summaryrefslogtreecommitdiff
path: root/rts/Sparks.c
blob: 9e4492ac1925c66b4fe942d8a6480671200d4aac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
/* ---------------------------------------------------------------------------
 *
 * (c) The GHC Team, 2000-2008
 *
 * Sparking support for PARALLEL_HASKELL and THREADED_RTS versions of the RTS.
 *
 * The implementation uses Double-Ended Queues with lock-free access
 * (thereby often called "deque") as described in
 *
 * D.Chase and Y.Lev, Dynamic Circular Work-Stealing Deque.
 * SPAA'05, July 2005, Las Vegas, USA.
 * ACM 1-58113-986-1/05/0007
 *
 * Author: Jost Berthold MSRC 07-09/2008
 *
 * The DeQue is held as a circular array with known length. Positions
 * of top (read-end) and bottom (write-end) always increase, and the
 * array is accessed with indices modulo array-size. While this bears
 * the risk of overflow, we assume that (with 64 bit indices), a
 * program must run very long to reach that point.
 * 
 * The write end of the queue (position bottom) can only be used with
 * mutual exclusion, i.e. by exactly one caller at a time.  At this
 * end, new items can be enqueued using pushBottom()/newSpark(), and
 * removed using popBottom()/reclaimSpark() (the latter implying a cas
 * synchronisation with potential concurrent readers for the case of
 * just one element).
 * 
 * Multiple readers can steal()/findSpark() from the read end
 * (position top), and are synchronised without a lock, based on a cas
 * of the top position. One reader wins, the others return NULL for a
 * failure.
 * 
 * Both popBottom and steal also return NULL when the queue is empty.
 * 
 -------------------------------------------------------------------------*/

#include "PosixSource.h"
#include "Rts.h"
#include "Storage.h"
#include "Schedule.h"
#include "SchedAPI.h"
#include "RtsFlags.h"
#include "RtsUtils.h"
#include "ParTicky.h"
#include "Trace.h"
#include "Prelude.h"

#include "SMP.h" // for cas

#include "Sparks.h"

#if defined(THREADED_RTS) || defined(PARALLEL_HASKELL)

/* internal helpers ... */

static StgWord
roundUp2(StgWord val)
{
  StgWord rounded = 1;

  /* StgWord is unsigned anyway, only catch 0 */
  if (val == 0) {
    barf("DeQue,roundUp2: invalid size 0 requested");
  }
  /* at least 1 bit set, shift up to its place */
  do {
    rounded = rounded << 1;
  } while (0 != (val = val>>1));
  return rounded;
}

#define CASTOP(addr,old,new) ((old) == cas(((StgPtr)addr),(old),(new)))

/* -----------------------------------------------------------------------------
 * 
 * Initialising spark pools.
 *
 * -------------------------------------------------------------------------- */

/* constructor */
static SparkPool*
initPool(StgWord size)
{
  StgWord realsize; 
  SparkPool *q;

  realsize = roundUp2(size); /* to compute modulo as a bitwise & */

  q = (SparkPool*) stgMallocBytes(sizeof(SparkPool),   /* admin fields */
			      "newSparkPool");
  q->elements = (StgClosurePtr*) 
                stgMallocBytes(realsize * sizeof(StgClosurePtr), /* dataspace */
			       "newSparkPool:data space");
  q->top=0;
  q->bottom=0;
  q->topBound=0; /* read by writer, updated each time top is read */

  q->size = realsize;  /* power of 2 */
  q->moduloSize = realsize - 1; /* n % size == n & moduloSize  */

  ASSERT_SPARK_POOL_INVARIANTS(q); 
  return q;
}

void
initSparkPools( void )
{
#ifdef THREADED_RTS
    /* walk over the capabilities, allocating a spark pool for each one */
    nat i;
    for (i = 0; i < n_capabilities; i++) {
      capabilities[i].sparks = initPool(RtsFlags.ParFlags.maxLocalSparks);
    }
#else
    /* allocate a single spark pool */
    MainCapability->sparks = initPool(RtsFlags.ParFlags.maxLocalSparks);
#endif
}

void
freeSparkPool (SparkPool *pool)
{
  /* should not interfere with concurrent findSpark() calls! And
     nobody should use the pointer any more. We cross our fingers...*/
  stgFree(pool->elements);
  stgFree(pool);
}

/* -----------------------------------------------------------------------------
 * 
 * reclaimSpark: remove a spark from the write end of the queue.
 * Returns the removed spark, and NULL if a race is lost or the pool
 * empty.
 *
 * If only one spark is left in the pool, we synchronise with
 * concurrently stealing threads by using cas to modify the top field.
 * This routine should NEVER be called by a task which does not own
 * the capability. Can this be checked here?
 *
 * -------------------------------------------------------------------------- */

StgClosure *
reclaimSpark (SparkPool *deque)
{
  /* also a bit tricky, has to avoid concurrent steal() calls by
     accessing top with cas, when there is only one element left */
  StgWord t, b;
  StgClosurePtr* pos;
  long  currSize;
  StgClosurePtr removed;

  ASSERT_SPARK_POOL_INVARIANTS(deque); 

  b = deque->bottom;
  /* "decrement b as a test, see what happens" */
  deque->bottom = --b; 
  pos = (deque->elements) + (b & (deque->moduloSize));
  t = deque->top; /* using topBound would give an *upper* bound, we
		     need a lower bound. We use the real top here, but
		     can update the topBound value */
  deque->topBound = t;
  currSize = b - t;
  if (currSize < 0) { /* was empty before decrementing b, set b
			 consistently and abort */
    deque->bottom = t;
    return NULL;
  }
  removed = *pos;
  if (currSize > 0) { /* no danger, still elements in buffer after b-- */
    return removed;
  } 
  /* otherwise, has someone meanwhile stolen the same (last) element?
     Check and increment top value to know  */
  if ( !(CASTOP(&(deque->top),t,t+1)) ) {
    removed = NULL; /* no success, but continue adjusting bottom */
  }
  deque->bottom = t+1; /* anyway, empty now. Adjust bottom consistently. */
  deque->topBound = t+1; /* ...and cached top value as well */

  ASSERT_SPARK_POOL_INVARIANTS(deque); 

  return removed;
}

/* -----------------------------------------------------------------------------
 * 
 * tryStealSpark: try to steal a spark from a Capability.
 *
 * Returns a valid spark, or NULL if the pool was empty, and can
 * occasionally return NULL if there was a race with another thread
 * stealing from the same pool.  In this case, try again later.
 *
 -------------------------------------------------------------------------- */

static StgClosurePtr
steal(SparkPool *deque)
{
  StgClosurePtr* pos;
  StgClosurePtr* arraybase;
  StgWord sz;
  StgClosurePtr stolen;
  StgWord b,t; 

// Can't do this on someone else's spark pool:
// ASSERT_SPARK_POOL_INVARIANTS(deque); 

  b = deque->bottom;
  t = deque->top;

  // NB. b and t are unsigned; we need a signed value for the test
  // below.
  if ((long)b - (long)t <= 0 ) { 
    return NULL; /* already looks empty, abort */
  }

  /* now access array, see pushBottom() */
  arraybase = deque->elements;
  sz = deque->moduloSize;
  pos = arraybase + (t & sz);  
  stolen = *pos;

  /* now decide whether we have won */
  if ( !(CASTOP(&(deque->top),t,t+1)) ) {
      /* lost the race, someon else has changed top in the meantime */
      return NULL;
  }  /* else: OK, top has been incremented by the cas call */

// Can't do this on someone else's spark pool:
// ASSERT_SPARK_POOL_INVARIANTS(deque); 

  /* return stolen element */
  return stolen;
}

StgClosure *
tryStealSpark (Capability *cap)
{
  SparkPool *pool = cap->sparks;
  StgClosure *stolen;

  do { 
      stolen = steal(pool);
  } while (stolen != NULL && !closure_SHOULD_SPARK(stolen));

  return stolen;
}


/* -----------------------------------------------------------------------------
 * 
 * "guesses" whether a deque is empty. Can return false negatives in
 *  presence of concurrent steal() calls, and false positives in
 *  presence of a concurrent pushBottom().
 *
 * -------------------------------------------------------------------------- */

rtsBool
looksEmpty(SparkPool* deque)
{
  StgWord t = deque->top;
  StgWord b = deque->bottom;
  /* try to prefer false negatives by reading top first */
  return ((long)b - (long)t <= 0);
  /* => array is *never* completely filled, always 1 place free! */
}

/* -----------------------------------------------------------------------------
 * 
 * Turn a spark into a real thread
 *
 * -------------------------------------------------------------------------- */

void
createSparkThread (Capability *cap)
{
    StgTSO *tso;

    tso = createIOThread (cap, RtsFlags.GcFlags.initialStkSize, 
                          &base_GHCziConc_runSparks_closure);
    appendToRunQueue(cap,tso);
}

/* -----------------------------------------------------------------------------
 * 
 * Create a new spark
 *
 * -------------------------------------------------------------------------- */

#define DISCARD_NEW

/* enqueue an element. Should always succeed by resizing the array
   (not implemented yet, silently fails in that case). */
static void
pushBottom (SparkPool* deque, StgClosurePtr elem)
{
  StgWord t;
  StgClosurePtr* pos;
  StgWord sz = deque->moduloSize; 
  StgWord b = deque->bottom;

  ASSERT_SPARK_POOL_INVARIANTS(deque); 

  /* we try to avoid reading deque->top (accessed by all) and use
     deque->topBound (accessed only by writer) instead. 
     This is why we do not just call empty(deque) here.
  */
  t = deque->topBound;
  if ( (StgInt)b - (StgInt)t >= (StgInt)sz ) { 
    /* NB. 1. sz == deque->size - 1, thus ">="
           2. signed comparison, it is possible that t > b
    */
    /* could be full, check the real top value in this case */
    t = deque->top;
    deque->topBound = t;
    if (b - t >= sz) { /* really no space left :-( */
      /* reallocate the array, copying the values. Concurrent steal()s
	 will in the meantime use the old one and modify only top.
	 This means: we cannot safely free the old space! Can keep it
	 on a free list internally here...

	 Potential bug in combination with steal(): if array is
	 replaced, it is unclear which one concurrent steal operations
	 use. Must read the array base address in advance in steal().
      */
#if defined(DISCARD_NEW)
      ASSERT_SPARK_POOL_INVARIANTS(deque); 
      return; /* for now, silently fail */
#else
      /* could make room by incrementing the top position here.  In
       * this case, should use CASTOP. If this fails, someone else has
       * removed something, and new room will be available.
       */
      ASSERT_SPARK_POOL_INVARIANTS(deque); 
#endif
    }
  }
  pos = (deque->elements) + (b & sz);
  *pos = elem;
  (deque->bottom)++;

  ASSERT_SPARK_POOL_INVARIANTS(deque); 
  return;
}


/* --------------------------------------------------------------------------
 * newSpark: create a new spark, as a result of calling "par"
 * Called directly from STG.
 * -------------------------------------------------------------------------- */

StgInt
newSpark (StgRegTable *reg, StgClosure *p)
{
    Capability *cap = regTableToCapability(reg);
    SparkPool *pool = cap->sparks;

    /* I am not sure whether this is the right thing to do.
     * Maybe it is better to exploit the tag information
     * instead of throwing it away?
     */
    p = UNTAG_CLOSURE(p);

    ASSERT_SPARK_POOL_INVARIANTS(pool);

    if (closure_SHOULD_SPARK(p)) {
      pushBottom(pool,p);
    }	

    cap->sparks_created++;

    ASSERT_SPARK_POOL_INVARIANTS(pool);
    return 1;
}



/* --------------------------------------------------------------------------
 * Remove all sparks from the spark queues which should not spark any
 * more.  Called after GC. We assume exclusive access to the structure
 * and replace  all sparks in the queue, see explanation below. At exit,
 * the spark pool only contains sparkable closures.
 * -------------------------------------------------------------------------- */

void
pruneSparkQueue (evac_fn evac, void *user, Capability *cap)
{ 
    SparkPool *pool;
    StgClosurePtr spark, tmp, *elements;
    nat n, pruned_sparks; // stats only
    StgWord botInd,oldBotInd,currInd; // indices in array (always < size)
    const StgInfoTable *info;
    
    PAR_TICKY_MARK_SPARK_QUEUE_START();
    
    n = 0;
    pruned_sparks = 0;
    
    pool = cap->sparks;
    
    // it is possible that top > bottom, indicating an empty pool.  We
    // fix that here; this is only necessary because the loop below
    // assumes it.
    if (pool->top > pool->bottom)
        pool->top = pool->bottom;

    // Take this opportunity to reset top/bottom modulo the size of
    // the array, to avoid overflow.  This is only possible because no
    // stealing is happening during GC.
    pool->bottom  -= pool->top & ~pool->moduloSize;
    pool->top     &= pool->moduloSize;
    pool->topBound = pool->top;

    debugTrace(DEBUG_sched,
               "markSparkQueue: current spark queue len=%d; (hd=%ld; tl=%ld)",
               sparkPoolSize(pool), pool->bottom, pool->top);
    ASSERT_SPARK_POOL_INVARIANTS(pool);

    elements = pool->elements;

    /* We have exclusive access to the structure here, so we can reset
       bottom and top counters, and prune invalid sparks. Contents are
       copied in-place if they are valuable, otherwise discarded. The
       routine uses "real" indices t and b, starts by computing them
       as the modulus size of top and bottom,

       Copying:

       At the beginning, the pool structure can look like this:
       ( bottom % size >= top % size , no wrap-around)
                  t          b
       ___________***********_________________

       or like this ( bottom % size < top % size, wrap-around )
                  b         t
       ***********__________******************
       As we need to remove useless sparks anyway, we make one pass
       between t and b, moving valuable content to b and subsequent
       cells (wrapping around when the size is reached).

                     b      t
       ***********OOO_______XX_X__X?**********
                     ^____move?____/

       After this movement, botInd becomes the new bottom, and old
       bottom becomes the new top index, both as indices in the array
       size range.
    */
    // starting here
    currInd = (pool->top) & (pool->moduloSize); // mod

    // copies of evacuated closures go to space from botInd on
    // we keep oldBotInd to know when to stop
    oldBotInd = botInd = (pool->bottom) & (pool->moduloSize); // mod

    // on entry to loop, we are within the bounds
    ASSERT( currInd < pool->size && botInd  < pool->size );

    while (currInd != oldBotInd ) {
      /* must use != here, wrap-around at size
	 subtle: loop not entered if queue empty
       */

      /* check element at currInd. if valuable, evacuate and move to
	 botInd, otherwise move on */
      spark = elements[currInd];

      // We have to be careful here: in the parallel GC, another
      // thread might evacuate this closure while we're looking at it,
      // so grab the info pointer just once.
      info = spark->header.info;
      if (IS_FORWARDING_PTR(info)) {
          tmp = (StgClosure*)UN_FORWARDING_PTR(info);
          /* if valuable work: shift inside the pool */
          if (closure_SHOULD_SPARK(tmp)) {
              elements[botInd] = tmp; // keep entry (new address)
              botInd++;
              n++;
          } else {
              pruned_sparks++; // discard spark
              cap->sparks_pruned++;
          }
      } else {
          if (!(closure_flags[INFO_PTR_TO_STRUCT(info)->type] & _NS)) {
              elements[botInd] = spark; // keep entry (new address)
              evac (user, &elements[botInd]);
              botInd++;
              n++;
          } else {
              pruned_sparks++; // discard spark
              cap->sparks_pruned++;
          }
      }
      currInd++;

      // in the loop, we may reach the bounds, and instantly wrap around
      ASSERT( currInd <= pool->size && botInd <= pool->size );
      if ( currInd == pool->size ) { currInd = 0; }
      if ( botInd == pool->size )  { botInd = 0;  }

    } // while-loop over spark pool elements

    ASSERT(currInd == oldBotInd);

    pool->top = oldBotInd; // where we started writing
    pool->topBound = pool->top;

    pool->bottom = (oldBotInd <= botInd) ? botInd : (botInd + pool->size); 
    // first free place we did not use (corrected by wraparound)

    PAR_TICKY_MARK_SPARK_QUEUE_END(n);

    debugTrace(DEBUG_sched, "pruned %d sparks", pruned_sparks);
    
    debugTrace(DEBUG_sched,
               "new spark queue len=%d; (hd=%ld; tl=%ld)",
               sparkPoolSize(pool), pool->bottom, pool->top);

    ASSERT_SPARK_POOL_INVARIANTS(pool);
}

/* GC for the spark pool, called inside Capability.c for all
   capabilities in turn. Blindly "evac"s complete spark pool. */
void
traverseSparkQueue (evac_fn evac, void *user, Capability *cap)
{
    StgClosure **sparkp;
    SparkPool *pool;
    StgWord top,bottom, modMask;
    
    pool = cap->sparks;

    ASSERT_SPARK_POOL_INVARIANTS(pool);

    top = pool->top;
    bottom = pool->bottom;
    sparkp = pool->elements;
    modMask = pool->moduloSize;

    while (top < bottom) {
    /* call evac for all closures in range (wrap-around via modulo)
     * In GHC-6.10, evac takes an additional 1st argument to hold a
     * GC-specific register, see rts/sm/GC.c::mark_root()
     */
      evac( user , sparkp + (top & modMask) ); 
      top++;
    }

    debugTrace(DEBUG_sched,
               "traversed spark queue, len=%d; (hd=%ld; tl=%ld)",
               sparkPoolSize(pool), pool->bottom, pool->top);
}

/* ----------------------------------------------------------------------------
 * balanceSparkPoolsCaps: takes an array of capabilities (usually: all
 * capabilities) and its size. Accesses all spark pools and equally
 * distributes the sparks among them.
 *
 * Could be called after GC, before Cap. release, from scheduler. 
 * -------------------------------------------------------------------------- */
void balanceSparkPoolsCaps(nat n_caps, Capability caps[]);

void balanceSparkPoolsCaps(nat n_caps STG_UNUSED, 
                           Capability caps[] STG_UNUSED) {
  barf("not implemented");
}

#else

StgInt
newSpark (StgRegTable *reg STG_UNUSED, StgClosure *p STG_UNUSED)
{
    /* nothing */
    return 1;
}


#endif /* PARALLEL_HASKELL || THREADED_RTS */


/* -----------------------------------------------------------------------------
 * 
 * GRAN & PARALLEL_HASKELL stuff beyond here.
 *
 *  TODO "nuke" this!
 *
 * -------------------------------------------------------------------------- */

#if defined(PARALLEL_HASKELL) || defined(GRAN)

static void slide_spark_pool( StgSparkPool *pool );

rtsBool
add_to_spark_queue( StgClosure *closure, StgSparkPool *pool )
{
  if (pool->tl == pool->lim)
    slide_spark_pool(pool);

  if (closure_SHOULD_SPARK(closure) && 
      pool->tl < pool->lim) {
    *(pool->tl++) = closure;

#if defined(PARALLEL_HASKELL)
    // collect parallel global statistics (currently done together with GC stats)
    if (RtsFlags.ParFlags.ParStats.Global &&
	RtsFlags.GcFlags.giveStats > NO_GC_STATS) {
      // debugBelch("Creating spark for %x @ %11.2f\n", closure, usertime()); 
      globalParStats.tot_sparks_created++;
    }
#endif
    return rtsTrue;
  } else {
#if defined(PARALLEL_HASKELL)
    // collect parallel global statistics (currently done together with GC stats)
    if (RtsFlags.ParFlags.ParStats.Global &&
	RtsFlags.GcFlags.giveStats > NO_GC_STATS) {
      //debugBelch("Ignoring spark for %x @ %11.2f\n", closure, usertime()); 
      globalParStats.tot_sparks_ignored++;
    }
#endif
    return rtsFalse;
  }
}

static void
slide_spark_pool( StgSparkPool *pool )
{
  StgClosure **sparkp, **to_sparkp;

  sparkp = pool->hd;
  to_sparkp = pool->base;
  while (sparkp < pool->tl) {
    ASSERT(to_sparkp<=sparkp);
    ASSERT(*sparkp!=NULL);
    ASSERT(LOOKS_LIKE_GHC_INFO((*sparkp)->header.info));

    if (closure_SHOULD_SPARK(*sparkp)) {
      *to_sparkp++ = *sparkp++;
    } else {
      sparkp++;
    }
  }
  pool->hd = pool->base;
  pool->tl = to_sparkp;
}

void
disposeSpark(spark)
StgClosure *spark;
{
#if !defined(THREADED_RTS)
  Capability *cap;
  StgSparkPool *pool;

  cap = &MainRegTable;
  pool = &(cap->rSparks);
  ASSERT(pool->hd <= pool->tl && pool->tl <= pool->lim);
#endif
  ASSERT(spark != (StgClosure *)NULL);
  /* Do nothing */
}


#elif defined(GRAN)

/* 
   Search the spark queue of the proc in event for a spark that's worth
   turning into a thread 
   (was gimme_spark in the old RTS)
*/
void
findLocalSpark (rtsEvent *event, rtsBool *found_res, rtsSparkQ *spark_res)
{
   PEs proc = event->proc,       /* proc to search for work */
       creator = event->creator; /* proc that requested work */
   StgClosure* node;
   rtsBool found;
   rtsSparkQ spark_of_non_local_node = NULL, 
             spark_of_non_local_node_prev = NULL, 
             low_priority_spark = NULL, 
             low_priority_spark_prev = NULL,
             spark = NULL, prev = NULL;
  
   /* Choose a spark from the local spark queue */
   prev = (rtsSpark*)NULL;
   spark = pending_sparks_hds[proc];
   found = rtsFalse;

   // ToDo: check this code & implement local sparking !! -- HWL  
   while (!found && spark != (rtsSpark*)NULL)
     {
       ASSERT((prev!=(rtsSpark*)NULL || spark==pending_sparks_hds[proc]) &&
	      (prev==(rtsSpark*)NULL || prev->next==spark) &&
	      (spark->prev==prev));
       node = spark->node;
       if (!closure_SHOULD_SPARK(node)) 
         {
	   IF_GRAN_DEBUG(checkSparkQ,
			 debugBelch("^^ pruning spark %p (node %p) in gimme_spark",
			       spark, node));

           if (RtsFlags.GranFlags.GranSimStats.Sparks)
             DumpRawGranEvent(proc, (PEs)0, SP_PRUNED,(StgTSO*)NULL,
			      spark->node, spark->name, spark_queue_len(proc));
  
	   ASSERT(spark != (rtsSpark*)NULL);
	   ASSERT(SparksAvail>0);
	   --SparksAvail;

	   ASSERT(prev==(rtsSpark*)NULL || prev->next==spark);
	   spark = delete_from_sparkq (spark, proc, rtsTrue);
	   if (spark != (rtsSpark*)NULL)
	     prev = spark->prev;
	   continue;
         }
       /* -- node should eventually be sparked */
       else if (RtsFlags.GranFlags.PreferSparksOfLocalNodes && 
               !IS_LOCAL_TO(PROCS(node),CurrentProc)) 
         {
	   barf("Local sparking not yet implemented");

           /* Remember first low priority spark */
           if (spark_of_non_local_node==(rtsSpark*)NULL) {
	     spark_of_non_local_node_prev = prev;
             spark_of_non_local_node = spark;
  	      }
  
           if (spark->next == (rtsSpark*)NULL) { 
  	     /* ASSERT(spark==SparkQueueTl);  just for testing */
  	     prev = spark_of_non_local_node_prev;
  	     spark = spark_of_non_local_node;
             found = rtsTrue;
             break;
           }
  
# if defined(GRAN) && defined(GRAN_CHECK)
           /* Should never happen; just for testing 
           if (spark==pending_sparks_tl) {
             debugBelch("ReSchedule: Last spark != SparkQueueTl\n");
	   	stg_exit(EXIT_FAILURE);
		} */
# endif
  	   prev = spark; 
  	   spark = spark->next;
	   ASSERT(SparksAvail>0);
           --SparksAvail;
	   continue;
         }
       else if ( RtsFlags.GranFlags.DoPrioritySparking || 
  		 (spark->gran_info >= RtsFlags.GranFlags.SparkPriority2) )
         {
	   if (RtsFlags.GranFlags.DoPrioritySparking)
	     barf("Priority sparking not yet implemented");

           found = rtsTrue;
         }
#if 0	   
       else /* only used if SparkPriority2 is defined */
         {
	   /* ToDo: fix the code below and re-integrate it */
           /* Remember first low priority spark */
           if (low_priority_spark==(rtsSpark*)NULL) { 
	     low_priority_spark_prev = prev;
             low_priority_spark = spark;
	   }
  
           if (spark->next == (rtsSpark*)NULL) { 
	        /* ASSERT(spark==spark_queue_tl);  just for testing */
	     prev = low_priority_spark_prev;
	     spark = low_priority_spark;
             found = rtsTrue;       /* take low pri spark => rc is 2  */
             break;
           }
  
           /* Should never happen; just for testing 
           if (spark==pending_sparks_tl) {
             debugBelch("ReSchedule: Last spark != SparkQueueTl\n");
  		stg_exit(EXIT_FAILURE);
             break;
	   } */                
	   prev = spark; 
	   spark = spark->next;

	   IF_GRAN_DEBUG(pri,
			 debugBelch("++ Ignoring spark of priority %u (SparkPriority=%u); node=%p; name=%u\n", 
			       spark->gran_info, RtsFlags.GranFlags.SparkPriority, 
			       spark->node, spark->name);)
           }
#endif
   }  /* while (spark!=NULL && !found) */

   *spark_res = spark;
   *found_res = found;
}

/*
  Turn the spark into a thread.
  In GranSim this basically means scheduling a StartThread event for the
  node pointed to by the spark at some point in the future.
  (was munch_spark in the old RTS)
*/
rtsBool
activateSpark (rtsEvent *event, rtsSparkQ spark) 
{
  PEs proc = event->proc,       /* proc to search for work */
      creator = event->creator; /* proc that requested work */
  StgTSO* tso;
  StgClosure* node;
  rtsTime spark_arrival_time;

  /* 
     We've found a node on PE proc requested by PE creator.
     If proc==creator we can turn the spark into a thread immediately;
     otherwise we schedule a MoveSpark event on the requesting PE
  */
     
  /* DaH Qu' yIchen */
  if (proc!=creator) { 

    /* only possible if we simulate GUM style fishing */
    ASSERT(RtsFlags.GranFlags.Fishing);

    /* Message packing costs for sending a Fish; qeq jabbI'ID */
    CurrentTime[proc] += RtsFlags.GranFlags.Costs.mpacktime;
  
    if (RtsFlags.GranFlags.GranSimStats.Sparks)
      DumpRawGranEvent(proc, (PEs)0, SP_EXPORTED,
		       (StgTSO*)NULL, spark->node,
		       spark->name, spark_queue_len(proc));

    /* time of the spark arrival on the remote PE */
    spark_arrival_time = CurrentTime[proc] + RtsFlags.GranFlags.Costs.latency;

    new_event(creator, proc, spark_arrival_time,
	      MoveSpark,
	      (StgTSO*)NULL, spark->node, spark);

    CurrentTime[proc] += RtsFlags.GranFlags.Costs.mtidytime;
	    
  } else { /* proc==creator i.e. turn the spark into a thread */

    if ( RtsFlags.GranFlags.GranSimStats.Global && 
	 spark->gran_info < RtsFlags.GranFlags.SparkPriority2 ) {

      globalGranStats.tot_low_pri_sparks++;
      IF_GRAN_DEBUG(pri,
		    debugBelch("++ No high priority spark available; low priority (%u) spark chosen: node=%p; name=%u\n",
			  spark->gran_info, 
			  spark->node, spark->name));
    } 
    
    CurrentTime[proc] += RtsFlags.GranFlags.Costs.threadcreatetime;
    
    node = spark->node;
    
# if 0
    /* ToDo: fix the GC interface and move to StartThread handling-- HWL */
    if (GARBAGE COLLECTION IS NECESSARY) {
      /* Some kind of backoff needed here in case there's too little heap */
#  if defined(GRAN_CHECK) && defined(GRAN)
      if (RtsFlags.GcFlags.giveStats)
	fprintf(RtsFlags.GcFlags.statsFile,"***** vIS Qu' chen veQ boSwI'; spark=%p, node=%p;  name=%u\n", 
		/* (found==2 ? "no hi pri spark" : "hi pri spark"), */
		spark, node, spark->name);
#  endif
      new_event(CurrentProc, CurrentProc, CurrentTime[CurrentProc]+1,
    		  FindWork,
    		  (StgTSO*)NULL, (StgClosure*)NULL, (rtsSpark*)NULL);
      barf("//// activateSpark: out of heap ; ToDo: call GarbageCollect()");
      GarbageCollect(GetRoots, rtsFalse);
      // HWL old: ReallyPerformThreadGC(TSO_HS+TSO_CTS_SIZE,rtsFalse);
      // HWL old: SAVE_Hp -= TSO_HS+TSO_CTS_SIZE;
      spark = NULL;
      return; /* was: continue; */ /* to the next event, eventually */
    }
# endif
    
    if (RtsFlags.GranFlags.GranSimStats.Sparks)
      DumpRawGranEvent(CurrentProc,(PEs)0,SP_USED,(StgTSO*)NULL,
		       spark->node, spark->name,
		       spark_queue_len(CurrentProc));
    
    new_event(proc, proc, CurrentTime[proc],
	      StartThread, 
	      END_TSO_QUEUE, node, spark); // (rtsSpark*)NULL);
    
    procStatus[proc] = Starting;
  }
}

/* -------------------------------------------------------------------------
   This is the main point where handling granularity information comes into
   play. 
   ------------------------------------------------------------------------- */

#define MAX_RAND_PRI    100

/* 
   Granularity info transformers. 
   Applied to the GRAN_INFO field of a spark.
*/
STATIC_INLINE nat  ID(nat x) { return(x); };
STATIC_INLINE nat  INV(nat x) { return(-x); };
STATIC_INLINE nat  IGNORE(nat x) { return (0); };
STATIC_INLINE nat  RAND(nat x) { return ((random() % MAX_RAND_PRI) + 1); }

/* NB: size_info and par_info are currently unused (what a shame!) -- HWL */
rtsSpark *
newSpark(node,name,gran_info,size_info,par_info,local)
StgClosure *node;
nat name, gran_info, size_info, par_info, local;
{
  nat pri;
  rtsSpark *newspark;

  pri = RtsFlags.GranFlags.RandomPriorities ? RAND(gran_info) :
        RtsFlags.GranFlags.InversePriorities ? INV(gran_info) :
	RtsFlags.GranFlags.IgnorePriorities ? IGNORE(gran_info) :
                           ID(gran_info);

  if ( RtsFlags.GranFlags.SparkPriority!=0 && 
       pri<RtsFlags.GranFlags.SparkPriority ) {
    IF_GRAN_DEBUG(pri,
      debugBelch(",, NewSpark: Ignoring spark of priority %u (SparkPriority=%u); node=%#x; name=%u\n", 
	      pri, RtsFlags.GranFlags.SparkPriority, node, name));
    return ((rtsSpark*)NULL);
  }

  newspark = (rtsSpark*) stgMallocBytes(sizeof(rtsSpark), "NewSpark");
  newspark->prev = newspark->next = (rtsSpark*)NULL;
  newspark->node = node;
  newspark->name = (name==1) ? CurrentTSO->gran.sparkname : name;
  newspark->gran_info = pri;
  newspark->global = !local;      /* Check that with parAt, parAtAbs !!*/

  if (RtsFlags.GranFlags.GranSimStats.Global) {
    globalGranStats.tot_sparks_created++;
    globalGranStats.sparks_created_on_PE[CurrentProc]++;
  }

  return(newspark);
}

void
disposeSpark(spark)
rtsSpark *spark;
{
  ASSERT(spark!=NULL);
  stgFree(spark);
}

void 
disposeSparkQ(spark)
rtsSparkQ spark;
{
  if (spark==NULL) 
    return;

  disposeSparkQ(spark->next);

# ifdef GRAN_CHECK
  if (SparksAvail < 0) {
    debugBelch("disposeSparkQ: SparksAvail<0 after disposing sparkq @ %p\n", &spark);
    print_spark(spark);
  }
# endif

  stgFree(spark);
}

/*
   With PrioritySparking add_to_spark_queue performs an insert sort to keep
   the spark queue sorted. Otherwise the spark is just added to the end of
   the queue. 
*/

void
add_to_spark_queue(spark)
rtsSpark *spark;
{
  rtsSpark *prev = NULL, *next = NULL;
  nat count = 0;
  rtsBool found = rtsFalse;

  if ( spark == (rtsSpark *)NULL ) {
    return;
  }

  if (RtsFlags.GranFlags.DoPrioritySparking && (spark->gran_info != 0) ) {
    /* Priority sparking is enabled i.e. spark queues must be sorted */

    for (prev = NULL, next = pending_sparks_hd, count=0;
	 (next != NULL) && 
	 !(found = (spark->gran_info >= next->gran_info));
	 prev = next, next = next->next, count++) 
     {}

  } else {   /* 'utQo' */
    /* Priority sparking is disabled */
    
    found = rtsFalse;   /* to add it at the end */

  }

  if (found) {
    /* next points to the first spark with a gran_info smaller than that
       of spark; therefore, add spark before next into the spark queue */
    spark->next = next;
    if ( next == NULL ) {
      pending_sparks_tl = spark;
    } else {
      next->prev = spark;
    }
    spark->prev = prev;
    if ( prev == NULL ) {
      pending_sparks_hd = spark;
    } else {
      prev->next = spark;
    }
  } else {  /* (RtsFlags.GranFlags.DoPrioritySparking && !found) || !DoPrioritySparking */
    /* add the spark at the end of the spark queue */
    spark->next = NULL;			       
    spark->prev = pending_sparks_tl;
    if (pending_sparks_hd == NULL)
      pending_sparks_hd = spark;
    else
      pending_sparks_tl->next = spark;
    pending_sparks_tl = spark;	  
  } 
  ++SparksAvail;

  /* add costs for search in priority sparking */
  if (RtsFlags.GranFlags.DoPrioritySparking) {
    CurrentTime[CurrentProc] += count * RtsFlags.GranFlags.Costs.pri_spark_overhead;
  }

  IF_GRAN_DEBUG(checkSparkQ,
		debugBelch("++ Spark stats after adding spark %p (node %p) to queue on PE %d",
		      spark, spark->node, CurrentProc);
		print_sparkq_stats());

#  if defined(GRAN_CHECK)
  if (RtsFlags.GranFlags.Debug.checkSparkQ) {
    for (prev = NULL, next =  pending_sparks_hd;
	 (next != NULL);
	 prev = next, next = next->next) 
      {}
    if ( (prev!=NULL) && (prev!=pending_sparks_tl) )
      debugBelch("SparkQ inconsistency after adding spark %p: (PE %u) pending_sparks_tl (%p) not end of queue (%p)\n",
	      spark,CurrentProc, 
	      pending_sparks_tl, prev);
  }
#  endif

#  if defined(GRAN_CHECK)
  /* Check if the sparkq is still sorted. Just for testing, really!  */
  if ( RtsFlags.GranFlags.Debug.checkSparkQ &&
       RtsFlags.GranFlags.Debug.pri ) {
    rtsBool sorted = rtsTrue;
    rtsSpark *prev, *next;

    if (pending_sparks_hd == NULL ||
	pending_sparks_hd->next == NULL ) {
      /* just 1 elem => ok */
    } else {
      for (prev = pending_sparks_hd,
	   next = pending_sparks_hd->next;
	   (next != NULL) ;
	   prev = next, next = next->next) {
	sorted = sorted && 
	         (prev->gran_info >= next->gran_info);
      }
    }
    if (!sorted) {
      debugBelch("ghuH: SPARKQ on PE %d is not sorted:\n",
	      CurrentProc);
      print_sparkq(CurrentProc);
    }
  }
#  endif
}

nat
spark_queue_len(proc) 
PEs proc;
{
 rtsSpark *prev, *spark;                     /* prev only for testing !! */
 nat len;

 for (len = 0, prev = NULL, spark = pending_sparks_hds[proc]; 
      spark != NULL; 
      len++, prev = spark, spark = spark->next)
   {}

#  if defined(GRAN_CHECK)
  if ( RtsFlags.GranFlags.Debug.checkSparkQ ) 
    if ( (prev!=NULL) && (prev!=pending_sparks_tls[proc]) )
      debugBelch("ERROR in spark_queue_len: (PE %u) pending_sparks_tl (%p) not end of queue (%p)\n",
	      proc, pending_sparks_tls[proc], prev);
#  endif

 return (len);
}

/* 
   Take spark out of the spark queue on PE p and nuke the spark. Adjusts
   hd and tl pointers of the spark queue. Returns a pointer to the next
   spark in the queue.
*/
rtsSpark *
delete_from_sparkq (spark, p, dispose_too)     /* unlink and dispose spark */
rtsSpark *spark;
PEs p;
rtsBool dispose_too;
{
  rtsSpark *new_spark;

  if (spark==NULL) 
    barf("delete_from_sparkq: trying to delete NULL spark\n");

#  if defined(GRAN_CHECK)
  if ( RtsFlags.GranFlags.Debug.checkSparkQ ) {
    debugBelch("## |%p:%p| (%p)<-spark=%p->(%p) <-(%p)\n",
	    pending_sparks_hd, pending_sparks_tl,
	    spark->prev, spark, spark->next, 
	    (spark->next==NULL ? 0 : spark->next->prev));
  }
#  endif

  if (spark->prev==NULL) {
    /* spark is first spark of queue => adjust hd pointer */
    ASSERT(pending_sparks_hds[p]==spark);
    pending_sparks_hds[p] = spark->next;
  } else {
    spark->prev->next = spark->next;
  }
  if (spark->next==NULL) {
    ASSERT(pending_sparks_tls[p]==spark);
    /* spark is first spark of queue => adjust tl pointer */
    pending_sparks_tls[p] = spark->prev;
  } else {
    spark->next->prev = spark->prev;
  }
  new_spark = spark->next;
  
#  if defined(GRAN_CHECK)
  if ( RtsFlags.GranFlags.Debug.checkSparkQ ) {
    debugBelch("## |%p:%p| (%p)<-spark=%p->(%p) <-(%p); spark=%p will be deleted NOW \n",
	    pending_sparks_hd, pending_sparks_tl,
	    spark->prev, spark, spark->next, 
	    (spark->next==NULL ? 0 : spark->next->prev), spark);
  }
#  endif

  if (dispose_too)
    disposeSpark(spark);
                  
  return new_spark;
}

/* Mark all nodes pointed to by sparks in the spark queues (for GC) */
void
markSparkQueue(void)
{ 
  StgClosure *MarkRoot(StgClosure *root); // prototype
  PEs p;
  rtsSpark *sp;

  for (p=0; p<RtsFlags.GranFlags.proc; p++)
    for (sp=pending_sparks_hds[p]; sp!=NULL; sp=sp->next) {
      ASSERT(sp->node!=NULL);
      ASSERT(LOOKS_LIKE_GHC_INFO(sp->node->header.info));
      // ToDo?: statistics gathering here (also for GUM!)
      sp->node = (StgClosure *)MarkRoot(sp->node);
    }

  IF_DEBUG(gc,
	   debugBelch("markSparkQueue: spark statistics at start of GC:");
	   print_sparkq_stats());
}

void
print_spark(spark)
rtsSpark *spark;
{ 
  char str[16];

  if (spark==NULL) {
    debugBelch("Spark: NIL\n");
    return;
  } else {
    sprintf(str,
	    ((spark->node==NULL) ? "______" : "%#6lx"), 
	    stgCast(StgPtr,spark->node));

    debugBelch("Spark: Node %8s, Name %#6x, Global %5s, Creator %5x, Prev %6p, Next %6p\n",
	    str, spark->name, 
            ((spark->global)==rtsTrue?"True":"False"), spark->creator, 
            spark->prev, spark->next);
  }
}

void
print_sparkq(proc)
PEs proc;
// rtsSpark *hd;
{
  rtsSpark *x = pending_sparks_hds[proc];

  debugBelch("Spark Queue of PE %d with root at %p:\n", proc, x);
  for (; x!=(rtsSpark*)NULL; x=x->next) {
    print_spark(x);
  }
}

/* 
   Print a statistics of all spark queues.
*/
void
print_sparkq_stats(void)
{
  PEs p;

  debugBelch("SparkQs: [");
  for (p=0; p<RtsFlags.GranFlags.proc; p++)
    debugBelch(", PE %d: %d", p, spark_queue_len(p));
  debugBelch("\n");
}

#endif