1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2002
*
* Main function for a standalone Haskell program.
*
* ---------------------------------------------------------------------------*/
// PAPI uses caddr_t, which is not POSIX
#ifndef USE_PAPI
#include "PosixSource.h"
#endif
#include "Rts.h"
#include "RtsAPI.h"
#include "HsFFI.h"
#include "sm/Storage.h"
#include "RtsUtils.h"
#include "Prelude.h"
#include "Schedule.h" /* initScheduler */
#include "Stats.h" /* initStats */
#include "STM.h" /* initSTM */
#include "RtsSignals.h"
#include "Weak.h"
#include "Ticky.h"
#include "StgRun.h"
#include "Prelude.h" /* fixupRTStoPreludeRefs */
#include "ThreadLabels.h"
#include "sm/BlockAlloc.h"
#include "Trace.h"
#include "Stable.h"
#include "Hash.h"
#include "Profiling.h"
#include "Timer.h"
#include "Globals.h"
#if defined(RTS_GTK_FRONTPANEL)
#include "FrontPanel.h"
#endif
#if defined(PROFILING)
# include "ProfHeap.h"
# include "RetainerProfile.h"
#endif
#if defined(mingw32_HOST_OS) && !defined(THREADED_RTS)
#include "win32/AsyncIO.h"
#endif
#if !defined(mingw32_HOST_OS)
#include "posix/TTY.h"
#include "posix/FileLock.h"
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_LOCALE_H
#include <locale.h>
#endif
#if USE_PAPI
#include "Papi.h"
#endif
// Count of how many outstanding hs_init()s there have been.
static int hs_init_count = 0;
/* -----------------------------------------------------------------------------
Initialise floating point unit on x86 (currently disabled. why?)
(see comment in ghc/compiler/nativeGen/MachInstrs.lhs).
-------------------------------------------------------------------------- */
#define X86_INIT_FPU 0
#if X86_INIT_FPU
static void
x86_init_fpu ( void )
{
__volatile unsigned short int fpu_cw;
// Grab the control word
__asm __volatile ("fnstcw %0" : "=m" (fpu_cw));
#if 0
printf("fpu_cw: %x\n", fpu_cw);
#endif
// Set bits 8-9 to 10 (64-bit precision).
fpu_cw = (fpu_cw & 0xfcff) | 0x0200;
// Store the new control word back
__asm __volatile ("fldcw %0" : : "m" (fpu_cw));
}
#endif
/* -----------------------------------------------------------------------------
Starting up the RTS
-------------------------------------------------------------------------- */
void
hs_init(int *argc, char **argv[])
{
hs_init_count++;
if (hs_init_count > 1) {
// second and subsequent inits are ignored
return;
}
setlocale(LC_CTYPE,"");
/* Initialise the stats department, phase 0 */
initStats0();
/* Next we do is grab the start time...just in case we're
* collecting timing statistics.
*/
stat_startInit();
#if defined(DEBUG)
/* Start off by initialising the allocator debugging so we can
* use it anywhere */
initAllocator();
#endif
/* Set the RTS flags to default values. */
initRtsFlagsDefaults();
/* Call the user hook to reset defaults, if present */
defaultsHook();
/* Parse the flags, separating the RTS flags from the programs args */
if (argc != NULL && argv != NULL) {
setFullProgArgv(*argc,*argv);
setupRtsFlags(argc, *argv, &rts_argc, rts_argv);
setProgArgv(*argc,*argv);
}
/* Initialise the stats department, phase 1 */
initStats1();
#ifdef USE_PAPI
papi_init();
#endif
/* initTracing must be after setupRtsFlags() */
#ifdef TRACING
initTracing();
#endif
/* initialise scheduler data structures (needs to be done before
* initStorage()).
*/
initScheduler();
/* initialize the storage manager */
initStorage();
/* initialise the stable pointer table */
initStablePtrTable();
/* Add some GC roots for things in the base package that the RTS
* knows about. We don't know whether these turn out to be CAFs
* or refer to CAFs, but we have to assume that they might.
*/
getStablePtr((StgPtr)runIO_closure);
getStablePtr((StgPtr)runNonIO_closure);
getStablePtr((StgPtr)stackOverflow_closure);
getStablePtr((StgPtr)heapOverflow_closure);
getStablePtr((StgPtr)runFinalizerBatch_closure);
getStablePtr((StgPtr)unpackCString_closure);
getStablePtr((StgPtr)blockedIndefinitelyOnMVar_closure);
getStablePtr((StgPtr)nonTermination_closure);
getStablePtr((StgPtr)blockedIndefinitelyOnSTM_closure);
/* initialise the shared Typeable store */
initGlobalStore();
/* initialise file locking, if necessary */
#if !defined(mingw32_HOST_OS)
initFileLocking();
#endif
#if defined(DEBUG)
/* initialise thread label table (tso->char*) */
initThreadLabelTable();
#endif
initProfiling1();
/* start the virtual timer 'subsystem'. */
initTimer();
startTimer();
#if defined(RTS_USER_SIGNALS)
if (RtsFlags.MiscFlags.install_signal_handlers) {
/* Initialise the user signal handler set */
initUserSignals();
/* Set up handler to run on SIGINT, etc. */
initDefaultHandlers();
}
#endif
#if defined(mingw32_HOST_OS) && !defined(THREADED_RTS)
startupAsyncIO();
#endif
#ifdef RTS_GTK_FRONTPANEL
if (RtsFlags.GcFlags.frontpanel) {
initFrontPanel();
}
#endif
#if X86_INIT_FPU
x86_init_fpu();
#endif
/* Record initialization times */
stat_endInit();
}
// Compatibility interface
void
startupHaskell(int argc, char *argv[], void (*init_root)(void))
{
hs_init(&argc, &argv);
if(init_root)
hs_add_root(init_root);
}
/* -----------------------------------------------------------------------------
Per-module initialisation
This process traverses all the compiled modules in the program
starting with "Main", and performing per-module initialisation for
each one.
So far, two things happen at initialisation time:
- we register stable names for each foreign-exported function
in that module. This prevents foreign-exported entities, and
things they depend on, from being garbage collected.
- we supply a unique integer to each statically declared cost
centre and cost centre stack in the program.
The code generator inserts a small function "__stginit_<module>" in each
module and calls the registration functions in each of the modules it
imports.
The init* functions are compiled in the same way as STG code,
i.e. without normal C call/return conventions. Hence we must use
StgRun to call this stuff.
-------------------------------------------------------------------------- */
/* The init functions use an explicit stack...
*/
#define INIT_STACK_BLOCKS 4
static StgFunPtr *init_stack = NULL;
void
hs_add_root(void (*init_root)(void))
{
bdescr *bd;
nat init_sp;
Capability *cap;
cap = rts_lock();
if (hs_init_count <= 0) {
barf("hs_add_root() must be called after hs_init()");
}
/* The initialisation stack grows downward, with sp pointing
to the last occupied word */
init_sp = INIT_STACK_BLOCKS*BLOCK_SIZE_W;
bd = allocGroup_lock(INIT_STACK_BLOCKS);
init_stack = (StgFunPtr *)bd->start;
init_stack[--init_sp] = (StgFunPtr)stg_init_finish;
if (init_root != NULL) {
init_stack[--init_sp] = (StgFunPtr)init_root;
}
cap->r.rSp = (P_)(init_stack + init_sp);
StgRun((StgFunPtr)stg_init, &cap->r);
freeGroup_lock(bd);
startupHpc();
// This must be done after module initialisation.
// ToDo: make this work in the presence of multiple hs_add_root()s.
initProfiling2();
rts_unlock(cap);
// ditto.
#if defined(THREADED_RTS)
ioManagerStart();
#endif
}
/* ----------------------------------------------------------------------------
* Shutting down the RTS
*
* The wait_foreign parameter means:
* True ==> wait for any threads doing foreign calls now.
* False ==> threads doing foreign calls may return in the
* future, but will immediately block on a mutex.
* (capability->lock).
*
* If this RTS is a DLL that we're about to unload, then you want
* safe=True, otherwise the thread might return to code that has been
* unloaded. If this is a standalone program that is about to exit,
* then you can get away with safe=False, which is better because we
* won't hang on exit if there is a blocked foreign call outstanding.
*
------------------------------------------------------------------------- */
static void
hs_exit_(rtsBool wait_foreign)
{
if (hs_init_count <= 0) {
errorBelch("warning: too many hs_exit()s");
return;
}
hs_init_count--;
if (hs_init_count > 0) {
// ignore until it's the last one
return;
}
/* start timing the shutdown */
stat_startExit();
OnExitHook();
// Free the full argv storage
freeFullProgArgv();
#if defined(THREADED_RTS)
ioManagerDie();
#endif
/* stop all running tasks */
exitScheduler(wait_foreign);
/* run C finalizers for all active weak pointers */
runAllCFinalizers(weak_ptr_list);
#if defined(RTS_USER_SIGNALS)
if (RtsFlags.MiscFlags.install_signal_handlers) {
freeSignalHandlers();
}
#endif
/* stop the ticker */
stopTimer();
exitTimer();
// set the terminal settings back to what they were
#if !defined(mingw32_HOST_OS)
resetTerminalSettings();
#endif
// uninstall signal handlers
resetDefaultHandlers();
/* stop timing the shutdown, we're about to print stats */
stat_endExit();
/* shutdown the hpc support (if needed) */
exitHpc();
// clean up things from the storage manager's point of view.
// also outputs the stats (+RTS -s) info.
exitStorage();
/* free the tasks */
freeScheduler();
/* free shared Typeable store */
exitGlobalStore();
/* free file locking tables, if necessary */
#if !defined(mingw32_HOST_OS)
freeFileLocking();
#endif
/* free the stable pointer table */
exitStablePtrTable();
#if defined(DEBUG)
/* free the thread label table */
freeThreadLabelTable();
#endif
#ifdef RTS_GTK_FRONTPANEL
if (RtsFlags.GcFlags.frontpanel) {
stopFrontPanel();
}
#endif
#if defined(PROFILING)
reportCCSProfiling();
#endif
endProfiling();
freeProfiling1();
#ifdef PROFILING
// Originally, this was in report_ccs_profiling(). Now, retainer
// profiling might tack some extra stuff on to the end of this file
// during endProfiling().
if (prof_file != NULL) fclose(prof_file);
#endif
#ifdef TRACING
endTracing();
freeTracing();
#endif
#if defined(TICKY_TICKY)
if (RtsFlags.TickyFlags.showTickyStats) PrintTickyInfo();
#endif
#if defined(mingw32_HOST_OS) && !defined(THREADED_RTS)
shutdownAsyncIO(wait_foreign);
#endif
/* free hash table storage */
exitHashTable();
// Finally, free all our storage
freeStorage();
#if defined(DEBUG)
/* and shut down the allocator debugging */
shutdownAllocator();
#endif
}
// The real hs_exit():
void
hs_exit(void)
{
hs_exit_(rtsTrue);
// be safe; this might be a DLL
}
// Compatibility interfaces
void
shutdownHaskell(void)
{
hs_exit();
}
void
shutdownHaskellAndExit(int n)
{
// we're about to exit(), no need to wait for foreign calls to return.
hs_exit_(rtsFalse);
if (hs_init_count == 0) {
stg_exit(n);
}
}
#ifndef mingw32_HOST_OS
void
shutdownHaskellAndSignal(int sig)
{
hs_exit_(rtsFalse);
kill(getpid(),sig);
}
#endif
/*
* called from STG-land to exit the program
*/
void (*exitFn)(int) = 0;
void
stg_exit(int n)
{
if (exitFn)
(*exitFn)(n);
exit(n);
}
|