedOnException thread,
	  we must call lockClosure() on the TSO on which it is blocked.
	  Since the TSO might change underneath our feet, after we
	  call lockClosure() we must check that 
	   
             (a) the closure we locked is actually a TSO
	     (b) the original thread is still  BlockedOnException,
	     (c) the original thread is still blocked on the TSO we locked
	     and (d) the target thread has not been relocated.

	  We synchronise with threadStackOverflow() (which relocates
	  threads) using lockClosure()/unlockClosure().
	*/
	target2 = target->block_info.tso;

	info = lockClosure((StgClosure *)target2);
	if (info != &stg_TSO_info) {
	    unlockClosure((StgClosure *)target2, info);
	    goto retry;
	}
	if (target->what_next == ThreadRelocated) {
	    target = target->_link;
	    unlockTSO(target2);
	    goto retry;
	}
	if (target2->what_next == ThreadRelocated) {
	    target->block_info.tso = target2->_link;
	    unlockTSO(target2);
	    goto retry;
	}
	if (target->why_blocked != BlockedOnException
	    || target->block_info.tso != target2) {
	    unlockTSO(target2);
	    goto retry;
	}
	
	/* 
	   Now we have exclusive rights to the target TSO...

	   If it is blocking exceptions, add the source TSO to its
	   blocked_exceptions queue.  Otherwise, raise the exception.
	*/
	if ((target->flags & TSO_BLOCKEX) &&
	    ((target->flags & TSO_INTERRUPTIBLE) == 0)) {
	    lockTSO(target);
	    blockedThrowTo(cap,source,target);
	    unlockTSO(target2);
	    *out = target;
	    return THROWTO_BLOCKED;
	} else {
	    removeThreadFromQueue(cap, &target2->blocked_exceptions, target);
	    raiseAsync(cap, target, exception, rtsFalse, NULL);
	    unblockOne(cap, target);
	    unlockTSO(target2);
	    return THROWTO_SUCCESS;
	}
    }	

    case BlockedOnSTM:
	lockTSO(target);
	// Unblocking BlockedOnSTM threads requires the TSO to be
	// locked; see STM.c:unpark_tso().
	if (target->why_blocked != BlockedOnSTM) {
	    unlockTSO(target);
	    goto retry;
	}
	if ((target->flags & TSO_BLOCKEX) &&
	    ((target->flags & TSO_INTERRUPTIBLE) == 0)) {
	    blockedThrowTo(cap,source,target);
	    *out = target;
	    return THROWTO_BLOCKED;
	} else {
	    raiseAsync(cap, target, exception, rtsFalse, NULL);
	    unblockOne(cap, target);
	    unlockTSO(target);
	    return THROWTO_SUCCESS;
	}

    case BlockedOnCCall:
    case BlockedOnCCall_NoUnblockExc:
	// I don't think it's possible to acquire ownership of a
	// BlockedOnCCall thread.  We just assume that the target
	// thread is blocking exceptions, and block on its
	// blocked_exception queue.
	lockTSO(target);
	if (target->why_blocked != BlockedOnCCall &&
 	    target->why_blocked != BlockedOnCCall_NoUnblockExc) {
	    unlockTSO(target);
            goto retry;
	}
	blockedThrowTo(cap,source,target);
	*out = target;
	return THROWTO_BLOCKED;

#ifndef THREADEDED_RTS
    case BlockedOnRead:
    case BlockedOnWrite:
    case BlockedOnDelay:
#if defined(mingw32_HOST_OS)
    case BlockedOnDoProc:
#endif
	if ((target->flags & TSO_BLOCKEX) &&
	    ((target->flags & TSO_INTERRUPTIBLE) == 0)) {
	    blockedThrowTo(cap,source,target);
	    return THROWTO_BLOCKED;
	} else {
	    removeFromQueues(cap,target);
	    raiseAsync(cap, target, exception, rtsFalse, NULL);
	    return THROWTO_SUCCESS;
	}
#endif

    default:
	barf("throwTo: unrecognised why_blocked value");
    }
    barf("throwTo");
}

// Block a TSO on another TSO's blocked_exceptions queue.
// Precondition: we hold an exclusive lock on the target TSO (this is
// complex to achieve as there's no single lock on a TSO; see
// throwTo()).
static void
blockedThrowTo (Capability *cap, StgTSO *source, StgTSO *target)
{
    debugTrace(DEBUG_sched, "throwTo: blocking on thread %lu", (unsigned long)target->id);
    setTSOLink(cap, source, target->blocked_exceptions);
    target->blocked_exceptions = source;
    dirty_TSO(cap,target); // we modified the blocked_exceptions queue
    
    source->block_info.tso = target;
    write_barrier(); // throwTo_exception *must* be visible if BlockedOnException is.
    source->why_blocked = BlockedOnException;
}


#ifdef THREADED_RTS
void
throwToReleaseTarget (void *tso)
{
    unlockTSO((StgTSO *)tso);
}
#endif

/* -----------------------------------------------------------------------------
   Waking up threads blocked in throwTo

   There are two ways to do this: maybePerformBlockedException() will
   perform the throwTo() for the thread at the head of the queue
   immediately, and leave the other threads on the queue.
   maybePerformBlockedException() also checks the TSO_BLOCKEX flag
   before raising an exception.

   awakenBlockedExceptionQueue() will wake up all the threads in the
   queue, but not perform any throwTo() immediately.  This might be
   more appropriate when the target thread is the one actually running
   (see Exception.cmm).

   Returns: non-zero if an exception was raised, zero otherwise.
   -------------------------------------------------------------------------- */

int
maybePerformBlockedException (Capability *cap, StgTSO *tso)
{
    StgTSO *source;
    
    if (tso->what_next == ThreadComplete || tso->what_next == ThreadFinished) {
        if (tso->blocked_exceptions != END_TSO_QUEUE) {
            awakenBlockedExceptionQueue(cap,tso);
            return 1;
        } else {
            return 0;
        }
    }

    if (tso->blocked_exceptions != END_TSO_QUEUE && 
        (tso->flags & TSO_BLOCKEX) != 0) {
        debugTrace(DEBUG_sched, "throwTo: thread %lu has blocked exceptions but is inside block", (unsigned long)tso->id);
    }

    if (tso->blocked_exceptions != END_TSO_QUEUE
	&& ((tso->flags & TSO_BLOCKEX) == 0
	    || ((tso->flags & TSO_INTERRUPTIBLE) && interruptible(tso)))) {

	// Lock the TSO, this gives us exclusive access to the queue
	lockTSO(tso);

	// Check the queue again; it might have changed before we
	// locked it.
	if (tso->blocked_exceptions == END_TSO_QUEUE) {
	    unlockTSO(tso);
	    return 0;
	}

	// We unblock just the first thread on the queue, and perform
	// its throw immediately.
	source = tso->blocked_exceptions;
	performBlockedException(cap, source, tso);
	tso->blocked_exceptions = unblockOne_(cap, source, 
					      rtsFalse/*no migrate*/);
	unlockTSO(tso);
        return 1;
    }
    return 0;
}

// awakenBlockedExceptionQueue(): Just wake up the whole queue of
// blocked exceptions and let them try again.

void
awakenBlockedExceptionQueue (Capability *cap, StgTSO *tso)
{
    lockTSO(tso);
    awakenBlockedQueue(cap, tso->blocked_exceptions);
    tso->blocked_exceptions = END_TSO_QUEUE;
    unlockTSO(tso);
}    

static void
performBlockedException (Capability *cap, StgTSO *source, StgTSO *target)
{
    StgClosure *exception;

    ASSERT(source->why_blocked == BlockedOnException);
    ASSERT(source->block_info.tso->id == target->id);
    ASSERT(source->sp[0] == (StgWord)&stg_block_throwto_info);
    ASSERT(((StgTSO *)source->sp[1])->id == target->id);
    // check ids not pointers, because the thread might be relocated

    exception = (StgClosure *)source->sp[2];
    throwToSingleThreaded(cap, target, exception);
    source->sp += 3;
}

/* -----------------------------------------------------------------------------
   Remove a thread from blocking queues.

   This is for use when we raise an exception in another thread, which
   may be blocked.

   Precondition: we have exclusive access to the TSO, via the same set
   of conditions as throwToSingleThreaded() (c.f.).
   -------------------------------------------------------------------------- */

static void
removeFromQueues(Capability *cap, StgTSO *tso)
{
  switch (tso->why_blocked) {

  case NotBlocked:
      return;

  case BlockedOnSTM:
    // Be careful: nothing to do here!  We tell the scheduler that the
    // thread is runnable and we leave it to the stack-walking code to
    // abort the transaction while unwinding the stack.  We should
    // perhaps have a debugging test to make sure that this really
    // happens and that the 'zombie' transaction does not get
    // committed.
    goto done;

  case BlockedOnMVar:
      removeThreadFromMVarQueue(cap, (StgMVar *)tso->block_info.closure, tso);
      goto done;

  case BlockedOnBlackHole:
      removeThreadFromQueue(cap, &blackhole_queue, tso);
      goto done;

  case BlockedOnException:
    {
      StgTSO *target  = tso->block_info.tso;

      // NO: when called by threadPaused(), we probably have this
      // TSO already locked (WHITEHOLEd) because we just placed
      // ourselves on its queue.
      // ASSERT(get_itbl(target)->type == TSO);

      while (target->what_next == ThreadRelocated) {
	  target = target->_link;
      }
      
      removeThreadFromQueue(cap, &target->blocked_exceptions, tso);
      goto done;
    }

#if !defined(THREADED_RTS)
  case BlockedOnRead:
  case BlockedOnWrite:
#if defined(mingw32_HOST_OS)
  case BlockedOnDoProc:
#endif
      removeThreadFromDeQueue(cap, &blocked_queue_hd, &blocked_queue_tl, tso);
#if defined(mingw32_HOST_OS)
      /* (Cooperatively) signal that the worker thread should abort
       * the request.
       */
      abandonWorkRequest(tso->block_info.async_result->reqID);
#endif
      goto done;

  case BlockedOnDelay:
        removeThreadFromQueue(cap, &sleeping_queue, tso);
	goto done;
#endif

  default:
      barf("removeFromQueues: %d", tso->why_blocked);
  }

 done:
  unblockOne(cap, tso);
}

/* -----------------------------------------------------------------------------
 * raiseAsync()
 *
 * The following function implements the magic for raising an
 * asynchronous exception in an existing thread.
 *
 * We first remove the thread from any queue on which it might be
 * blocked.  The possible blockages are MVARs and BLACKHOLE_BQs.
 *
 * We strip the stack down to the innermost CATCH_FRAME, building
 * thunks in the heap for all the active computations, so they can 
 * be restarted if necessary.  When we reach a CATCH_FRAME, we build
 * an application of the handler to the exception, and push it on
 * the top of the stack.
 * 
 * How exactly do we save all the active computations?  We create an
 * AP_STACK for every UpdateFrame on the stack.  Entering one of these
 * AP_STACKs pushes everything from the corresponding update frame
 * upwards onto the stack.  (Actually, it pushes everything up to the
 * next update frame plus a pointer to the next AP_STACK object.
 * Entering the next AP_STACK object pushes more onto the stack until we
 * reach the last AP_STACK object - at which point the stack should look
 * exactly as it did when we killed the TSO and we can continue
 * execution by entering the closure on top of the stack.
 *
 * We can also kill a thread entirely - this happens if either (a) the 
 * exception passed to raiseAsync is NULL, or (b) there's no
 * CATCH_FRAME on the stack.  In either case, we strip the entire
 * stack and replace the thread with a zombie.
 *
 * ToDo: in THREADED_RTS mode, this function is only safe if either
 * (a) we hold all the Capabilities (eg. in GC, or if there is only
 * one Capability), or (b) we own the Capability that the TSO is
 * currently blocked on or on the run queue of.
 *
 * -------------------------------------------------------------------------- */

static void
raiseAsync(Capability *cap, StgTSO *tso, StgClosure *exception, 
	   rtsBool stop_at_atomically, StgUpdateFrame *stop_here)
{
    StgRetInfoTable *info;
    StgPtr sp, frame;
    StgClosure *updatee;
    nat i;

    debugTrace(DEBUG_sched,
	       "raising exception in thread %ld.", (long)tso->id);
    
#if defined(PROFILING)
    /* 
     * Debugging tool: on raising an  exception, show where we are.
     * See also Exception.cmm:stg_raisezh.
     * This wasn't done for asynchronous exceptions originally; see #1450 
     */
    if (RtsFlags.ProfFlags.showCCSOnException)
    {
        fprintCCS_stderr(tso->prof.CCCS);
    }
#endif

    // mark it dirty; we're about to change its stack.
    dirty_TSO(cap, tso);

    sp = tso->sp;
    
    // ASSUMES: the thread is not already complete or dead.  Upper
    // layers should deal with that.
    ASSERT(tso->what_next != ThreadComplete && tso->what_next != ThreadKilled);

    if (stop_here != NULL) {
        updatee = stop_here->updatee;
    } else {
        updatee = NULL;
    }

    // The stack freezing code assumes there's a closure pointer on
    // the top of the stack, so we have to arrange that this is the case...
    //
    if (sp[0] == (W_)&stg_enter_info) {
	sp++;
    } else {
	sp--;
	sp[0] = (W_)&stg_dummy_ret_closure;
    }

    frame = sp + 1;
    while (stop_here == NULL || frame < (StgPtr)stop_here) {

	// 1. Let the top of the stack be the "current closure"
	//
	// 2. Walk up the stack until we find either an UPDATE_FRAME or a
	// CATCH_FRAME.
	//
	// 3. If it's an UPDATE_FRAME, then make an AP_STACK containing the
	// current closure applied to the chunk of stack up to (but not
	// including) the update frame.  This closure becomes the "current
	// closure".  Go back to step 2.
	//
	// 4. If it's a CATCH_FRAME, then leave the exception handler on
	// top of the stack applied to the exception.
	// 
	// 5. If it's a STOP_FRAME, then kill the thread.
        // 
        // NB: if we pass an ATOMICALLY_FRAME then abort the associated 
        // transaction
       
	info = get_ret_itbl((StgClosure *)frame);

	switch (info->i.type) {

	case UPDATE_FRAME:
	{
	    StgAP_STACK * ap;
	    nat words;
	    
	    // First build an AP_STACK consisting of the stack chunk above the
	    // current update frame, with the top word on the stack as the
	    // fun field.
	    //
	    words = frame - sp - 1;
	    ap = (StgAP_STACK *)allocateLocal(cap,AP_STACK_sizeW(words));
	    
	    ap->size = words;
	    ap->fun  = (StgClosure *)sp[0];
	    sp++;
	    for(i=0; i < (nat)words; ++i) {
		ap->payload[i] = (StgClosure *)*sp++;
	    }
	    
	    SET_HDR(ap,&stg_AP_STACK_info,
		    ((StgClosure *)frame)->header.prof.ccs /* ToDo */); 
	    TICK_ALLOC_UP_THK(words+1,0);
	    
	    //IF_DEBUG(scheduler,
	    //	     debugBelch("sched: Updating ");
	    //	     printPtr((P_)((StgUpdateFrame *)frame)->updatee); 
	    //	     debugBelch(" with ");
	    //	     printObj((StgClosure *)ap);
	    //	);

            if (((StgUpdateFrame *)frame)->updatee == updatee) {
                // If this update frame points to the same closure as
                // the update frame further down the stack
                // (stop_here), then don't perform the update.  We
                // want to keep the blackhole in this case, so we can
                // detect and report the loop (#2783).
                ap = (StgAP_STACK*)updatee;
            } else {
                // Perform the update
                // TODO: this may waste some work, if the thunk has
                // already been updated by another thread.
                UPD_IND(((StgUpdateFrame *)frame)->updatee, (StgClosure *)ap);
            }

	    sp += sizeofW(StgUpdateFrame) - 1;
	    sp[0] = (W_)ap; // push onto stack
	    frame = sp + 1;
	    continue; //no need to bump frame
	}

	case STOP_FRAME:
	{
	    // We've stripped the entire stack, the thread is now dead.
	    tso->what_next = ThreadKilled;
	    tso->sp = frame + sizeofW(StgStopFrame);
	    return;
	}

	case CATCH_FRAME:
	    // If we find a CATCH_FRAME, and we've got an exception to raise,
	    // then build the THUNK raise(exception), and leave it on
	    // top of the CATCH_FRAME ready to enter.
	    //
	{
#ifdef PROFILING
	    StgCatchFrame *cf = (StgCatchFrame *)frame;
#endif
	    StgThunk *raise;
	    
	    if (exception == NULL) break;

	    // we've got an exception to raise, so let's pass it to the
	    // handler in this frame.
	    //
	    raise = (StgThunk *)allocateLocal(cap,sizeofW(StgThunk)+1);
	    TICK_ALLOC_SE_THK(1,0);
	    SET_HDR(raise,&stg_raise_info,cf->header.prof.ccs);
	    raise->payload[0] = exception;
	    
	    // throw away the stack from Sp up to the CATCH_FRAME.
	    //
	    sp = frame - 1;
	    
	    /* Ensure that async excpetions are blocked now, so we don't get
	     * a surprise exception before we get around to executing the
	     * handler.
	     */
	    tso->flags |= TSO_BLOCKEX | TSO_INTERRUPTIBLE;

	    /* Put the newly-built THUNK on top of the stack, ready to execute
	     * when the thread restarts.
	     */
	    sp[0] = (W_)raise;
	    sp[-1] = (W_)&stg_enter_info;
	    tso->sp = sp-1;
	    tso->what_next = ThreadRunGHC;
	    IF_DEBUG(sanity, checkTSO(tso));
	    return;
	}
	    
	case ATOMICALLY_FRAME:
	    if (stop_at_atomically) {
		ASSERT(stmGetEnclosingTRec(tso->trec) == NO_TREC);
		stmCondemnTransaction(cap, tso -> trec);
		tso->sp = frame - 2;
                // The ATOMICALLY_FRAME expects to be returned a
                // result from the transaction, which it stores in the
                // stack frame.  Hence we arrange to return a dummy
                // result, so that the GC doesn't get upset (#3578).
                // Perhaps a better way would be to have a different
                // ATOMICALLY_FRAME instance for condemned
                // transactions, but I don't fully understand the
                // interaction with STM invariants.
                tso->sp[1] = (W_)&stg_NO_TREC_closure;
                tso->sp[0] = (W_)&stg_gc_unpt_r1_info;
		tso->what_next = ThreadRunGHC;
		return;
	    }
	    // Not stop_at_atomically... fall through and abort the
	    // transaction.
	    
	case CATCH_STM_FRAME:
	case CATCH_RETRY_FRAME:
	    // IF we find an ATOMICALLY_FRAME then we abort the
	    // current transaction and propagate the exception.  In
	    // this case (unlike ordinary exceptions) we do not care
	    // whether the transaction is valid or not because its
	    // possible validity cannot have caused the exception
	    // and will not be visible after the abort.

		{
            StgTRecHeader *trec = tso -> trec;
            StgTRecHeader *outer = stmGetEnclosingTRec(trec);
	    debugTrace(DEBUG_stm, 
		       "found atomically block delivering async exception");
            stmAbortTransaction(cap, trec);
	    stmFreeAbortedTRec(cap, trec);
            tso -> trec = outer;
	    break;
	    };
	    
	default:
	    break;
	}

	// move on to the next stack frame
	frame += stack_frame_sizeW((StgClosure *)frame);
    }

    // if we got here, then we stopped at stop_here
    ASSERT(stop_here != NULL);
}