1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 2000-2006
*
* Sparking support for GRAN, PAR and THREADED_RTS versions of the RTS.
*
* ---------------------------------------------------------------------------*/
#ifndef SPARKS_H
#define SPARKS_H
#if defined(PARALLEL_HASKELL)
#error Sparks.c using new internal structure, needs major overhaul!
#endif
/* typedef for SparkPool in RtsTypes.h */
#if defined(THREADED_RTS)
/* Spark pools: used to store pending sparks
* (THREADED_RTS & PARALLEL_HASKELL only)
* Implementation uses a DeQue to enable concurrent read accesses at
* the top end.
*/
typedef struct SparkPool_ {
/* Size of elements array. Used for modulo calculation: we round up
to powers of 2 and use the dyadic log (modulo == bitwise &) */
StgWord size;
StgWord moduloSize; /* bitmask for modulo */
/* top, index where multiple readers steal() (protected by a cas) */
volatile StgWord top;
/* bottom, index of next free place where one writer can push
elements. This happens unsynchronised. */
volatile StgWord bottom;
/* both position indices are continuously incremented, and used as
an index modulo the current array size. */
/* lower bound on the current top value. This is an internal
optimisation to avoid unnecessarily accessing the top field
inside pushBottom */
volatile StgWord topBound;
/* The elements array */
StgClosurePtr* elements;
/* Please note: the dataspace cannot follow the admin fields
immediately, as it should be possible to enlarge it without
disposing the old one automatically (as realloc would)! */
} SparkPool;
/* INVARIANTS, in this order: bottom/top consistent, reasonable size,
topBound consistent, space pointer, space accessible to us */
#define ASSERT_SPARK_POOL_INVARIANTS(p) \
ASSERT((p)->bottom >= (p)->top); \
ASSERT((p)->size > 0); \
ASSERT((p)->size > (p)->bottom - (p)->top); \
ASSERT((p)->topBound <= (p)->top); \
ASSERT((p)->elements != NULL); \
ASSERT(*((p)->elements) || 1); \
ASSERT(*((p)->elements - 1 + ((p)->size)) || 1);
// Initialisation
void initSparkPools (void);
// Take a spark from the "write" end of the pool. Can be called
// by the pool owner only.
StgClosure* reclaimSpark(SparkPool *pool);
// Returns True if the spark pool is empty (can give a false positive
// if the pool is almost empty).
rtsBool looksEmpty(SparkPool* deque);
StgClosure * tryStealSpark (Capability *cap);
void freeSparkPool (SparkPool *pool);
void createSparkThread (Capability *cap);
void traverseSparkQueue(evac_fn evac, void *user, Capability *cap);
void pruneSparkQueue (evac_fn evac, void *user, Capability *cap);
INLINE_HEADER void discardSparks (SparkPool *pool);
INLINE_HEADER nat sparkPoolSize (SparkPool *pool);
#endif
/* -----------------------------------------------------------------------------
* PRIVATE below here
* -------------------------------------------------------------------------- */
#if defined(PARALLEL_HASKELL) || defined(THREADED_RTS)
INLINE_HEADER rtsBool
emptySparkPool (SparkPool *pool)
{ return looksEmpty(pool); }
INLINE_HEADER nat
sparkPoolSize (SparkPool *pool)
{ return (pool->bottom - pool->top); }
INLINE_HEADER void
discardSparks (SparkPool *pool)
{
pool->top = pool->topBound = pool->bottom = 0;
}
#endif
#endif /* SPARKS_H */
|