1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
|
/* -----------------------------------------------------------------------------
* (c) The GHC Team 1998-2005
*
* STM implementation.
*
* Overview
* --------
*
* See the PPoPP 2005 paper "Composable memory transactions". In summary, each
* transaction has a TRec (transaction record) holding entries for each of the
* TVars (transactional variables) that it has accessed. Each entry records (a)
* the TVar, (b) the expected value seen in the TVar, (c) the new value that the
* transaction wants to write to the TVar, (d) during commit, the identity of
* the TRec that wrote the expected value.
*
* Separate TRecs are used for each level in a nest of transactions. This
* allows a nested transaction to be aborted without condemning its enclosing
* transactions. This is needed in the implementation of catchRetry. Note that
* the "expected value" in a nested transaction's TRec is the value expected to
* be *held in memory* if the transaction commits -- not the "new value" stored
* in one of the enclosing transactions. This means that validation can be done
* without searching through a nest of TRecs.
*
* Concurrency control
* -------------------
*
* Three different concurrency control schemes can be built according to the
* settings in STM.h:
*
* STM_UNIPROC assumes that the caller serialises invocations on the STM
* interface. In the Haskell RTS this means it is suitable only for
* non-THREADED_RTS builds.
*
* STM_CG_LOCK uses coarse-grained locking -- a single 'stm lock' is acquired
* during an invocation on the STM interface. Note that this does not mean that
* transactions are simply serialized -- the lock is only held *within* the
* implementation of stmCommitTransaction, stmWait etc.
*
* STM_FG_LOCKS uses fine-grained locking -- locking is done on a per-TVar basis
* and, when committing a transaction, no locks are acquired for TVars that have
* been read but not updated.
*
* Concurrency control is implemented in the functions:
*
* lock_stm
* unlock_stm
* lock_tvar / cond_lock_tvar
* unlock_tvar
*
* The choice between STM_UNIPROC / STM_CG_LOCK / STM_FG_LOCKS affects the
* implementation of these functions.
*
* lock_stm & unlock_stm are straightforward : they acquire a simple spin-lock
* using STM_CG_LOCK, and otherwise they are no-ops.
*
* lock_tvar / cond_lock_tvar and unlock_tvar are more complex because they have
* other effects (present in STM_UNIPROC and STM_CG_LOCK builds) as well as the
* actual business of manipulating a lock (present only in STM_FG_LOCKS builds).
* This is because locking a TVar is implemented by writing the lock holder's
* TRec into the TVar's current_value field:
*
* lock_tvar - lock a specified TVar (STM_FG_LOCKS only), returning the value
* it contained.
*
* cond_lock_tvar - lock a specified TVar (STM_FG_LOCKS only) if it
* contains a specified value. Return true if this succeeds,
* false otherwise.
*
* unlock_tvar - release the lock on a specified TVar (STM_FG_LOCKS only),
* storing a specified value in place of the lock entry.
*
* Using these operations, the typical pattern of a commit/validate/wait
* operation is to (a) lock the STM, (b) lock all the TVars being updated, (c)
* check that the TVars that were only read from still contain their expected
* values, (d) release the locks on the TVars, writing updates to them in the
* case of a commit, (e) unlock the STM.
*
* Queues of waiting threads hang off the first_watch_queue_entry field of each
* TVar. This may only be manipulated when holding that TVar's lock. In
* particular, when a thread is putting itself to sleep, it mustn't release the
* TVar's lock until it has added itself to the wait queue and marked its TSO as
* BlockedOnSTM -- this makes sure that other threads will know to wake it.
*
* ---------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
#include "Schedule.h"
#include "STM.h"
#include "Trace.h"
#include "Threads.h"
#include "sm/Storage.h"
#include "SMPClosureOps.h"
#include <stdio.h>
// ACQ_ASSERT is used for assertions which are only required for
// THREADED_RTS builds with fine-grained locking.
#if defined(STM_FG_LOCKS)
#define ACQ_ASSERT(_X) ASSERT(_X)
#define NACQ_ASSERT(_X) /*Nothing*/
#else
#define ACQ_ASSERT(_X) /*Nothing*/
#define NACQ_ASSERT(_X) ASSERT(_X)
#endif
/*......................................................................*/
#define TRACE(_x...) debugTrace(DEBUG_stm, "STM: " _x)
// If SHAKE is defined then validation will sometimes spuriously fail. They help test
// unusual code paths if genuine contention is rare
#if defined(SHAKE)
static int shake_ctr = 0;
static int shake_lim = 1;
static int shake(void) {
if (((shake_ctr++) % shake_lim) == 0) {
shake_ctr = 1;
shake_lim ++;
return true;
}
return false;
}
#else
static int shake(void) {
return false;
}
#endif
/*......................................................................*/
// Helper macros for iterating over entries within a transaction
// record
#define FOR_EACH_ENTRY(_t,_x,CODE) do { \
StgTRecHeader *__t = (_t); \
StgTRecChunk *__c = __t -> current_chunk; \
StgWord __limit = __c -> next_entry_idx; \
TRACE("%p : FOR_EACH_ENTRY, current_chunk=%p limit=%ld", __t, __c, __limit); \
while (__c != END_STM_CHUNK_LIST) { \
StgWord __i; \
for (__i = 0; __i < __limit; __i ++) { \
TRecEntry *_x = &(__c -> entries[__i]); \
do { CODE } while (0); \
} \
__c = __c -> prev_chunk; \
__limit = TREC_CHUNK_NUM_ENTRIES; \
} \
exit_for_each: \
if (false) goto exit_for_each; \
} while (0)
#define BREAK_FOR_EACH goto exit_for_each
/*......................................................................*/
// if REUSE_MEMORY is defined then attempt to re-use descriptors, log chunks,
// and wait queue entries without GC
#define REUSE_MEMORY
/*......................................................................*/
#define IF_STM_UNIPROC(__X) do { } while (0)
#define IF_STM_CG_LOCK(__X) do { } while (0)
#define IF_STM_FG_LOCKS(__X) do { } while (0)
#if defined(STM_UNIPROC)
#undef IF_STM_UNIPROC
#define IF_STM_UNIPROC(__X) do { __X } while (0)
static const StgBool config_use_read_phase = false;
static void lock_stm(StgTRecHeader *trec STG_UNUSED) {
TRACE("%p : lock_stm()", trec);
}
static void unlock_stm(StgTRecHeader *trec STG_UNUSED) {
TRACE("%p : unlock_stm()", trec);
}
static StgClosure *lock_tvar(StgTRecHeader *trec STG_UNUSED,
StgTVar *s STG_UNUSED) {
StgClosure *result;
TRACE("%p : lock_tvar(%p)", trec, s);
result = s -> current_value;
return result;
}
static void unlock_tvar(Capability *cap,
StgTRecHeader *trec STG_UNUSED,
StgTVar *s,
StgClosure *c,
StgBool force_update) {
TRACE("%p : unlock_tvar(%p)", trec, s);
if (force_update) {
s -> current_value = c;
dirty_TVAR(cap,s);
}
}
static StgBool cond_lock_tvar(StgTRecHeader *trec STG_UNUSED,
StgTVar *s STG_UNUSED,
StgClosure *expected) {
StgClosure *result;
TRACE("%p : cond_lock_tvar(%p, %p)", trec, s, expected);
result = s -> current_value;
TRACE("%p : %s", trec, (result == expected) ? "success" : "failure");
return (result == expected);
}
#endif
#if defined(STM_CG_LOCK) /*........................................*/
#undef IF_STM_CG_LOCK
#define IF_STM_CG_LOCK(__X) do { __X } while (0)
static const StgBool config_use_read_phase = false;
static volatile StgTRecHeader *smp_locked = NULL;
static void lock_stm(StgTRecHeader *trec) {
while (cas(&smp_locked, NULL, trec) != NULL) { }
TRACE("%p : lock_stm()", trec);
}
static void unlock_stm(StgTRecHeader *trec STG_UNUSED) {
TRACE("%p : unlock_stm()", trec);
ASSERT(smp_locked == trec);
smp_locked = 0;
}
static StgClosure *lock_tvar(StgTRecHeader *trec STG_UNUSED,
StgTVar *s STG_UNUSED) {
StgClosure *result;
TRACE("%p : lock_tvar(%p)", trec, s);
ASSERT(smp_locked == trec);
result = s -> current_value;
return result;
}
static void *unlock_tvar(Capability *cap,
StgTRecHeader *trec STG_UNUSED,
StgTVar *s,
StgClosure *c,
StgBool force_update) {
TRACE("%p : unlock_tvar(%p, %p)", trec, s, c);
ASSERT(smp_locked == trec);
if (force_update) {
s -> current_value = c;
dirty_TVAR(cap,s);
}
}
static StgBool cond_lock_tvar(StgTRecHeader *trec STG_UNUSED,
StgTVar *s STG_UNUSED,
StgClosure *expected) {
StgClosure *result;
TRACE("%p : cond_lock_tvar(%p, %p)", trec, s, expected);
ASSERT(smp_locked == trec);
result = s -> current_value;
TRACE("%p : %d", result ? "success" : "failure");
return (result == expected);
}
#endif
#if defined(STM_FG_LOCKS) /*...................................*/
#undef IF_STM_FG_LOCKS
#define IF_STM_FG_LOCKS(__X) do { __X } while (0)
static const StgBool config_use_read_phase = true;
static void lock_stm(StgTRecHeader *trec STG_UNUSED) {
TRACE("%p : lock_stm()", trec);
}
static void unlock_stm(StgTRecHeader *trec STG_UNUSED) {
TRACE("%p : unlock_stm()", trec);
}
static StgClosure *lock_tvar(StgTRecHeader *trec,
StgTVar *s STG_UNUSED) {
StgClosure *result;
TRACE("%p : lock_tvar(%p)", trec, s);
do {
do {
result = s -> current_value;
} while (GET_INFO(UNTAG_CLOSURE(result)) == &stg_TREC_HEADER_info);
} while (cas((void *)&(s -> current_value),
(StgWord)result, (StgWord)trec) != (StgWord)result);
return result;
}
static void unlock_tvar(Capability *cap,
StgTRecHeader *trec STG_UNUSED,
StgTVar *s,
StgClosure *c,
StgBool force_update STG_UNUSED) {
TRACE("%p : unlock_tvar(%p, %p)", trec, s, c);
ASSERT(s -> current_value == (StgClosure *)trec);
s -> current_value = c;
dirty_TVAR(cap,s);
}
static StgBool cond_lock_tvar(StgTRecHeader *trec,
StgTVar *s,
StgClosure *expected) {
StgClosure *result;
StgWord w;
TRACE("%p : cond_lock_tvar(%p, %p)", trec, s, expected);
w = cas((void *)&(s -> current_value), (StgWord)expected, (StgWord)trec);
result = (StgClosure *)w;
TRACE("%p : %s", trec, result ? "success" : "failure");
return (result == expected);
}
#endif
/*......................................................................*/
// Helper functions for thread blocking and unblocking
static void park_tso(StgTSO *tso) {
ASSERT(tso -> why_blocked == NotBlocked);
tso -> why_blocked = BlockedOnSTM;
tso -> block_info.closure = (StgClosure *) END_TSO_QUEUE;
TRACE("park_tso on tso=%p", tso);
}
static void unpark_tso(Capability *cap, StgTSO *tso) {
// We will continue unparking threads while they remain on one of the wait
// queues: it's up to the thread itself to remove it from the wait queues
// if it decides to do so when it is scheduled.
// Unblocking a TSO from BlockedOnSTM is done under the TSO lock,
// to avoid multiple CPUs unblocking the same TSO, and also to
// synchronise with throwTo(). The first time the TSO is unblocked
// we mark this fact by setting block_info.closure == STM_AWOKEN.
// This way we can avoid sending further wakeup messages in the
// future.
lockTSO(tso);
if (tso->why_blocked == BlockedOnSTM &&
tso->block_info.closure == &stg_STM_AWOKEN_closure) {
TRACE("unpark_tso already woken up tso=%p", tso);
} else if (tso -> why_blocked == BlockedOnSTM) {
TRACE("unpark_tso on tso=%p", tso);
tso->block_info.closure = &stg_STM_AWOKEN_closure;
tryWakeupThread(cap,tso);
} else {
TRACE("spurious unpark_tso on tso=%p", tso);
}
unlockTSO(tso);
}
static void unpark_waiters_on(Capability *cap, StgTVar *s) {
StgTVarWatchQueue *q;
StgTVarWatchQueue *trail;
TRACE("unpark_waiters_on tvar=%p", s);
// unblock TSOs in reverse order, to be a bit fairer (#2319)
for (q = s -> first_watch_queue_entry, trail = q;
q != END_STM_WATCH_QUEUE;
q = q -> next_queue_entry) {
trail = q;
}
q = trail;
for (;
q != END_STM_WATCH_QUEUE;
q = q -> prev_queue_entry) {
unpark_tso(cap, (StgTSO *)(q -> closure));
}
}
/*......................................................................*/
// Helper functions for downstream allocation and initialization
static StgTVarWatchQueue *new_stg_tvar_watch_queue(Capability *cap,
StgClosure *closure) {
StgTVarWatchQueue *result;
result = (StgTVarWatchQueue *)allocate(cap, sizeofW(StgTVarWatchQueue));
SET_HDR (result, &stg_TVAR_WATCH_QUEUE_info, CCS_SYSTEM);
result -> closure = closure;
return result;
}
static StgTRecChunk *new_stg_trec_chunk(Capability *cap) {
StgTRecChunk *result;
result = (StgTRecChunk *)allocate(cap, sizeofW(StgTRecChunk));
SET_HDR (result, &stg_TREC_CHUNK_info, CCS_SYSTEM);
result -> prev_chunk = END_STM_CHUNK_LIST;
result -> next_entry_idx = 0;
return result;
}
static StgTRecHeader *new_stg_trec_header(Capability *cap,
StgTRecHeader *enclosing_trec) {
StgTRecHeader *result;
result = (StgTRecHeader *) allocate(cap, sizeofW(StgTRecHeader));
SET_HDR (result, &stg_TREC_HEADER_info, CCS_SYSTEM);
result -> enclosing_trec = enclosing_trec;
result -> current_chunk = new_stg_trec_chunk(cap);
if (enclosing_trec == NO_TREC) {
result -> state = TREC_ACTIVE;
} else {
ASSERT(enclosing_trec -> state == TREC_ACTIVE ||
enclosing_trec -> state == TREC_CONDEMNED);
result -> state = enclosing_trec -> state;
}
return result;
}
/*......................................................................*/
// Allocation / deallocation functions that retain per-capability lists
// of closures that can be re-used
static StgTVarWatchQueue *alloc_stg_tvar_watch_queue(Capability *cap,
StgClosure *closure) {
StgTVarWatchQueue *result = NULL;
if (cap -> free_tvar_watch_queues == END_STM_WATCH_QUEUE) {
result = new_stg_tvar_watch_queue(cap, closure);
} else {
result = cap -> free_tvar_watch_queues;
result -> closure = closure;
cap -> free_tvar_watch_queues = result -> next_queue_entry;
}
return result;
}
static void free_stg_tvar_watch_queue(Capability *cap,
StgTVarWatchQueue *wq) {
#if defined(REUSE_MEMORY)
wq -> next_queue_entry = cap -> free_tvar_watch_queues;
cap -> free_tvar_watch_queues = wq;
#endif
}
static StgTRecChunk *alloc_stg_trec_chunk(Capability *cap) {
StgTRecChunk *result = NULL;
if (cap -> free_trec_chunks == END_STM_CHUNK_LIST) {
result = new_stg_trec_chunk(cap);
} else {
result = cap -> free_trec_chunks;
cap -> free_trec_chunks = result -> prev_chunk;
result -> prev_chunk = END_STM_CHUNK_LIST;
result -> next_entry_idx = 0;
}
return result;
}
static void free_stg_trec_chunk(Capability *cap,
StgTRecChunk *c) {
#if defined(REUSE_MEMORY)
c -> prev_chunk = cap -> free_trec_chunks;
cap -> free_trec_chunks = c;
#endif
}
static StgTRecHeader *alloc_stg_trec_header(Capability *cap,
StgTRecHeader *enclosing_trec) {
StgTRecHeader *result = NULL;
if (cap -> free_trec_headers == NO_TREC) {
result = new_stg_trec_header(cap, enclosing_trec);
} else {
result = cap -> free_trec_headers;
cap -> free_trec_headers = result -> enclosing_trec;
result -> enclosing_trec = enclosing_trec;
result -> current_chunk -> next_entry_idx = 0;
if (enclosing_trec == NO_TREC) {
result -> state = TREC_ACTIVE;
} else {
ASSERT(enclosing_trec -> state == TREC_ACTIVE ||
enclosing_trec -> state == TREC_CONDEMNED);
result -> state = enclosing_trec -> state;
}
}
return result;
}
static void free_stg_trec_header(Capability *cap,
StgTRecHeader *trec) {
#if defined(REUSE_MEMORY)
StgTRecChunk *chunk = trec -> current_chunk -> prev_chunk;
while (chunk != END_STM_CHUNK_LIST) {
StgTRecChunk *prev_chunk = chunk -> prev_chunk;
free_stg_trec_chunk(cap, chunk);
chunk = prev_chunk;
}
trec -> current_chunk -> prev_chunk = END_STM_CHUNK_LIST;
trec -> enclosing_trec = cap -> free_trec_headers;
cap -> free_trec_headers = trec;
#endif
}
/*......................................................................*/
// Helper functions for managing waiting lists
static void build_watch_queue_entries_for_trec(Capability *cap,
StgTSO *tso,
StgTRecHeader *trec) {
ASSERT(trec != NO_TREC);
ASSERT(trec -> enclosing_trec == NO_TREC);
ASSERT(trec -> state == TREC_ACTIVE);
TRACE("%p : build_watch_queue_entries_for_trec()", trec);
FOR_EACH_ENTRY(trec, e, {
StgTVar *s;
StgTVarWatchQueue *q;
StgTVarWatchQueue *fq;
s = e -> tvar;
TRACE("%p : adding tso=%p to watch queue for tvar=%p", trec, tso, s);
ACQ_ASSERT(s -> current_value == (StgClosure *)trec);
NACQ_ASSERT(s -> current_value == e -> expected_value);
fq = s -> first_watch_queue_entry;
q = alloc_stg_tvar_watch_queue(cap, (StgClosure*) tso);
q -> next_queue_entry = fq;
q -> prev_queue_entry = END_STM_WATCH_QUEUE;
if (fq != END_STM_WATCH_QUEUE) {
fq -> prev_queue_entry = q;
}
s -> first_watch_queue_entry = q;
e -> new_value = (StgClosure *) q;
dirty_TVAR(cap,s); // we modified first_watch_queue_entry
});
}
static void remove_watch_queue_entries_for_trec(Capability *cap,
StgTRecHeader *trec) {
ASSERT(trec != NO_TREC);
ASSERT(trec -> enclosing_trec == NO_TREC);
ASSERT(trec -> state == TREC_WAITING ||
trec -> state == TREC_CONDEMNED);
TRACE("%p : remove_watch_queue_entries_for_trec()", trec);
FOR_EACH_ENTRY(trec, e, {
StgTVar *s;
StgTVarWatchQueue *pq;
StgTVarWatchQueue *nq;
StgTVarWatchQueue *q;
StgClosure *saw;
s = e -> tvar;
saw = lock_tvar(trec, s);
q = (StgTVarWatchQueue *) (e -> new_value);
TRACE("%p : removing tso=%p from watch queue for tvar=%p",
trec,
q -> closure,
s);
ACQ_ASSERT(s -> current_value == (StgClosure *)trec);
nq = q -> next_queue_entry;
pq = q -> prev_queue_entry;
if (nq != END_STM_WATCH_QUEUE) {
nq -> prev_queue_entry = pq;
}
if (pq != END_STM_WATCH_QUEUE) {
pq -> next_queue_entry = nq;
} else {
ASSERT(s -> first_watch_queue_entry == q);
s -> first_watch_queue_entry = nq;
dirty_TVAR(cap,s); // we modified first_watch_queue_entry
}
free_stg_tvar_watch_queue(cap, q);
unlock_tvar(cap, trec, s, saw, false);
});
}
/*......................................................................*/
static TRecEntry *get_new_entry(Capability *cap,
StgTRecHeader *t) {
TRecEntry *result;
StgTRecChunk *c;
int i;
c = t -> current_chunk;
i = c -> next_entry_idx;
ASSERT(c != END_STM_CHUNK_LIST);
if (i < TREC_CHUNK_NUM_ENTRIES) {
// Continue to use current chunk
result = &(c -> entries[i]);
c -> next_entry_idx ++;
} else {
// Current chunk is full: allocate a fresh one
StgTRecChunk *nc;
nc = alloc_stg_trec_chunk(cap);
nc -> prev_chunk = c;
nc -> next_entry_idx = 1;
t -> current_chunk = nc;
result = &(nc -> entries[0]);
}
return result;
}
/*......................................................................*/
static void merge_update_into(Capability *cap,
StgTRecHeader *t,
StgTVar *tvar,
StgClosure *expected_value,
StgClosure *new_value)
{
// Look for an entry in this trec
bool found = false;
FOR_EACH_ENTRY(t, e, {
StgTVar *s;
s = e -> tvar;
if (s == tvar) {
found = true;
if (e -> expected_value != expected_value) {
// Must abort if the two entries start from different values
TRACE("%p : update entries inconsistent at %p (%p vs %p)",
t, tvar, e -> expected_value, expected_value);
t -> state = TREC_CONDEMNED;
}
e -> new_value = new_value;
BREAK_FOR_EACH;
}
});
if (!found) {
// No entry so far in this trec
TRecEntry *ne;
ne = get_new_entry(cap, t);
ne -> tvar = tvar;
ne -> expected_value = expected_value;
ne -> new_value = new_value;
}
}
/*......................................................................*/
static void merge_read_into(Capability *cap,
StgTRecHeader *trec,
StgTVar *tvar,
StgClosure *expected_value)
{
StgTRecHeader *t;
bool found = false;
//
// See #7493
//
// We need to look for an existing entry *anywhere* in the stack of
// nested transactions. Otherwise, in stmCommitNestedTransaction()
// we can't tell the difference between
//
// (1) a read-only entry
// (2) an entry that writes back the original value
//
// Since in both cases e->new_value == e->expected_value. But in (1)
// we want to do nothing, and in (2) we want to update e->new_value
// in the outer transaction.
//
// Here we deal with the first possibility: we never create a
// read-only entry in an inner transaction if there is an existing
// outer entry; so we never have an inner read and an outer update.
// So then in stmCommitNestedTransaction() we know we can always
// write e->new_value over the outer entry, because the inner entry
// is the most up to date.
//
for (t = trec; !found && t != NO_TREC; t = t -> enclosing_trec)
{
FOR_EACH_ENTRY(t, e, {
if (e -> tvar == tvar) {
found = true;
if (e -> expected_value != expected_value) {
// Must abort if the two entries start from different values
TRACE("%p : read entries inconsistent at %p (%p vs %p)",
t, tvar, e -> expected_value, expected_value);
t -> state = TREC_CONDEMNED;
}
BREAK_FOR_EACH;
}
});
}
if (!found) {
// No entry found
TRecEntry *ne;
ne = get_new_entry(cap, trec);
ne -> tvar = tvar;
ne -> expected_value = expected_value;
ne -> new_value = expected_value;
}
}
/*......................................................................*/
static StgBool entry_is_update(TRecEntry *e) {
StgBool result;
result = (e -> expected_value != e -> new_value);
return result;
}
#if defined(STM_FG_LOCKS)
static StgBool entry_is_read_only(TRecEntry *e) {
StgBool result;
result = (e -> expected_value == e -> new_value);
return result;
}
static StgBool tvar_is_locked(StgTVar *s, StgTRecHeader *h) {
StgClosure *c;
StgBool result;
c = s -> current_value;
result = (c == (StgClosure *) h);
return result;
}
#endif
// revert_ownership : release a lock on a TVar, storing back
// the value that it held when the lock was acquired. "revert_all"
// is set in stmWait and stmReWait when we acquired locks on all of
// the TVars involved. "revert_all" is not set in commit operations
// where we don't lock TVars that have been read from but not updated.
static void revert_ownership(Capability *cap STG_UNUSED,
StgTRecHeader *trec STG_UNUSED,
StgBool revert_all STG_UNUSED) {
#if defined(STM_FG_LOCKS)
FOR_EACH_ENTRY(trec, e, {
if (revert_all || entry_is_update(e)) {
StgTVar *s;
s = e -> tvar;
if (tvar_is_locked(s, trec)) {
unlock_tvar(cap, trec, s, e -> expected_value, true);
}
}
});
#endif
}
/*......................................................................*/
// validate_and_acquire_ownership : this performs the twin functions
// of checking that the TVars referred to by entries in trec hold the
// expected values and:
//
// - locking the TVar (on updated TVars during commit, or all TVars
// during wait)
//
// - recording the identity of the TRec who wrote the value seen in the
// TVar (on non-updated TVars during commit). These values are
// stashed in the TRec entries and are then checked in check_read_only
// to ensure that an atomic snapshot of all of these locations has been
// seen.
static StgBool validate_and_acquire_ownership (Capability *cap,
StgTRecHeader *trec,
int acquire_all,
int retain_ownership) {
StgBool result;
if (shake()) {
TRACE("%p : shake, pretending trec is invalid when it may not be", trec);
return false;
}
ASSERT((trec -> state == TREC_ACTIVE) ||
(trec -> state == TREC_WAITING) ||
(trec -> state == TREC_CONDEMNED));
result = !((trec -> state) == TREC_CONDEMNED);
if (result) {
FOR_EACH_ENTRY(trec, e, {
StgTVar *s;
s = e -> tvar;
if (acquire_all || entry_is_update(e)) {
TRACE("%p : trying to acquire %p", trec, s);
if (!cond_lock_tvar(trec, s, e -> expected_value)) {
TRACE("%p : failed to acquire %p", trec, s);
result = false;
BREAK_FOR_EACH;
}
} else {
ASSERT(config_use_read_phase);
IF_STM_FG_LOCKS({
TRACE("%p : will need to check %p", trec, s);
if (s -> current_value != e -> expected_value) {
TRACE("%p : doesn't match", trec);
result = false;
BREAK_FOR_EACH;
}
e -> num_updates = s -> num_updates;
if (s -> current_value != e -> expected_value) {
TRACE("%p : doesn't match (race)", trec);
result = false;
BREAK_FOR_EACH;
} else {
TRACE("%p : need to check version %ld", trec, e -> num_updates);
}
});
}
});
}
if ((!result) || (!retain_ownership)) {
revert_ownership(cap, trec, acquire_all);
}
return result;
}
// check_read_only : check that we've seen an atomic snapshot of the
// non-updated TVars accessed by a trec. This checks that the last TRec to
// commit an update to the TVar is unchanged since the value was stashed in
// validate_and_acquire_ownership. If no udpate is seen to any TVar than
// all of them contained their expected values at the start of the call to
// check_read_only.
//
// The paper "Concurrent programming without locks" (under submission), or
// Keir Fraser's PhD dissertation "Practical lock-free programming" discuss
// this kind of algorithm.
static StgBool check_read_only(StgTRecHeader *trec STG_UNUSED) {
StgBool result = true;
ASSERT(config_use_read_phase);
IF_STM_FG_LOCKS({
FOR_EACH_ENTRY(trec, e, {
StgTVar *s;
s = e -> tvar;
if (entry_is_read_only(e)) {
TRACE("%p : check_read_only for TVar %p, saw %ld", trec, s, e -> num_updates);
// Note we need both checks and in this order as the TVar could be
// locked by another transaction that is committing but has not yet
// incremented `num_updates` (See #7815).
if (s -> current_value != e -> expected_value ||
s -> num_updates != e -> num_updates) {
TRACE("%p : mismatch", trec);
result = false;
BREAK_FOR_EACH;
}
}
});
});
return result;
}
/************************************************************************/
void stmPreGCHook (Capability *cap) {
lock_stm(NO_TREC);
TRACE("stmPreGCHook");
cap->free_tvar_watch_queues = END_STM_WATCH_QUEUE;
cap->free_trec_chunks = END_STM_CHUNK_LIST;
cap->free_trec_headers = NO_TREC;
unlock_stm(NO_TREC);
}
/************************************************************************/
// check_read_only relies on version numbers held in TVars' "num_updates"
// fields not wrapping around while a transaction is committed. The version
// number is incremented each time an update is committed to the TVar
// This is unlikely to wrap around when 32-bit integers are used for the counts,
// but to ensure correctness we maintain a shared count on the maximum
// number of commit operations that may occur and check that this has
// not increased by more than 2^32 during a commit.
#define TOKEN_BATCH_SIZE 1024
static volatile StgInt64 max_commits = 0;
#if defined(THREADED_RTS)
static volatile StgWord token_locked = false;
static void getTokenBatch(Capability *cap) {
while (cas((void *)&token_locked, false, true) == true) { /* nothing */ }
max_commits += TOKEN_BATCH_SIZE;
TRACE("%p : cap got token batch, max_commits=%" FMT_Int64, cap, max_commits);
cap -> transaction_tokens = TOKEN_BATCH_SIZE;
token_locked = false;
}
static void getToken(Capability *cap) {
if (cap -> transaction_tokens == 0) {
getTokenBatch(cap);
}
cap -> transaction_tokens --;
}
#else
static void getToken(Capability *cap STG_UNUSED) {
// Nothing
}
#endif
/*......................................................................*/
StgTRecHeader *stmStartTransaction(Capability *cap,
StgTRecHeader *outer) {
StgTRecHeader *t;
TRACE("%p : stmStartTransaction with %d tokens",
outer,
cap -> transaction_tokens);
getToken(cap);
t = alloc_stg_trec_header(cap, outer);
TRACE("%p : stmStartTransaction()=%p", outer, t);
return t;
}
/*......................................................................*/
void stmAbortTransaction(Capability *cap,
StgTRecHeader *trec) {
StgTRecHeader *et;
TRACE("%p : stmAbortTransaction", trec);
ASSERT(trec != NO_TREC);
ASSERT((trec -> state == TREC_ACTIVE) ||
(trec -> state == TREC_WAITING) ||
(trec -> state == TREC_CONDEMNED));
lock_stm(trec);
et = trec -> enclosing_trec;
if (et == NO_TREC) {
// We're a top-level transaction: remove any watch queue entries that
// we may have.
TRACE("%p : aborting top-level transaction", trec);
if (trec -> state == TREC_WAITING) {
ASSERT(trec -> enclosing_trec == NO_TREC);
TRACE("%p : stmAbortTransaction aborting waiting transaction", trec);
remove_watch_queue_entries_for_trec(cap, trec);
}
} else {
// We're a nested transaction: merge our read set into our parent's
TRACE("%p : retaining read-set into parent %p", trec, et);
FOR_EACH_ENTRY(trec, e, {
StgTVar *s = e -> tvar;
merge_read_into(cap, et, s, e -> expected_value);
});
}
trec -> state = TREC_ABORTED;
unlock_stm(trec);
TRACE("%p : stmAbortTransaction done", trec);
}
/*......................................................................*/
void stmFreeAbortedTRec(Capability *cap,
StgTRecHeader *trec) {
TRACE("%p : stmFreeAbortedTRec", trec);
ASSERT(trec != NO_TREC);
ASSERT((trec -> state == TREC_CONDEMNED) ||
(trec -> state == TREC_ABORTED));
free_stg_trec_header(cap, trec);
TRACE("%p : stmFreeAbortedTRec done", trec);
}
/*......................................................................*/
void stmCondemnTransaction(Capability *cap,
StgTRecHeader *trec) {
TRACE("%p : stmCondemnTransaction", trec);
ASSERT(trec != NO_TREC);
ASSERT((trec -> state == TREC_ACTIVE) ||
(trec -> state == TREC_WAITING) ||
(trec -> state == TREC_CONDEMNED));
lock_stm(trec);
if (trec -> state == TREC_WAITING) {
ASSERT(trec -> enclosing_trec == NO_TREC);
TRACE("%p : stmCondemnTransaction condemning waiting transaction", trec);
remove_watch_queue_entries_for_trec(cap, trec);
}
trec -> state = TREC_CONDEMNED;
unlock_stm(trec);
TRACE("%p : stmCondemnTransaction done", trec);
}
/*......................................................................*/
StgBool stmValidateNestOfTransactions(Capability *cap, StgTRecHeader *trec) {
StgTRecHeader *t;
TRACE("%p : stmValidateNestOfTransactions", trec);
ASSERT(trec != NO_TREC);
ASSERT((trec -> state == TREC_ACTIVE) ||
(trec -> state == TREC_WAITING) ||
(trec -> state == TREC_CONDEMNED));
lock_stm(trec);
t = trec;
StgBool result = true;
while (t != NO_TREC) {
result &= validate_and_acquire_ownership(cap, t, true, false);
t = t -> enclosing_trec;
}
if (!result && trec -> state != TREC_WAITING) {
trec -> state = TREC_CONDEMNED;
}
unlock_stm(trec);
TRACE("%p : stmValidateNestOfTransactions()=%d", trec, result);
return result;
}
/*......................................................................*/
static TRecEntry *get_entry_for(StgTRecHeader *trec, StgTVar *tvar, StgTRecHeader **in) {
TRecEntry *result = NULL;
TRACE("%p : get_entry_for TVar %p", trec, tvar);
ASSERT(trec != NO_TREC);
do {
FOR_EACH_ENTRY(trec, e, {
if (e -> tvar == tvar) {
result = e;
if (in != NULL) {
*in = trec;
}
BREAK_FOR_EACH;
}
});
trec = trec -> enclosing_trec;
} while (result == NULL && trec != NO_TREC);
return result;
}
/*......................................................................*/
StgBool stmCommitTransaction(Capability *cap, StgTRecHeader *trec) {
StgInt64 max_commits_at_start = max_commits;
TRACE("%p : stmCommitTransaction()", trec);
ASSERT(trec != NO_TREC);
lock_stm(trec);
ASSERT(trec -> enclosing_trec == NO_TREC);
ASSERT((trec -> state == TREC_ACTIVE) ||
(trec -> state == TREC_CONDEMNED));
// Use a read-phase (i.e. don't lock TVars we've read but not updated) if
// the configuration lets us use a read phase.
bool result = validate_and_acquire_ownership(cap, trec, (!config_use_read_phase), true);
if (result) {
// We now know that all the updated locations hold their expected values.
ASSERT(trec -> state == TREC_ACTIVE);
if (config_use_read_phase) {
StgInt64 max_commits_at_end;
StgInt64 max_concurrent_commits;
TRACE("%p : doing read check", trec);
result = check_read_only(trec);
TRACE("%p : read-check %s", trec, result ? "succeeded" : "failed");
max_commits_at_end = max_commits;
max_concurrent_commits = ((max_commits_at_end - max_commits_at_start) +
(n_capabilities * TOKEN_BATCH_SIZE));
if (((max_concurrent_commits >> 32) > 0) || shake()) {
result = false;
}
}
if (result) {
// We now know that all of the read-only locations held their expected values
// at the end of the call to validate_and_acquire_ownership. This forms the
// linearization point of the commit.
// Make the updates required by the transaction.
FOR_EACH_ENTRY(trec, e, {
StgTVar *s;
s = e -> tvar;
if ((!config_use_read_phase) || (e -> new_value != e -> expected_value)) {
// Either the entry is an update or we're not using a read phase:
// write the value back to the TVar, unlocking it if necessary.
ACQ_ASSERT(tvar_is_locked(s, trec));
TRACE("%p : writing %p to %p, waking waiters", trec, e -> new_value, s);
unpark_waiters_on(cap,s);
IF_STM_FG_LOCKS({
s -> num_updates ++;
});
unlock_tvar(cap, trec, s, e -> new_value, true);
}
ACQ_ASSERT(!tvar_is_locked(s, trec));
});
} else {
revert_ownership(cap, trec, false);
}
}
unlock_stm(trec);
free_stg_trec_header(cap, trec);
TRACE("%p : stmCommitTransaction()=%d", trec, result);
return result;
}
/*......................................................................*/
StgBool stmCommitNestedTransaction(Capability *cap, StgTRecHeader *trec) {
StgTRecHeader *et;
ASSERT(trec != NO_TREC && trec -> enclosing_trec != NO_TREC);
TRACE("%p : stmCommitNestedTransaction() into %p", trec, trec -> enclosing_trec);
ASSERT((trec -> state == TREC_ACTIVE) || (trec -> state == TREC_CONDEMNED));
lock_stm(trec);
et = trec -> enclosing_trec;
bool result = validate_and_acquire_ownership(cap, trec, (!config_use_read_phase), true);
if (result) {
// We now know that all the updated locations hold their expected values.
if (config_use_read_phase) {
TRACE("%p : doing read check", trec);
result = check_read_only(trec);
}
if (result) {
// We now know that all of the read-only locations held their expected values
// at the end of the call to validate_and_acquire_ownership. This forms the
// linearization point of the commit.
TRACE("%p : read-check succeeded", trec);
FOR_EACH_ENTRY(trec, e, {
// Merge each entry into the enclosing transaction record, release all
// locks.
StgTVar *s;
s = e -> tvar;
if (entry_is_update(e)) {
unlock_tvar(cap, trec, s, e -> expected_value, false);
}
merge_update_into(cap, et, s, e -> expected_value, e -> new_value);
ACQ_ASSERT(s -> current_value != (StgClosure *)trec);
});
} else {
revert_ownership(cap, trec, false);
}
}
unlock_stm(trec);
free_stg_trec_header(cap, trec);
TRACE("%p : stmCommitNestedTransaction()=%d", trec, result);
return result;
}
/*......................................................................*/
StgBool stmWait(Capability *cap, StgTSO *tso, StgTRecHeader *trec) {
TRACE("%p : stmWait(%p)", trec, tso);
ASSERT(trec != NO_TREC);
ASSERT(trec -> enclosing_trec == NO_TREC);
ASSERT((trec -> state == TREC_ACTIVE) ||
(trec -> state == TREC_CONDEMNED));
lock_stm(trec);
bool result = validate_and_acquire_ownership(cap, trec, true, true);
if (result) {
// The transaction is valid so far so we can actually start waiting.
// (Otherwise the transaction was not valid and the thread will have to
// retry it).
// Put ourselves to sleep. We retain locks on all the TVars involved
// until we are sound asleep : (a) on the wait queues, (b) BlockedOnSTM
// in the TSO, (c) TREC_WAITING in the Trec.
build_watch_queue_entries_for_trec(cap, tso, trec);
park_tso(tso);
trec -> state = TREC_WAITING;
// We haven't released ownership of the transaction yet. The TSO
// has been put on the wait queue for the TVars it is waiting for,
// but we haven't yet tidied up the TSO's stack and made it safe
// to wake up the TSO. Therefore, we must wait until the TSO is
// safe to wake up before we release ownership - when all is well,
// the runtime will call stmWaitUnlock() below, with the same
// TRec.
} else {
unlock_stm(trec);
free_stg_trec_header(cap, trec);
}
TRACE("%p : stmWait(%p)=%d", trec, tso, result);
return result;
}
void
stmWaitUnlock(Capability *cap, StgTRecHeader *trec) {
revert_ownership(cap, trec, true);
unlock_stm(trec);
}
/*......................................................................*/
StgBool stmReWait(Capability *cap, StgTSO *tso) {
StgTRecHeader *trec = tso->trec;
TRACE("%p : stmReWait", trec);
ASSERT(trec != NO_TREC);
ASSERT(trec -> enclosing_trec == NO_TREC);
ASSERT((trec -> state == TREC_WAITING) ||
(trec -> state == TREC_CONDEMNED));
lock_stm(trec);
bool result = validate_and_acquire_ownership(cap, trec, true, true);
TRACE("%p : validation %s", trec, result ? "succeeded" : "failed");
if (result) {
// The transaction remains valid -- do nothing because it is already on
// the wait queues
ASSERT(trec -> state == TREC_WAITING);
park_tso(tso);
revert_ownership(cap, trec, true);
} else {
// The transcation has become invalid. We can now remove it from the wait
// queues.
if (trec -> state != TREC_CONDEMNED) {
remove_watch_queue_entries_for_trec (cap, trec);
}
free_stg_trec_header(cap, trec);
}
unlock_stm(trec);
TRACE("%p : stmReWait()=%d", trec, result);
return result;
}
/*......................................................................*/
static StgClosure *read_current_value(StgTRecHeader *trec STG_UNUSED, StgTVar *tvar) {
StgClosure *result;
result = tvar -> current_value;
#if defined(STM_FG_LOCKS)
while (GET_INFO(UNTAG_CLOSURE(result)) == &stg_TREC_HEADER_info) {
TRACE("%p : read_current_value(%p) saw %p", trec, tvar, result);
result = tvar -> current_value;
}
#endif
TRACE("%p : read_current_value(%p)=%p", trec, tvar, result);
return result;
}
/*......................................................................*/
StgClosure *stmReadTVar(Capability *cap,
StgTRecHeader *trec,
StgTVar *tvar) {
StgTRecHeader *entry_in = NULL;
StgClosure *result = NULL;
TRecEntry *entry = NULL;
TRACE("%p : stmReadTVar(%p)", trec, tvar);
ASSERT(trec != NO_TREC);
ASSERT(trec -> state == TREC_ACTIVE ||
trec -> state == TREC_CONDEMNED);
entry = get_entry_for(trec, tvar, &entry_in);
if (entry != NULL) {
if (entry_in == trec) {
// Entry found in our trec
result = entry -> new_value;
} else {
// Entry found in another trec
TRecEntry *new_entry = get_new_entry(cap, trec);
new_entry -> tvar = tvar;
new_entry -> expected_value = entry -> expected_value;
new_entry -> new_value = entry -> new_value;
result = new_entry -> new_value;
}
} else {
// No entry found
StgClosure *current_value = read_current_value(trec, tvar);
TRecEntry *new_entry = get_new_entry(cap, trec);
new_entry -> tvar = tvar;
new_entry -> expected_value = current_value;
new_entry -> new_value = current_value;
result = current_value;
}
TRACE("%p : stmReadTVar(%p)=%p", trec, tvar, result);
return result;
}
/*......................................................................*/
void stmWriteTVar(Capability *cap,
StgTRecHeader *trec,
StgTVar *tvar,
StgClosure *new_value) {
StgTRecHeader *entry_in = NULL;
TRecEntry *entry = NULL;
TRACE("%p : stmWriteTVar(%p, %p)", trec, tvar, new_value);
ASSERT(trec != NO_TREC);
ASSERT(trec -> state == TREC_ACTIVE ||
trec -> state == TREC_CONDEMNED);
entry = get_entry_for(trec, tvar, &entry_in);
if (entry != NULL) {
if (entry_in == trec) {
// Entry found in our trec
entry -> new_value = new_value;
} else {
// Entry found in another trec
TRecEntry *new_entry = get_new_entry(cap, trec);
new_entry -> tvar = tvar;
new_entry -> expected_value = entry -> expected_value;
new_entry -> new_value = new_value;
}
} else {
// No entry found
StgClosure *current_value = read_current_value(trec, tvar);
TRecEntry *new_entry = get_new_entry(cap, trec);
new_entry -> tvar = tvar;
new_entry -> expected_value = current_value;
new_entry -> new_value = new_value;
}
TRACE("%p : stmWriteTVar done", trec);
}
/*......................................................................*/
|