1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
|
/* ---------------------------------------------------------------------------
*
* (c) The GHC Team, 2000-2008
*
* Sparking support for THREADED_RTS version of the RTS.
*
-------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "Schedule.h"
#include "RtsUtils.h"
#include "Trace.h"
#include "Prelude.h"
#include "Sparks.h"
#include "sm/HeapAlloc.h"
#if defined(THREADED_RTS)
SparkPool *
allocSparkPool( void )
{
return newWSDeque(RtsFlags.ParFlags.maxLocalSparks);
}
void
freeSparkPool (SparkPool *pool)
{
freeWSDeque(pool);
}
/* -----------------------------------------------------------------------------
*
* Turn a spark into a real thread
*
* -------------------------------------------------------------------------- */
void
createSparkThread (Capability *cap)
{
StgTSO *tso;
tso = createIOThread (cap, RtsFlags.GcFlags.initialStkSize,
(StgClosure *)runSparks_closure);
traceEventCreateSparkThread(cap, tso->id);
appendToRunQueue(cap,tso);
}
/* --------------------------------------------------------------------------
* newSpark: create a new spark, as a result of calling "par"
* Called directly from STG.
* -------------------------------------------------------------------------- */
StgInt
newSpark (StgRegTable *reg, StgClosure *p)
{
Capability *cap = regTableToCapability(reg);
SparkPool *pool = cap->sparks;
if (!fizzledSpark(p)) {
if (pushWSDeque(pool,p)) {
cap->spark_stats.created++;
traceEventSparkCreate(cap);
} else {
/* overflowing the spark pool */
cap->spark_stats.overflowed++;
traceEventSparkOverflow(cap);
}
} else {
cap->spark_stats.dud++;
traceEventSparkDud(cap);
}
return 1;
}
/* --------------------------------------------------------------------------
* Remove all sparks from the spark queues which should not spark any
* more. Called after GC. We assume exclusive access to the structure
* and replace all sparks in the queue, see explanation below. At exit,
* the spark pool only contains sparkable closures.
* -------------------------------------------------------------------------- */
void
pruneSparkQueue (Capability *cap)
{
SparkPool *pool;
StgClosurePtr spark, tmp, *elements;
uint32_t n, pruned_sparks; // stats only
StgWord botInd,oldBotInd,currInd; // indices in array (always < size)
const StgInfoTable *info;
n = 0;
pruned_sparks = 0;
pool = cap->sparks;
// it is possible that top > bottom, indicating an empty pool. We
// fix that here; this is only necessary because the loop below
// assumes it.
if (pool->top > pool->bottom)
pool->top = pool->bottom;
// Take this opportunity to reset top/bottom modulo the size of
// the array, to avoid overflow. This is only possible because no
// stealing is happening during GC.
pool->bottom -= pool->top & ~pool->moduloSize;
pool->top &= pool->moduloSize;
pool->topBound = pool->top;
debugTrace(DEBUG_sparks,
"markSparkQueue: current spark queue len=%ld; (hd=%ld; tl=%ld)",
sparkPoolSize(pool), pool->bottom, pool->top);
ASSERT_WSDEQUE_INVARIANTS(pool);
elements = (StgClosurePtr *)pool->elements;
/* We have exclusive access to the structure here, so we can reset
bottom and top counters, and prune invalid sparks. Contents are
copied in-place if they are valuable, otherwise discarded. The
routine uses "real" indices t and b, starts by computing them
as the modulus size of top and bottom,
Copying:
At the beginning, the pool structure can look like this:
( bottom % size >= top % size , no wrap-around)
t b
___________***********_________________
or like this ( bottom % size < top % size, wrap-around )
b t
***********__________******************
As we need to remove useless sparks anyway, we make one pass
between t and b, moving valuable content to b and subsequent
cells (wrapping around when the size is reached).
b t
***********OOO_______XX_X__X?**********
^____move?____/
After this movement, botInd becomes the new bottom, and old
bottom becomes the new top index, both as indices in the array
size range.
*/
// starting here
currInd = (pool->top) & (pool->moduloSize); // mod
// copies of evacuated closures go to space from botInd on
// we keep oldBotInd to know when to stop
oldBotInd = botInd = (pool->bottom) & (pool->moduloSize); // mod
// on entry to loop, we are within the bounds
ASSERT( currInd < pool->size && botInd < pool->size );
while (currInd != oldBotInd ) {
/* must use != here, wrap-around at size
subtle: loop not entered if queue empty
*/
/* check element at currInd. if valuable, evacuate and move to
botInd, otherwise move on */
spark = elements[currInd];
// We have to be careful here: in the parallel GC, another
// thread might evacuate this closure while we're looking at it,
// so grab the info pointer just once.
if (GET_CLOSURE_TAG(spark) != 0) {
// Tagged pointer is a value, so the spark has fizzled. It
// probably never happens that we get a tagged pointer in
// the spark pool, because we would have pruned the spark
// during the previous GC cycle if it turned out to be
// evaluated, but it doesn't hurt to have this check for
// robustness.
pruned_sparks++;
cap->spark_stats.fizzled++;
traceEventSparkFizzle(cap);
} else {
info = spark->header.info;
if (IS_FORWARDING_PTR(info)) {
tmp = (StgClosure*)UN_FORWARDING_PTR(info);
/* if valuable work: shift inside the pool */
if (closure_SHOULD_SPARK(tmp)) {
elements[botInd] = tmp; // keep entry (new address)
botInd++;
n++;
} else {
pruned_sparks++; // discard spark
cap->spark_stats.fizzled++;
traceEventSparkFizzle(cap);
}
} else if (HEAP_ALLOCED(spark)) {
if ((Bdescr((P_)spark)->flags & BF_EVACUATED)) {
if (closure_SHOULD_SPARK(spark)) {
elements[botInd] = spark; // keep entry (new address)
botInd++;
n++;
} else {
pruned_sparks++; // discard spark
cap->spark_stats.fizzled++;
traceEventSparkFizzle(cap);
}
} else {
pruned_sparks++; // discard spark
cap->spark_stats.gcd++;
traceEventSparkGC(cap);
}
} else {
if (INFO_PTR_TO_STRUCT(info)->type == THUNK_STATIC) {
// We can't tell whether a THUNK_STATIC is garbage or not.
// See also Note [STATIC_LINK fields]
// isAlive() also ignores static closures (see GCAux.c)
elements[botInd] = spark; // keep entry (new address)
botInd++;
n++;
} else {
pruned_sparks++; // discard spark
cap->spark_stats.fizzled++;
traceEventSparkFizzle(cap);
}
}
}
currInd++;
// in the loop, we may reach the bounds, and instantly wrap around
ASSERT( currInd <= pool->size && botInd <= pool->size );
if ( currInd == pool->size ) { currInd = 0; }
if ( botInd == pool->size ) { botInd = 0; }
} // while-loop over spark pool elements
ASSERT(currInd == oldBotInd);
pool->top = oldBotInd; // where we started writing
pool->topBound = pool->top;
pool->bottom = (oldBotInd <= botInd) ? botInd : (botInd + pool->size);
// first free place we did not use (corrected by wraparound)
debugTrace(DEBUG_sparks, "pruned %d sparks", pruned_sparks);
debugTrace(DEBUG_sparks,
"new spark queue len=%ld; (hd=%ld; tl=%ld)",
sparkPoolSize(pool), pool->bottom, pool->top);
ASSERT_WSDEQUE_INVARIANTS(pool);
}
/* GC for the spark pool, called inside Capability.c for all
capabilities in turn. Blindly "evac"s complete spark pool. */
void
traverseSparkQueue (evac_fn evac, void *user, Capability *cap)
{
StgClosure **sparkp;
SparkPool *pool;
StgWord top,bottom, modMask;
pool = cap->sparks;
ASSERT_WSDEQUE_INVARIANTS(pool);
top = pool->top;
bottom = pool->bottom;
sparkp = (StgClosurePtr*)pool->elements;
modMask = pool->moduloSize;
while (top < bottom) {
/* call evac for all closures in range (wrap-around via modulo)
* In GHC-6.10, evac takes an additional 1st argument to hold a
* GC-specific register, see rts/sm/GC.c::mark_root()
*/
evac( user , sparkp + (top & modMask) );
top++;
}
debugTrace(DEBUG_sparks,
"traversed spark queue, len=%ld; (hd=%ld; tl=%ld)",
sparkPoolSize(pool), pool->bottom, pool->top);
}
/* ----------------------------------------------------------------------------
* balanceSparkPoolsCaps: takes an array of capabilities (usually: all
* capabilities) and its size. Accesses all spark pools and equally
* distributes the sparks among them.
*
* Could be called after GC, before Cap. release, from scheduler.
* -------------------------------------------------------------------------- */
void balanceSparkPoolsCaps(uint32_t n_caps, Capability caps[])
GNUC3_ATTRIBUTE(__noreturn__);
void balanceSparkPoolsCaps(uint32_t n_caps STG_UNUSED,
Capability caps[] STG_UNUSED) {
barf("not implemented");
}
#else
StgInt
newSpark (StgRegTable *reg STG_UNUSED, StgClosure *p STG_UNUSED)
{
/* nothing */
return 1;
}
#endif /* THREADED_RTS */
|