summaryrefslogtreecommitdiff
path: root/rts/RetainerProfile.c
blob: 2bb5a503f311068806c8f10edd101b3ac309135a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 2001
 * Author: Sungwoo Park
 *
 * Retainer profiling.
 *
 * ---------------------------------------------------------------------------*/

#if defined(PROFILING)

#include "PosixSource.h"
#include "Rts.h"

#include "RtsUtils.h"
#include "RetainerProfile.h"
#include "RetainerSet.h"
#include "TraverseHeap.h"
#include "Schedule.h"
#include "Printer.h"
#include "Weak.h"
#include "sm/Sanity.h"
#include "Profiling.h"
#include "Stats.h"
#include "ProfHeap.h"
#include "Apply.h"
#include "StablePtr.h" /* markStablePtrTable */
#include "StableName.h" /* rememberOldStableNameAddresses */
#include "sm/Storage.h" // for END_OF_STATIC_LIST

/* Note [What is a retainer?]
   ~~~~~~~~~~~~~~~~~~~~~~~~~~
Retainer profiling is a profiling technique that gives information why
objects can't be freed and lists the consumers that hold pointers to
the heap objects. It does not list all the objects that keep references
to the other, because then we would keep too much information that will
make the report unusable, for example the cons element of the list would keep
all the tail cells. As a result we are keeping only the objects of the
certain types, see 'isRetainer()' function for more discussion.

More formal definition of the retainer can be given the following way.

An object p is a retainer object of the object l, if all requirements
hold:

  1. p can be a retainer (see `isRetainer()`)
  2. l is reachable from p
  3. There are no other retainers on the path from p to l.

Exact algorithm and additional information can be found the historical
document 'docs/storage-mgt/rp.tex'. Details that are related to the
RTS implementation may be out of date, but the general
information about the retainers is still applicable.
*/


/*
  Note: what to change in order to plug-in a new retainer profiling scheme?
    (1) type retainer in ../includes/StgRetainerProf.h
    (2) retainer function R(), i.e., getRetainerFrom()
    (3) the two hashing functions, hashKeySingleton() and hashKeyAddElement(),
        in RetainerSet.h, if needed.
    (4) printRetainer() and printRetainerSetShort() in RetainerSet.c.
 */

/* -----------------------------------------------------------------------------
 * Declarations...
 * -------------------------------------------------------------------------- */

static uint32_t retainerGeneration;  // generation

static uint32_t numObjectVisited;    // total number of objects visited
static uint32_t timesAnyObjectVisited;  // number of times any objects are
                                        // visited

/** Note [Profiling heap traversal visited bit]
 *
 * If the RTS is compiled with profiling enabled StgProfHeader can be used by
 * profiling code to store per-heap object information.
 *
 * When using the generic heap traversal code we use this field to store
 * profiler specific information. However we reserve the LSB of the *entire*
 * 'trav' union (which will overlap with the other fields) for the generic
 * traversal code. We use the bit to decide whether we've already visited this
 * closure in this pass or not. We do this as the heap may contain cyclic
 * references, it being a graph and all, so we would likely just infinite loop
 * if we didn't.
 *
 * We assume that at least the LSB of the largest field in the corresponding
 * union is insignificant. This is true at least for the word aligned pointers
 * which the retainer profiler currently stores there and should be maintained
 * by new users of the 'trav' union.
 *
 * Now the way the traversal works is that the interpretation of the "visited?"
 * bit depends on the value of the global 'flip' variable. We don't want to have
 * to do another pass over the heap just to reset the bit to zero so instead on
 * each traversal (i.e. each run of the profiling code) we invert the value of
 * the global 'flip' variable. We interpret this as resetting all the "visited?"
 * flags on the heap.
 *
 * There are some complications with this approach, namely: static objects and
 * mutable data. There we do just go over all existing objects to reset the bit
 * manually. See 'resetStaticObjectForProfiling' and 'resetMutableObjects'.
 */
StgWord flip = 0;     // flip bit
                      // must be 0 if DEBUG_RETAINER is on (for static closures)

#define setTravDataToZero(c) \
  (c)->header.prof.hp.trav.lsb = flip

/* -----------------------------------------------------------------------------
 * Retainer stack - header
 *   Note:
 *     Although the retainer stack implementation could be separated *
 *     from the retainer profiling engine, there does not seem to be
 *     any advantage in doing that; retainer stack is an integral part
 *     of retainer profiling engine and cannot be use elsewhere at
 *     all.
 * -------------------------------------------------------------------------- */

typedef enum {
    // Object with fixed layout. Keeps an information about that
    // element was processed. (stackPos.next.step)
    posTypeStep,
    // Description of the pointers-first heap object. Keeps information
    // about layout. (stackPos.next.ptrs)
    posTypePtrs,
    // Keeps SRT bitmap (stackPos.next.srt)
    posTypeSRT,
    // Keeps a new object that was not inspected yet. Keeps a parent
    // element (stackPos.next.parent)
    posTypeFresh
} nextPosType;

typedef union {
    // fixed layout or layout specified by a field in the closure
    StgWord step;

    // layout.payload
    struct {
        // See StgClosureInfo in InfoTables.h
        StgHalfWord pos;
        StgHalfWord ptrs;
        StgPtr payload;
    } ptrs;

    // SRT
    struct {
        StgClosure *srt;
    } srt;
} nextPos;

/**
 * Position pointer into a closure. Determines what the next element to return
 * for a stackElement is.
 */
typedef struct {
    nextPosType type;
    nextPos next;
} stackPos;

/**
 * An element of the traversal work-stack. Besides the closure itself this also
 * stores it's parent and associated data.
 *
 * When 'info.type == posTypeFresh' a 'stackElement' represents just one
 * closure, namely 'c' and 'cp' being it's parent. Otherwise 'info' specifies an
 * offset into the children of 'c'. This is to support returning a closure's
 * children one-by-one without pushing one element per child onto the stack. See
 * traversePushChildren() and traversePop().
 *
 */
typedef struct stackElement_ {
    stackPos info;
    StgClosure *c;
    StgClosure *cp; // parent of 'c'. Only used when info.type == posTypeFresh.
    stackData data;
} stackElement;

traverseState g_retainerTraverseState;


#if defined(DEBUG)
unsigned int g_traversalDebugLevel = 0;
static inline void debug(const char *s, ...)
{
    va_list ap;

    if(g_traversalDebugLevel == 0)
        return;

    va_start(ap,s);
    vdebugBelch(s, ap);
    va_end(ap);
}
#else
#define debug(...)
#endif

// number of blocks allocated for one stack
#define BLOCKS_IN_STACK 1

/* -----------------------------------------------------------------------------
 * Add a new block group to the stack.
 * Invariants:
 *  currentStack->link == s.
 * -------------------------------------------------------------------------- */
STATIC_INLINE void
newStackBlock( traverseState *ts, bdescr *bd )
{
    ts->currentStack = bd;
    ts->stackTop     = (stackElement *)(bd->start + BLOCK_SIZE_W * bd->blocks);
    ts->stackBottom  = (stackElement *)bd->start;
    ts->stackLimit   = (stackElement *)ts->stackTop;
    bd->free     = (StgPtr)ts->stackLimit;
}

/* -----------------------------------------------------------------------------
 * Return to the previous block group.
 * Invariants:
 *   s->link == currentStack.
 * -------------------------------------------------------------------------- */
STATIC_INLINE void
returnToOldStack( traverseState *ts, bdescr *bd )
{
    ts->currentStack = bd;
    ts->stackTop = (stackElement *)bd->free;
    ts->stackBottom = (stackElement *)bd->start;
    ts->stackLimit = (stackElement *)(bd->start + BLOCK_SIZE_W * bd->blocks);
    bd->free = (StgPtr)ts->stackLimit;
}

/**
 *  Initializes the traversal work-stack.
 */
void
initializeTraverseStack( traverseState *ts )
{
    if (ts->firstStack != NULL) {
        freeChain(ts->firstStack);
    }

    ts->firstStack = allocGroup(BLOCKS_IN_STACK);
    ts->firstStack->link = NULL;
    ts->firstStack->u.back = NULL;

    ts->stackSize = 0;
    ts->maxStackSize = 0;

    newStackBlock(ts, ts->firstStack);
}

/**
 * Frees all the block groups in the traversal works-stack.
 *
 * Invariants:
 *   firstStack != NULL
 */
void
closeTraverseStack( traverseState *ts )
{
    freeChain(ts->firstStack);
    ts->firstStack = NULL;
}

int
getTraverseStackMaxSize(traverseState *ts)
{
    return ts->maxStackSize;
}

/* -----------------------------------------------------------------------------
 * Returns true if the whole stack is empty.
 * -------------------------------------------------------------------------- */
STATIC_INLINE bool
isEmptyWorkStack( traverseState *ts )
{
    return (ts->firstStack == ts->currentStack) && ts->stackTop == ts->stackLimit;
}

/* -----------------------------------------------------------------------------
 * Returns size of stack
 * -------------------------------------------------------------------------- */
W_
traverseWorkStackBlocks(traverseState *ts)
{
    bdescr* bd;
    W_ res = 0;

    for (bd = ts->firstStack; bd != NULL; bd = bd->link)
      res += bd->blocks;

    return res;
}

W_
retainerStackBlocks(void)
{
    return traverseWorkStackBlocks(&g_retainerTraverseState);
}

/* -----------------------------------------------------------------------------
 * Initializes *info from ptrs and payload.
 * Invariants:
 *   payload[] begins with ptrs pointers followed by non-pointers.
 * -------------------------------------------------------------------------- */
STATIC_INLINE void
init_ptrs( stackPos *info, uint32_t ptrs, StgPtr payload )
{
    info->type              = posTypePtrs;
    info->next.ptrs.pos     = 0;
    info->next.ptrs.ptrs    = ptrs;
    info->next.ptrs.payload = payload;
}

/* -----------------------------------------------------------------------------
 * Find the next object from *info.
 * -------------------------------------------------------------------------- */
STATIC_INLINE StgClosure *
find_ptrs( stackPos *info )
{
    if (info->next.ptrs.pos < info->next.ptrs.ptrs) {
        return (StgClosure *)info->next.ptrs.payload[info->next.ptrs.pos++];
    } else {
        return NULL;
    }
}

/* -----------------------------------------------------------------------------
 *  Initializes *info from SRT information stored in *infoTable.
 * -------------------------------------------------------------------------- */
STATIC_INLINE void
init_srt_fun( stackPos *info, const StgFunInfoTable *infoTable )
{
    info->type = posTypeSRT;
    if (infoTable->i.srt) {
        info->next.srt.srt = (StgClosure*)GET_FUN_SRT(infoTable);
    } else {
        info->next.srt.srt = NULL;
    }
}

STATIC_INLINE void
init_srt_thunk( stackPos *info, const StgThunkInfoTable *infoTable )
{
    info->type = posTypeSRT;
    if (infoTable->i.srt) {
        info->next.srt.srt = (StgClosure*)GET_SRT(infoTable);
    } else {
        info->next.srt.srt = NULL;
    }
}

/* -----------------------------------------------------------------------------
 * Find the next object from *info.
 * -------------------------------------------------------------------------- */
STATIC_INLINE StgClosure *
find_srt( stackPos *info )
{
    StgClosure *c;
    if (info->type == posTypeSRT) {
        c = info->next.srt.srt;
        info->next.srt.srt = NULL;
        return c;
    }
}

/**
 * Push a set of closures, represented by a single 'stackElement', onto the
 * traversal work-stack.
 */
static void
pushStackElement(traverseState *ts, stackElement *se)
{
    bdescr *nbd;      // Next Block Descriptor
    if (ts->stackTop - 1 < ts->stackBottom) {
        debug("pushStackElement() to the next stack.\n");

        // currentStack->free is updated when the active stack is switched
        // to the next stack.
        ts->currentStack->free = (StgPtr)ts->stackTop;

        if (ts->currentStack->link == NULL) {
            nbd = allocGroup(BLOCKS_IN_STACK);
            nbd->link = NULL;
            nbd->u.back = ts->currentStack;
            ts->currentStack->link = nbd;
        } else
            nbd = ts->currentStack->link;

        newStackBlock(ts, nbd);
    }

    // adjust stackTop (acutal push)
    ts->stackTop--;
    // If the size of stackElement was huge, we would better replace the
    // following statement by either a memcpy() call or a switch statement
    // on the type of the element. Currently, the size of stackElement is
    // small enough (5 words) that this direct assignment seems to be enough.
    *ts->stackTop = *se;

    ts->stackSize++;
    if (ts->stackSize > ts->maxStackSize) ts->maxStackSize = ts->stackSize;
    ASSERT(ts->stackSize >= 0);
    debug("stackSize = %d\n", ts->stackSize);
}

/**
 * Push a single closure onto the traversal work-stack.
 *
 *  cp   - object's parent
 *  c    - closure
 *  data - data associated with closure.
 */
inline void
traversePushClosure(traverseState *ts, StgClosure *c, StgClosure *cp, stackData data) {
    stackElement se;

    se.c = c;
    se.cp = cp;
    se.data = data;
    se.info.type = posTypeFresh;

    pushStackElement(ts, &se);
};

/**
 * traversePushChildren() extracts the first child of 'c' in 'first_child' and
 * conceptually pushes all remaining children of 'c' onto the traversal stack
 * while associating 'data' with the pushed elements to be returned upon poping.
 *
 * If 'c' has no children, 'first_child' is set to NULL and nothing is pushed
 * onto the stack.
 *
 * If 'c' has only one child, 'first_child' is set to that child and nothing is
 * pushed onto the stack.
 *
 * Invariants:
 *
 *  - 'c' is not any of TSO, AP, PAP, AP_STACK, which means that there cannot
 *       be any stack objects.
 *
 * Note: SRTs are considered to be children as well.
 *
 * Note: When pushing onto the stack we only really push one 'stackElement'
 * representing all children onto the stack. See traversePop()
 */
STATIC_INLINE void
traversePushChildren(traverseState *ts, StgClosure *c, stackData data, StgClosure **first_child)
{
    stackElement se;
    bdescr *nbd;      // Next Block Descriptor

    debug("traversePushChildren(): stackTop = 0x%x\n", ts->stackTop);

    ASSERT(get_itbl(c)->type != TSO);
    ASSERT(get_itbl(c)->type != AP_STACK);

    //
    // fill in se
    //

    se.c = c;
    se.data = data;
    // Note: se.cp ommitted on purpose, only traversePushClosure uses that.

    // fill in se.info
    switch (get_itbl(c)->type) {
        // no child, no SRT
    case CONSTR_0_1:
    case CONSTR_0_2:
    case ARR_WORDS:
    case COMPACT_NFDATA:
        *first_child = NULL;
        return;

        // one child (fixed), no SRT
    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY:
        *first_child = ((StgMutVar *)c)->var;
        return;
    case THUNK_SELECTOR:
        *first_child = ((StgSelector *)c)->selectee;
        return;
    case BLACKHOLE:
        *first_child = ((StgInd *)c)->indirectee;
        return;
    case CONSTR_1_0:
    case CONSTR_1_1:
        *first_child = c->payload[0];
        return;

        // For CONSTR_2_0 and MVAR, we use se.info.step to record the position
        // of the next child. We do not write a separate initialization code.
        // Also we do not have to initialize info.type;

        // two children (fixed), no SRT
        // need to push a stackElement, but nothing to store in se.info
    case CONSTR_2_0:
        *first_child = c->payload[0];         // return the first pointer
        se.info.type = posTypeStep;
        se.info.next.step = 2;            // 2 = second
        break;

        // three children (fixed), no SRT
        // need to push a stackElement
    case MVAR_CLEAN:
    case MVAR_DIRTY:
        // head must be TSO and the head of a linked list of TSOs.
        // Shoule it be a child? Seems to be yes.
        *first_child = (StgClosure *)((StgMVar *)c)->head;
        se.info.type = posTypeStep;
        se.info.next.step = 2;            // 2 = second
        break;

        // three children (fixed), no SRT
    case WEAK:
        *first_child = ((StgWeak *)c)->key;
        se.info.type = posTypeStep;
        se.info.next.step = 2;
        break;

        // layout.payload.ptrs, no SRT
    case TVAR:
    case CONSTR:
    case CONSTR_NOCAF:
    case PRIM:
    case MUT_PRIM:
    case BCO:
        init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs,
                  (StgPtr)c->payload);
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            return;   // no child
        break;

        // StgMutArrPtr.ptrs, no SRT
    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
    case MUT_ARR_PTRS_FROZEN_CLEAN:
    case MUT_ARR_PTRS_FROZEN_DIRTY:
        init_ptrs(&se.info, ((StgMutArrPtrs *)c)->ptrs,
                  (StgPtr)(((StgMutArrPtrs *)c)->payload));
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            return;
        break;

        // StgMutArrPtr.ptrs, no SRT
    case SMALL_MUT_ARR_PTRS_CLEAN:
    case SMALL_MUT_ARR_PTRS_DIRTY:
    case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
    case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
        init_ptrs(&se.info, ((StgSmallMutArrPtrs *)c)->ptrs,
                  (StgPtr)(((StgSmallMutArrPtrs *)c)->payload));
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            return;
        break;

    // layout.payload.ptrs, SRT
    case FUN_STATIC:
    case FUN:           // *c is a heap object.
    case FUN_2_0:
        init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs, (StgPtr)c->payload);
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            // no child from ptrs, so check SRT
            goto fun_srt_only;
        break;

    case THUNK:
    case THUNK_2_0:
        init_ptrs(&se.info, get_itbl(c)->layout.payload.ptrs,
                  (StgPtr)((StgThunk *)c)->payload);
        *first_child = find_ptrs(&se.info);
        if (*first_child == NULL)
            // no child from ptrs, so check SRT
            goto thunk_srt_only;
        break;

        // 1 fixed child, SRT
    case FUN_1_0:
    case FUN_1_1:
        *first_child = c->payload[0];
        ASSERT(*first_child != NULL);
        init_srt_fun(&se.info, get_fun_itbl(c));
        break;

    case THUNK_1_0:
    case THUNK_1_1:
        *first_child = ((StgThunk *)c)->payload[0];
        ASSERT(*first_child != NULL);
        init_srt_thunk(&se.info, get_thunk_itbl(c));
        break;

    case FUN_0_1:      // *c is a heap object.
    case FUN_0_2:
    fun_srt_only:
        init_srt_fun(&se.info, get_fun_itbl(c));
        *first_child = find_srt(&se.info);
        if (*first_child == NULL)
            return;     // no child
        break;

    // SRT only
    case THUNK_STATIC:
        ASSERT(get_itbl(c)->srt != 0);
    case THUNK_0_1:
    case THUNK_0_2:
    thunk_srt_only:
        init_srt_thunk(&se.info, get_thunk_itbl(c));
        *first_child = find_srt(&se.info);
        if (*first_child == NULL)
            return;     // no child
        break;

    case TREC_CHUNK:
        *first_child = (StgClosure *)((StgTRecChunk *)c)->prev_chunk;
        se.info.type = posTypeStep;
        se.info.next.step = 0;  // entry no.
        break;

        // cannot appear
    case PAP:
    case AP:
    case AP_STACK:
    case TSO:
    case STACK:
    case IND_STATIC:
        // stack objects
    case UPDATE_FRAME:
    case CATCH_FRAME:
    case UNDERFLOW_FRAME:
    case STOP_FRAME:
    case RET_BCO:
    case RET_SMALL:
    case RET_BIG:
        // invalid objects
    case IND:
    case INVALID_OBJECT:
    default:
        barf("Invalid object *c in push(): %d", get_itbl(c)->type);
        return;
    }

    // se.cp has to be initialized when type==posTypeFresh. We don't do that
    // here though. So type must be !=posTypeFresh.
    ASSERT(se.info.type != posTypeFresh);

    pushStackElement(ts, &se);
}

/**
 *  popStackElement(): Remove a depleted stackElement from the top of the
 *  traversal work-stack.
 *
 *  Invariants:
 *    stackTop cannot be equal to stackLimit unless the whole stack is
 *    empty, in which case popStackElement() is not allowed.
 */
static void
popStackElement(traverseState *ts) {
    debug("popStackElement(): stackTop = 0x%x\n", ts->stackTop);

    ASSERT(ts->stackTop != ts->stackLimit);
    ASSERT(!isEmptyWorkStack(ts));

    // <= (instead of <) is wrong!
    if (ts->stackTop + 1 < ts->stackLimit) {
        ts->stackTop++;

        ts->stackSize--;
        if (ts->stackSize > ts->maxStackSize) ts->maxStackSize = ts->stackSize;
        ASSERT(ts->stackSize >= 0);
        debug("stackSize = (--) %d\n", ts->stackSize);

        return;
    }

    bdescr *pbd;    // Previous Block Descriptor

    debug("popStackElement() to the previous stack.\n");

    ASSERT(ts->stackTop + 1 == ts->stackLimit);
    ASSERT(ts->stackBottom == (stackElement *)ts->currentStack->start);

    if (ts->firstStack == ts->currentStack) {
        // The stack is completely empty.
        ts->stackTop++;
        ASSERT(ts->stackTop == ts->stackLimit);

        ts->stackSize--;
        if (ts->stackSize > ts->maxStackSize) ts->maxStackSize = ts->stackSize;
        ASSERT(ts->stackSize >= 0);
        debug("stackSize = %d\n", ts->stackSize);

        return;
    }

    // currentStack->free is updated when the active stack is switched back
    // to the previous stack.
    ts->currentStack->free = (StgPtr)ts->stackLimit;

    // find the previous block descriptor
    pbd = ts->currentStack->u.back;
    ASSERT(pbd != NULL);

    returnToOldStack(ts, pbd);

    ts->stackSize--;
    if (ts->stackSize > ts->maxStackSize) ts->maxStackSize = ts->stackSize;
    ASSERT(ts->stackSize >= 0);
    debug("stackSize = %d\n", ts->stackSize);
}

/**
 *  Finds the next object to be considered for retainer profiling and store
 *  its pointer to *c.
 *
 *  If the unprocessed object was stored in the stack (posTypeFresh), the
 *  this object is returned as-is. Otherwise Test if the topmost stack
 *  element indicates that more objects are left,
 *  and if so, retrieve the first object and store its pointer to *c. Also,
 *  set *cp and *data appropriately, both of which are stored in the stack
 *  element.  The topmost stack element then is overwritten so as for it to now
 *  denote the next object.
 *
 *  If the topmost stack element indicates no more objects are left, pop
 *  off the stack element until either an object can be retrieved or
 *  the work-stack becomes empty, indicated by true returned by
 *  isEmptyWorkStack(), in which case *c is set to NULL.
 *
 *  Note:
 *
 *    It is okay to call this function even when the work-stack is empty.
 */
STATIC_INLINE void
traversePop(traverseState *ts, StgClosure **c, StgClosure **cp, stackData *data)
{
    stackElement *se;

    debug("traversePop(): stackTop = 0x%x\n", ts->stackTop);

    // Is this the last internal element? If so instead of modifying the current
    // stackElement in place we actually remove it from the stack.
    bool last = false;

    do {
        if (isEmptyWorkStack(ts)) {
            *c = NULL;
            return;
        }

        // Note: Below every `break`, where the loop condition is true, must be
        // accompanied by a popStackElement() otherwise this is an infinite
        // loop.
        se = ts->stackTop;

        // If this is a top-level element, you should pop that out.
        if (se->info.type == posTypeFresh) {
            *cp = se->cp;
            *c = se->c;
            *data = se->data;
            popStackElement(ts);
            return;
        }

        // Note: The first ptr of all of these was already returned as
        // *fist_child in push(), so we always start with the second field.
        switch (get_itbl(se->c)->type) {
            // two children (fixed), no SRT
            // nothing in se.info
        case CONSTR_2_0:
            *c = se->c->payload[1];
            last = true;
            goto out;

            // three children (fixed), no SRT
            // need to push a stackElement
        case MVAR_CLEAN:
        case MVAR_DIRTY:
            if (se->info.next.step == 2) {
                *c = (StgClosure *)((StgMVar *)se->c)->tail;
                se->info.next.step++;             // move to the next step
                // no popStackElement
            } else {
                *c = ((StgMVar *)se->c)->value;
                last = true;
            }
            goto out;

            // three children (fixed), no SRT
        case WEAK:
            if (se->info.next.step == 2) {
                *c = ((StgWeak *)se->c)->value;
                se->info.next.step++;
                // no popStackElement
            } else {
                *c = ((StgWeak *)se->c)->finalizer;
                last = true;
            }
            goto out;

        case TREC_CHUNK: {
            // These are pretty complicated: we have N entries, each
            // of which contains 3 fields that we want to follow.  So
            // we divide the step counter: the 2 low bits indicate
            // which field, and the rest of the bits indicate the
            // entry number (starting from zero).
            TRecEntry *entry;
            uint32_t entry_no = se->info.next.step >> 2;
            uint32_t field_no = se->info.next.step & 3;
            if (entry_no == ((StgTRecChunk *)se->c)->next_entry_idx) {
                *c = NULL;
                popStackElement(ts);
                break; // this breaks out of the switch not the loop
            }
            entry = &((StgTRecChunk *)se->c)->entries[entry_no];
            if (field_no == 0) {
                *c = (StgClosure *)entry->tvar;
            } else if (field_no == 1) {
                *c = entry->expected_value;
            } else {
                *c = entry->new_value;
            }
            se->info.next.step++;
            goto out;
        }

        case TVAR:
        case CONSTR:
        case PRIM:
        case MUT_PRIM:
        case BCO:
            // StgMutArrPtr.ptrs, no SRT
        case MUT_ARR_PTRS_CLEAN:
        case MUT_ARR_PTRS_DIRTY:
        case MUT_ARR_PTRS_FROZEN_CLEAN:
        case MUT_ARR_PTRS_FROZEN_DIRTY:
        case SMALL_MUT_ARR_PTRS_CLEAN:
        case SMALL_MUT_ARR_PTRS_DIRTY:
        case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
        case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
            *c = find_ptrs(&se->info);
            if (*c == NULL) {
                popStackElement(ts);
                break; // this breaks out of the switch not the loop
            }
            goto out;

            // layout.payload.ptrs, SRT
        case FUN:         // always a heap object
        case FUN_STATIC:
        case FUN_2_0:
            if (se->info.type == posTypePtrs) {
                *c = find_ptrs(&se->info);
                if (*c != NULL) {
                    goto out;
                }
                init_srt_fun(&se->info, get_fun_itbl(se->c));
            }
            goto do_srt;

        case THUNK:
        case THUNK_2_0:
            if (se->info.type == posTypePtrs) {
                *c = find_ptrs(&se->info);
                if (*c != NULL) {
                    goto out;
                }
                init_srt_thunk(&se->info, get_thunk_itbl(se->c));
            }
            goto do_srt;

            // SRT
        do_srt:
        case THUNK_STATIC:
        case FUN_0_1:
        case FUN_0_2:
        case THUNK_0_1:
        case THUNK_0_2:
        case FUN_1_0:
        case FUN_1_1:
        case THUNK_1_0:
        case THUNK_1_1:
            *c = find_srt(&se->info);
            if(*c == NULL) {
                popStackElement(ts);
                break; // this breaks out of the switch not the loop
            }
            goto out;

            // no child (fixed), no SRT
        case CONSTR_0_1:
        case CONSTR_0_2:
        case ARR_WORDS:
            // one child (fixed), no SRT
        case MUT_VAR_CLEAN:
        case MUT_VAR_DIRTY:
        case THUNK_SELECTOR:
        case CONSTR_1_1:
            // cannot appear
        case PAP:
        case AP:
        case AP_STACK:
        case TSO:
        case STACK:
        case IND_STATIC:
        case CONSTR_NOCAF:
            // stack objects
        case UPDATE_FRAME:
        case CATCH_FRAME:
        case UNDERFLOW_FRAME:
        case STOP_FRAME:
        case RET_BCO:
        case RET_SMALL:
        case RET_BIG:
            // invalid objects
        case IND:
        case INVALID_OBJECT:
        default:
            barf("Invalid object *c in traversePop(): %d", get_itbl(se->c)->type);
            return;
        }
    } while (*c == NULL);

out:

    ASSERT(*c != NULL);

    *cp = se->c;
    *data = se->data;

    if(last)
        popStackElement(ts);

    return;

}

/* -----------------------------------------------------------------------------
 * RETAINER PROFILING ENGINE
 * -------------------------------------------------------------------------- */

void
initRetainerProfiling( void )
{
    initializeAllRetainerSet();
    retainerGeneration = 0;
}

/* -----------------------------------------------------------------------------
 *  This function must be called before f-closing prof_file.
 * -------------------------------------------------------------------------- */
void
endRetainerProfiling( void )
{
    outputAllRetainerSet(prof_file);
}

/**
 * Make sure a closure's profiling data is initialized to zero if it does not
 * conform to the current value of the flip bit.
 *
 * See Note [Profiling heap traversal visited bit].
 */
void
traverseMaybeInitClosureData(StgClosure *c)
{
    if (!isTravDataValid(c)) {
        setTravDataToZero(c);
    }
}

/* -----------------------------------------------------------------------------
 * Returns true if *c is a retainer.
 * In general the retainers are the objects that may be the roots of the
 * collection. Basically this roots represents programmers threads
 * (TSO) with their stack and thunks.
 *
 * In addition we mark all mutable objects as a retainers, the reason for
 * that decision is lost in time.
 * -------------------------------------------------------------------------- */
STATIC_INLINE bool
isRetainer( StgClosure *c )
{
    switch (get_itbl(c)->type) {
        //
        //  True case
        //
        // TSOs MUST be retainers: they constitute the set of roots.
    case TSO:
    case STACK:

        // mutable objects
    case MUT_PRIM:
    case MVAR_CLEAN:
    case MVAR_DIRTY:
    case TVAR:
    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY:
    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
    case SMALL_MUT_ARR_PTRS_CLEAN:
    case SMALL_MUT_ARR_PTRS_DIRTY:
    case BLOCKING_QUEUE:

        // thunks are retainers.
    case THUNK:
    case THUNK_1_0:
    case THUNK_0_1:
    case THUNK_2_0:
    case THUNK_1_1:
    case THUNK_0_2:
    case THUNK_SELECTOR:
    case AP:
    case AP_STACK:

        // Static thunks, or CAFS, are obviously retainers.
    case THUNK_STATIC:

        // WEAK objects are roots; there is separate code in which traversing
        // begins from WEAK objects.
    case WEAK:
        return true;

        //
        // False case
        //

        // constructors
    case CONSTR:
    case CONSTR_NOCAF:
    case CONSTR_1_0:
    case CONSTR_0_1:
    case CONSTR_2_0:
    case CONSTR_1_1:
    case CONSTR_0_2:
        // functions
    case FUN:
    case FUN_1_0:
    case FUN_0_1:
    case FUN_2_0:
    case FUN_1_1:
    case FUN_0_2:
        // partial applications
    case PAP:
        // indirection
    // IND_STATIC used to be an error, but at the moment it can happen
    // as isAlive doesn't look through IND_STATIC as it ignores static
    // closures. See trac #3956 for a program that hit this error.
    case IND_STATIC:
    case BLACKHOLE:
    case WHITEHOLE:
        // static objects
    case FUN_STATIC:
        // misc
    case PRIM:
    case BCO:
    case ARR_WORDS:
    case COMPACT_NFDATA:
        // STM
    case TREC_CHUNK:
        // immutable arrays
    case MUT_ARR_PTRS_FROZEN_CLEAN:
    case MUT_ARR_PTRS_FROZEN_DIRTY:
    case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
    case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
        return false;

        //
        // Error case
        //
        // Stack objects are invalid because they are never treated as
        // legal objects during retainer profiling.
    case UPDATE_FRAME:
    case CATCH_FRAME:
    case CATCH_RETRY_FRAME:
    case CATCH_STM_FRAME:
    case UNDERFLOW_FRAME:
    case ATOMICALLY_FRAME:
    case STOP_FRAME:
    case RET_BCO:
    case RET_SMALL:
    case RET_BIG:
    case RET_FUN:
        // other cases
    case IND:
    case INVALID_OBJECT:
    default:
        barf("Invalid object in isRetainer(): %d", get_itbl(c)->type);
        return false;
    }
}

/* -----------------------------------------------------------------------------
 *  Returns the retainer function value for the closure *c, i.e., R(*c).
 *  This function does NOT return the retainer(s) of *c.
 *  Invariants:
 *    *c must be a retainer.
 * -------------------------------------------------------------------------- */
STATIC_INLINE retainer
getRetainerFrom( StgClosure *c )
{
    ASSERT(isRetainer(c));

    return c->header.prof.ccs;
}

/* -----------------------------------------------------------------------------
 *  Associates the retainer set *s with the closure *c, that is, *s becomes
 *  the retainer set of *c.
 *  Invariants:
 *    c != NULL
 *    s != NULL
 * -------------------------------------------------------------------------- */
STATIC_INLINE void
associate( StgClosure *c, RetainerSet *s )
{
    // StgWord has the same size as pointers, so the following type
    // casting is okay.
    RSET(c) = (RetainerSet *)((StgWord)s | flip);
}

/* -----------------------------------------------------------------------------
   Call traversePushClosure for each of the closures covered by a large bitmap.
   -------------------------------------------------------------------------- */

static void
traverseLargeBitmap (traverseState *ts, StgPtr p, StgLargeBitmap *large_bitmap,
                     uint32_t size, StgClosure *c, stackData data)
{
    uint32_t i, b;
    StgWord bitmap;

    b = 0;
    bitmap = large_bitmap->bitmap[b];
    for (i = 0; i < size; ) {
        if ((bitmap & 1) == 0) {
            traversePushClosure(ts, (StgClosure *)*p, c, data);
        }
        i++;
        p++;
        if (i % BITS_IN(W_) == 0) {
            b++;
            bitmap = large_bitmap->bitmap[b];
        } else {
            bitmap = bitmap >> 1;
        }
    }
}

STATIC_INLINE StgPtr
traverseSmallBitmap (traverseState *ts, StgPtr p, uint32_t size, StgWord bitmap,
                     StgClosure *c, stackData data)
{
    while (size > 0) {
        if ((bitmap & 1) == 0) {
            traversePushClosure(ts, (StgClosure *)*p, c, data);
        }
        p++;
        bitmap = bitmap >> 1;
        size--;
    }
    return p;
}

/**
 *  traversePushStack(ts, cp, data, stackStart, stackEnd) pushes all the objects
 *  in the STG stack-chunk from stackStart to stackEnd onto the traversal
 *  work-stack with 'c' and 'data' being their parent and associated data,
 *  respectively.
 *
 *  Invariants:
 *
 *    *cp is one of the following: TSO, AP_STACK.
 *
 *    stackStart < stackEnd.
 *
 *    If *c is TSO, its state is not ThreadComplete,or ThreadKilled,
 *    which means that its stack is ready to process.
 *
 *  Note:
 *
 *    This code was almost plagiarzied from GC.c! For each pointer,
 *    traversePushClosure() is invoked instead of evacuate().
 */
static void
traversePushStack(traverseState *ts, StgClosure *cp, stackData data,
                  StgPtr stackStart, StgPtr stackEnd)
{
    stackElement *oldStackBoundary;
    StgPtr p;
    const StgRetInfoTable *info;
    StgWord bitmap;
    uint32_t size;

    ASSERT(get_itbl(cp)->type == STACK);

    p = stackStart;
    while (p < stackEnd) {
        info = get_ret_itbl((StgClosure *)p);

        switch(info->i.type) {

        case UPDATE_FRAME:
            traversePushClosure(ts, ((StgUpdateFrame *)p)->updatee, cp, data);
            p += sizeofW(StgUpdateFrame);
            continue;

        case UNDERFLOW_FRAME:
        case STOP_FRAME:
        case CATCH_FRAME:
        case CATCH_STM_FRAME:
        case CATCH_RETRY_FRAME:
        case ATOMICALLY_FRAME:
        case RET_SMALL:
            bitmap = BITMAP_BITS(info->i.layout.bitmap);
            size   = BITMAP_SIZE(info->i.layout.bitmap);
            p++;
            p = traverseSmallBitmap(ts, p, size, bitmap, cp, data);

        follow_srt:
            if (info->i.srt) {
                traversePushClosure(ts, GET_SRT(info), cp, data);
            }
            continue;

        case RET_BCO: {
            StgBCO *bco;

            p++;
            traversePushClosure(ts, (StgClosure*)*p, cp, data);
            bco = (StgBCO *)*p;
            p++;
            size = BCO_BITMAP_SIZE(bco);
            traverseLargeBitmap(ts, p, BCO_BITMAP(bco), size, cp, data);
            p += size;
            continue;
        }

            // large bitmap (> 32 entries, or > 64 on a 64-bit machine)
        case RET_BIG:
            size = GET_LARGE_BITMAP(&info->i)->size;
            p++;
            traverseLargeBitmap(ts, p, GET_LARGE_BITMAP(&info->i),
                                size, cp, data);
            p += size;
            // and don't forget to follow the SRT
            goto follow_srt;

        case RET_FUN: {
            StgRetFun *ret_fun = (StgRetFun *)p;
            const StgFunInfoTable *fun_info;

            traversePushClosure(ts, ret_fun->fun, cp, data);
            fun_info = get_fun_itbl(UNTAG_CONST_CLOSURE(ret_fun->fun));

            p = (P_)&ret_fun->payload;
            switch (fun_info->f.fun_type) {
            case ARG_GEN:
                bitmap = BITMAP_BITS(fun_info->f.b.bitmap);
                size = BITMAP_SIZE(fun_info->f.b.bitmap);
                p = traverseSmallBitmap(ts, p, size, bitmap, cp, data);
                break;
            case ARG_GEN_BIG:
                size = GET_FUN_LARGE_BITMAP(fun_info)->size;
                traverseLargeBitmap(ts, p, GET_FUN_LARGE_BITMAP(fun_info),
                                    size, cp, data);
                p += size;
                break;
            default:
                bitmap = BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]);
                size = BITMAP_SIZE(stg_arg_bitmaps[fun_info->f.fun_type]);
                p = traverseSmallBitmap(ts, p, size, bitmap, cp, data);
                break;
            }
            goto follow_srt;
        }

        default:
            barf("Invalid object found in traversePushStack(): %d",
                 (int)(info->i.type));
        }
    }
}

/* ----------------------------------------------------------------------------
 * Call traversePushClosure for each of the children of a PAP/AP
 * ------------------------------------------------------------------------- */

STATIC_INLINE StgPtr
traversePAP (traverseState *ts,
                    StgClosure *pap,    /* NOT tagged */
                    stackData data,
                    StgClosure *fun,    /* tagged */
                    StgClosure** payload, StgWord n_args)
{
    StgPtr p;
    StgWord bitmap;
    const StgFunInfoTable *fun_info;

    traversePushClosure(ts, fun, pap, data);
    fun = UNTAG_CLOSURE(fun);
    fun_info = get_fun_itbl(fun);
    ASSERT(fun_info->i.type != PAP);

    p = (StgPtr)payload;

    switch (fun_info->f.fun_type) {
    case ARG_GEN:
        bitmap = BITMAP_BITS(fun_info->f.b.bitmap);
        p = traverseSmallBitmap(ts, p, n_args, bitmap,
                                pap, data);
        break;
    case ARG_GEN_BIG:
        traverseLargeBitmap(ts, p, GET_FUN_LARGE_BITMAP(fun_info),
                            n_args, pap, data);
        p += n_args;
        break;
    case ARG_BCO:
        traverseLargeBitmap(ts, (StgPtr)payload, BCO_BITMAP(fun),
                            n_args, pap, data);
        p += n_args;
        break;
    default:
        bitmap = BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]);
        p = traverseSmallBitmap(ts, p, n_args, bitmap, pap, data);
        break;
    }
    return p;
}

static bool
retainVisitClosure( const StgClosure *c, const StgClosure *cp, const stackData data, stackData *out_data )
{
    retainer r = data.c_child_r;
    RetainerSet *s, *retainerSetOfc;
    retainerSetOfc = retainerSetOf(c);

    timesAnyObjectVisited++;

    // c  = current closure under consideration,
    // cp = current closure's parent,
    // r  = current closure's most recent retainer
    //
    // Loop invariants (on the meaning of c, cp, r, and their retainer sets):
    //   RSET(cp) and RSET(r) are valid.
    //   RSET(c) is valid only if c has been visited before.
    //
    // Loop invariants (on the relation between c, cp, and r)
    //   if cp is not a retainer, r belongs to RSET(cp).
    //   if cp is a retainer, r == cp.

    // Now compute s:
    //    isRetainer(cp) == true => s == NULL
    //    isRetainer(cp) == false => s == cp.retainer
    if (isRetainer(cp))
        s = NULL;
    else
        s = retainerSetOf(cp);

    // (c, cp, r, s) is available.

    // (c, cp, r, s, R_r) is available, so compute the retainer set for *c.
    if (retainerSetOfc == NULL) {
        // This is the first visit to *c.
        numObjectVisited++;

        if (s == NULL)
            associate(c, singleton(r));
        else
            // s is actually the retainer set of *c!
            associate(c, s);

        // compute c_child_r
        out_data->c_child_r = isRetainer(c) ? getRetainerFrom(c) : r;
    } else {
        // This is not the first visit to *c.
        if (isMember(r, retainerSetOfc))
            return 1;          // no need to process child

        if (s == NULL)
            associate(c, addElement(r, retainerSetOfc));
        else {
            // s is not NULL and cp is not a retainer. This means that
            // each time *cp is visited, so is *c. Thus, if s has
            // exactly one more element in its retainer set than c, s
            // is also the new retainer set for *c.
            if (s->num == retainerSetOfc->num + 1) {
                associate(c, s);
            }
            // Otherwise, just add R_r to the current retainer set of *c.
            else {
                associate(c, addElement(r, retainerSetOfc));
            }
        }

        if (isRetainer(c))
            return 1;          // no need to process child

        // compute c_child_r
        out_data->c_child_r = r;
    }

    // now, RSET() of all of *c, *cp, and *r is valid.
    // (c, c_child_r) are available.

    return 0;
}

static void
resetMutableObjects(void)
{
    uint32_t g, n;
    bdescr *bd;
    StgPtr ml;

    // The following code resets the 'trav' field of each unvisited mutable
    // object.
    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
        // NOT true: even G0 has a block on its mutable list
        // ASSERT(g != 0 || (generations[g].mut_list == NULL));

        // Traversing through mut_list is necessary
        // because we can find MUT_VAR objects which have not been
        // visited during heap traversal.
        for (n = 0; n < n_capabilities; n++) {
          for (bd = capabilities[n]->mut_lists[g]; bd != NULL; bd = bd->link) {
            for (ml = bd->start; ml < bd->free; ml++) {

                traverseMaybeInitClosureData((StgClosure *)*ml);
            }
          }
        }
    }
}

/**
 * Traverse all closures on the traversal work-stack, calling 'visit_cb'
 * on each closure. See 'visitClosure_cb' for details.
 */
void
traverseWorkStack(traverseState *ts, visitClosure_cb visit_cb)
{
    // first_child = first child of c
    StgClosure *c, *cp, *first_child;
    stackData data, child_data;
    StgWord typeOfc;

    // Now we flip the flip bit.
    flip = flip ^ 1;

    // c = Current closure                           (possibly tagged)
    // cp = Current closure's Parent                 (NOT tagged)
    // data = current closures' associated data      (NOT tagged)
    // data_out = data to associate with current closure's children

loop:
    traversePop(ts, &c, &cp, &data);

    if (c == NULL) {
        debug("maxStackSize= %d\n", ts->maxStackSize);
        resetMutableObjects();
        return;
    }
inner_loop:
    c = UNTAG_CLOSURE(c);

    typeOfc = get_itbl(c)->type;

    // special cases
    switch (typeOfc) {
    case TSO:
        if (((StgTSO *)c)->what_next == ThreadComplete ||
            ((StgTSO *)c)->what_next == ThreadKilled) {
            debug("ThreadComplete or ThreadKilled encountered in traverseWorkStack()\n");
            goto loop;
        }
        break;

    case IND_STATIC:
        // We just skip IND_STATIC, so it's never visited.
        c = ((StgIndStatic *)c)->indirectee;
        goto inner_loop;

    case CONSTR_NOCAF:
        // static objects with no pointers out, so goto loop.

        // It is not just enough not to visit *c; it is
        // mandatory because CONSTR_NOCAF are not reachable from
        // scavenged_static_objects, the list from which is assumed to traverse
        // all static objects after major garbage collections.
        goto loop;

    case THUNK_STATIC:
        if (get_itbl(c)->srt == 0) {
            // No need to visit *c; no dynamic objects are reachable from it.
            //
            // Static objects: if we traverse all the live closures,
            // including static closures, during each heap census then
            // we will observe that some static closures appear and
            // disappear.  eg. a closure may contain a pointer to a
            // static function 'f' which is not otherwise reachable
            // (it doesn't indirectly point to any CAFs, so it doesn't
            // appear in any SRTs), so we would find 'f' during
            // traversal.  However on the next sweep there may be no
            // closures pointing to 'f'.
            //
            // We must therefore ignore static closures whose SRT is
            // empty, because these are exactly the closures that may
            // "appear".  A closure with a non-empty SRT, and which is
            // still required, will always be reachable.
            //
            // But what about CONSTR?  Surely these may be able
            // to appear, and they don't have SRTs, so we can't
            // check.  So for now, we're calling
            // resetStaticObjectForProfiling() from the
            // garbage collector to reset the retainer sets in all the
            // reachable static objects.
            goto loop;
        }

    case FUN_STATIC: {
        StgInfoTable *info = get_itbl(c);
        if (info->srt == 0 && info->layout.payload.ptrs == 0) {
            goto loop;
        } else {
            break;
        }
    }

    default:
        break;
    }

    // If this is the first visit to c, initialize its data.
    traverseMaybeInitClosureData(c);

    if(visit_cb(c, cp, data, (stackData*)&child_data))
        goto loop;

    // process child

    // Special case closures: we process these all in one go rather
    // than attempting to save the current position, because doing so
    // would be hard.
    switch (typeOfc) {
    case STACK:
        traversePushStack(ts, c, child_data,
                    ((StgStack *)c)->sp,
                    ((StgStack *)c)->stack + ((StgStack *)c)->stack_size);
        goto loop;

    case TSO:
    {
        StgTSO *tso = (StgTSO *)c;

        traversePushClosure(ts, (StgClosure *) tso->stackobj, c, child_data);
        traversePushClosure(ts, (StgClosure *) tso->blocked_exceptions, c, child_data);
        traversePushClosure(ts, (StgClosure *) tso->bq, c, child_data);
        traversePushClosure(ts, (StgClosure *) tso->trec, c, child_data);
        if (   tso->why_blocked == BlockedOnMVar
               || tso->why_blocked == BlockedOnMVarRead
               || tso->why_blocked == BlockedOnBlackHole
               || tso->why_blocked == BlockedOnMsgThrowTo
            ) {
            traversePushClosure(ts, tso->block_info.closure, c, child_data);
        }
        goto loop;
    }

    case BLOCKING_QUEUE:
    {
        StgBlockingQueue *bq = (StgBlockingQueue *)c;
        traversePushClosure(ts, (StgClosure *) bq->link,  c, child_data);
        traversePushClosure(ts, (StgClosure *) bq->bh,    c, child_data);
        traversePushClosure(ts, (StgClosure *) bq->owner, c, child_data);
        goto loop;
    }

    case PAP:
    {
        StgPAP *pap = (StgPAP *)c;
        traversePAP(ts, c, child_data, pap->fun, pap->payload, pap->n_args);
        goto loop;
    }

    case AP:
    {
        StgAP *ap = (StgAP *)c;
        traversePAP(ts, c, child_data, ap->fun, ap->payload, ap->n_args);
        goto loop;
    }

    case AP_STACK:
        traversePushClosure(ts, ((StgAP_STACK *)c)->fun, c, child_data);
        traversePushStack(ts, c, child_data,
                    (StgPtr)((StgAP_STACK *)c)->payload,
                    (StgPtr)((StgAP_STACK *)c)->payload +
                             ((StgAP_STACK *)c)->size);
        goto loop;
    }

    traversePushChildren(ts, c, child_data, &first_child);

    // If first_child is null, c has no child.
    // If first_child is not null, the top stack element points to the next
    // object. traversePushChildren() may or may not push a stackElement on the
    // stack.
    if (first_child == NULL)
        goto loop;

    // (c, cp, data) = (first_child, c, child_data)
    data = child_data;
    cp = c;
    c = first_child;
    goto inner_loop;
}

/**
 *  Push every object reachable from *tl onto the traversal work stack.
 */
static void
retainRoot(void *user, StgClosure **tl)
{
    traverseState *ts = (traverseState*) user;
    StgClosure *c;

    // We no longer assume that only TSOs and WEAKs are roots; any closure can
    // be a root.

    c = UNTAG_CLOSURE(*tl);
    traverseMaybeInitClosureData(c);
    if (c != &stg_END_TSO_QUEUE_closure && isRetainer(c)) {
        traversePushClosure(ts, c, c, (stackData)getRetainerFrom(c));
    } else {
        traversePushClosure(ts, c, c, (stackData)CCS_SYSTEM);
    }

    // NOT TRUE: ASSERT(isMember(getRetainerFrom(*tl), retainerSetOf(*tl)));
    // *tl might be a TSO which is ThreadComplete, in which
    // case we ignore it for the purposes of retainer profiling.
}

/* -----------------------------------------------------------------------------
 *  Compute the retainer set for each of the objects in the heap.
 * -------------------------------------------------------------------------- */
static void
computeRetainerSet( traverseState *ts )
{
    StgWeak *weak;
    uint32_t g, n;
    StgPtr ml;
    bdescr *bd;

    markCapabilities(retainRoot, (void*)ts); // for scheduler roots

    // This function is called after a major GC, when key, value, and finalizer
    // all are guaranteed to be valid, or reachable.
    //
    // The following code assumes that WEAK objects are considered to be roots
    // for retainer profilng.
    for (n = 0; n < n_capabilities; n++) {
        // NB: after a GC, all nursery weak_ptr_lists have been migrated
        // to the global lists living in the generations
        ASSERT(capabilities[n]->weak_ptr_list_hd == NULL);
        ASSERT(capabilities[n]->weak_ptr_list_tl == NULL);
    }
    for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
        for (weak = generations[g].weak_ptr_list; weak != NULL; weak = weak->link) {
            // retainRoot((StgClosure *)weak);
            retainRoot((void*)ts, (StgClosure **)&weak);
        }
    }

    // Consider roots from the stable ptr table.
    markStablePtrTable(retainRoot, (void*)ts);
    // Remember old stable name addresses.
    rememberOldStableNameAddresses ();

    traverseWorkStack(ts, &retainVisitClosure);
}

/* -----------------------------------------------------------------------------
 *  Traverse all static objects for which we compute retainer sets,
 *  and reset their rs fields to NULL, which is accomplished by
 *  invoking traverseMaybeInitClosureData(). This function must be called
 *  before zeroing all objects reachable from scavenged_static_objects
 *  in the case of major garbage collections. See GarbageCollect() in
 *  GC.c.
 *  Note:
 *    The mut_once_list of the oldest generation must also be traversed?
 *    Why? Because if the evacuation of an object pointed to by a static
 *    indirection object fails, it is put back to the mut_once_list of
 *    the oldest generation.
 *    However, this is not necessary because any static indirection objects
 *    are just traversed through to reach dynamic objects. In other words,
 *    they are not taken into consideration in computing retainer sets.
 *
 * SDM (20/7/2011): I don't think this is doing anything sensible,
 * because it happens before retainerProfile() and at the beginning of
 * retainerProfil() we change the sense of 'flip'.  So all of the
 * calls to traverseMaybeInitClosureData() here are initialising retainer sets
 * with the wrong flip.  Also, I don't see why this is necessary.  I
 * added a traverseMaybeInitClosureData() call to retainRoot(), and that seems
 * to have fixed the assertion failure in retainerSetOf() I was
 * encountering.
 * -------------------------------------------------------------------------- */
void
resetStaticObjectForProfiling( StgClosure *static_objects )
{
    uint32_t count = 0;
    StgClosure *p;

    p = static_objects;
    while (p != END_OF_STATIC_OBJECT_LIST) {
        p = UNTAG_STATIC_LIST_PTR(p);
        count++;

        switch (get_itbl(p)->type) {
        case IND_STATIC:
            // Since we do not compute the retainer set of any
            // IND_STATIC object, we don't have to reset its retainer
            // field.
            p = (StgClosure*)*IND_STATIC_LINK(p);
            break;
        case THUNK_STATIC:
            traverseMaybeInitClosureData(p);
            p = (StgClosure*)*THUNK_STATIC_LINK(p);
            break;
        case FUN_STATIC:
        case CONSTR:
        case CONSTR_1_0:
        case CONSTR_2_0:
        case CONSTR_1_1:
        case CONSTR_NOCAF:
            traverseMaybeInitClosureData(p);
            p = (StgClosure*)*STATIC_LINK(get_itbl(p), p);
            break;
        default:
            barf("resetStaticObjectForProfiling: %p (%s)",
                 p, get_itbl(p)->type);
            break;
        }
    }

    debug("count in scavenged_static_objects = %d\n", count);
}

/* -----------------------------------------------------------------------------
 * Perform retainer profiling.
 * N is the oldest generation being profilied, where the generations are
 * numbered starting at 0.
 * Invariants:
 * Note:
 *   This function should be called only immediately after major garbage
 *   collection.
 * ------------------------------------------------------------------------- */
void
retainerProfile(void)
{
  stat_startRP();

  numObjectVisited = 0;
  timesAnyObjectVisited = 0;

  /*
    We initialize the traverse stack each time the retainer profiling is
    performed (because the traverse stack size varies on each retainer profiling
    and this operation is not costly anyhow). However, we just refresh the
    retainer sets.
   */
  initializeTraverseStack(&g_retainerTraverseState);
  initializeAllRetainerSet();
  computeRetainerSet(&g_retainerTraverseState);

  // post-processing
  closeTraverseStack(&g_retainerTraverseState);
  retainerGeneration++;

  stat_endRP(
    retainerGeneration - 1,   // retainerGeneration has just been incremented!
    getTraverseStackMaxSize(&g_retainerTraverseState),
    (double)timesAnyObjectVisited / numObjectVisited);
}

#endif /* PROFILING */