summaryrefslogtreecommitdiff
path: root/rts/Stable.c
blob: 71eaf1a242c574c5ffe98f21df557b0eabd714ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
/* -*- tab-width: 4 -*- */

/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 1998-2002
 *
 * Stable names and stable pointers.
 *
 * ---------------------------------------------------------------------------*/

#include "PosixSource.h"
#include "Rts.h"
#include "RtsAPI.h"

#include "Hash.h"
#include "RtsUtils.h"
#include "Trace.h"
#include "Stable.h"

#include <string.h>

/* Comment from ADR's implementation in old RTS:

  This files (together with @ghc/runtime/storage/PerformIO.lhc@ and a
  small change in @HpOverflow.lc@) consists of the changes in the
  runtime system required to implement "Stable Pointers". But we're
  getting a bit ahead of ourselves --- what is a stable pointer and what
  is it used for?

  When Haskell calls C, it normally just passes over primitive integers,
  floats, bools, strings, etc.  This doesn't cause any problems at all
  for garbage collection because the act of passing them makes a copy
  from the heap, stack or wherever they are onto the C-world stack.
  However, if we were to pass a heap object such as a (Haskell) @String@
  and a garbage collection occured before we finished using it, we'd run
  into problems since the heap object might have been moved or even
  deleted.

  So, if a C call is able to cause a garbage collection or we want to
  store a pointer to a heap object between C calls, we must be careful
  when passing heap objects. Our solution is to keep a table of all
  objects we've given to the C-world and to make sure that the garbage
  collector collects these objects --- updating the table as required to
  make sure we can still find the object.


  Of course, all this rather begs the question: why would we want to
  pass a boxed value?

  One very good reason is to preserve laziness across the language
  interface. Rather than evaluating an integer or a string because it
  {\em might\/} be required by the C function, we can wait until the C
  function actually wants the value and then force an evaluation.

  Another very good reason (the motivating reason!) is that the C code
  might want to execute an object of sort $IO ()$ for the side-effects
  it will produce. For example, this is used when interfacing to an X
  widgets library to allow a direct implementation of callbacks.

  One final reason is that we may want to store composite Haskell
  values in data structures implemented in the C side. Serializing and
  deserializing these structures into unboxed form suitable for C may
  be more expensive than maintaining the extra layer of indirection of
  stable pointers.

  The @makeStablePointer :: a -> IO (StablePtr a)@ function
  converts a value into a stable pointer.  It is part of the @PrimIO@
  monad, because we want to be sure we don't allocate one twice by
  accident, and then only free one of the copies.

  \begin{verbatim}
  makeStablePtr#  :: a -> State# RealWorld -> (# RealWorld, a #)
  freeStablePtr#  :: StablePtr# a -> State# RealWorld -> State# RealWorld
  deRefStablePtr# :: StablePtr# a -> State# RealWorld ->
        (# State# RealWorld, a #)
  \end{verbatim}

  There may be additional functions on the C side to allow evaluation,
  application, etc of a stable pointer.

  Stable Pointers are exported to the outside world as indices and not
  pointers, because the stable pointer table is allowed to be
  reallocated for growth. The table is never shrunk for its space to
  be reclaimed.

  Future plans for stable ptrs include distinguishing them by the
  generation of the pointed object. See
  http://ghc.haskell.org/trac/ghc/ticket/7670 for details.
*/

snEntry *stable_name_table = NULL;
static snEntry *stable_name_free = NULL;
static unsigned int SNT_size = 0;
#define INIT_SNT_SIZE 64

spEntry *stable_ptr_table = NULL;
static spEntry *stable_ptr_free = NULL;
static unsigned int SPT_size = 0;
#define INIT_SPT_SIZE 64

/* Each time the stable pointer table is enlarged, we temporarily retain the old
 * version to ensure dereferences are thread-safe (see Note [Enlarging the
 * stable pointer table]).  Since we double the size of the table each time, we
 * can (theoretically) enlarge it at most N times on an N-bit machine.  Thus,
 * there will never be more than N old versions of the table.
 */
#if SIZEOF_VOID_P == 4
#define MAX_N_OLD_SPTS 32
#elif SIZEOF_VOID_P == 8
#define MAX_N_OLD_SPTS 64
#else
#error unknown SIZEOF_VOID_P
#endif

static spEntry *old_SPTs[MAX_N_OLD_SPTS];
static uint32_t n_old_SPTs = 0;

#if defined(THREADED_RTS)
Mutex stable_mutex;
#endif

static void enlargeStableNameTable(void);
static void enlargeStablePtrTable(void);

/*
 * This hash table maps Haskell objects to stable names, so that every
 * call to lookupStableName on a given object will return the same
 * stable name.
 */

static HashTable *addrToStableHash = NULL;

/* -----------------------------------------------------------------------------
 * We must lock the StablePtr table during GC, to prevent simultaneous
 * calls to freeStablePtr().
 * -------------------------------------------------------------------------- */

void
stableLock(void)
{
    initStableTables();
    ACQUIRE_LOCK(&stable_mutex);
}

void
stableUnlock(void)
{
    RELEASE_LOCK(&stable_mutex);
}

/* -----------------------------------------------------------------------------
 * Initialising the tables
 * -------------------------------------------------------------------------- */

STATIC_INLINE void
initSnEntryFreeList(snEntry *table, uint32_t n, snEntry *free)
{
  snEntry *p;
  for (p = table + n - 1; p >= table; p--) {
    p->addr   = (P_)free;
    p->old    = NULL;
    p->sn_obj = NULL;
    free = p;
  }
  stable_name_free = table;
}

STATIC_INLINE void
initSpEntryFreeList(spEntry *table, uint32_t n, spEntry *free)
{
  spEntry *p;
  for (p = table + n - 1; p >= table; p--) {
      p->addr = (P_)free;
      free = p;
  }
  stable_ptr_free = table;
}

void
initStableTables(void)
{
    if (SNT_size > 0) return;
    SNT_size = INIT_SNT_SIZE;
    stable_name_table = stgMallocBytes(SNT_size * sizeof(snEntry),
                                       "initStableNameTable");
    /* we don't use index 0 in the stable name table, because that
     * would conflict with the hash table lookup operations which
     * return NULL if an entry isn't found in the hash table.
     */
    initSnEntryFreeList(stable_name_table + 1,INIT_SNT_SIZE-1,NULL);
    addrToStableHash = allocHashTable();

    if (SPT_size > 0) return;
    SPT_size = INIT_SPT_SIZE;
    stable_ptr_table = stgMallocBytes(SPT_size * sizeof(spEntry),
                                      "initStablePtrTable");
    initSpEntryFreeList(stable_ptr_table,INIT_SPT_SIZE,NULL);

#if defined(THREADED_RTS)
    initMutex(&stable_mutex);
#endif
}

/* -----------------------------------------------------------------------------
 * Enlarging the tables
 * -------------------------------------------------------------------------- */

static void
enlargeStableNameTable(void)
{
    uint32_t old_SNT_size = SNT_size;

    // 2nd and subsequent times
    SNT_size *= 2;
    stable_name_table =
        stgReallocBytes(stable_name_table,
                        SNT_size * sizeof(snEntry),
                        "enlargeStableNameTable");

    initSnEntryFreeList(stable_name_table + old_SNT_size, old_SNT_size, NULL);
}

// Must be holding stable_mutex
static void
enlargeStablePtrTable(void)
{
    uint32_t old_SPT_size = SPT_size;
    spEntry *new_stable_ptr_table;

    // 2nd and subsequent times
    SPT_size *= 2;

    /* We temporarily retain the old version instead of freeing it; see Note
     * [Enlarging the stable pointer table].
     */
    new_stable_ptr_table =
        stgMallocBytes(SPT_size * sizeof(spEntry),
                       "enlargeStablePtrTable");
    memcpy(new_stable_ptr_table,
           stable_ptr_table,
           old_SPT_size * sizeof(spEntry));
    ASSERT(n_old_SPTs < MAX_N_OLD_SPTS);
    old_SPTs[n_old_SPTs++] = stable_ptr_table;

    /* When using the threaded RTS, the update of stable_ptr_table is assumed to
     * be atomic, so that another thread simultaneously dereferencing a stable
     * pointer will always read a valid address.
     */
    stable_ptr_table = new_stable_ptr_table;

    initSpEntryFreeList(stable_ptr_table + old_SPT_size, old_SPT_size, NULL);
}

/* Note [Enlarging the stable pointer table]
 *
 * To enlarge the stable pointer table, we allocate a new table, copy the
 * existing entries, and then store the old version of the table in old_SPTs
 * until we free it during GC.  By not immediately freeing the old version
 * (or equivalently by not growing the table using realloc()), we ensure that
 * another thread simultaneously dereferencing a stable pointer using the old
 * version can safely access the table without causing a segfault (see Trac
 * #10296).
 *
 * Note that because the stable pointer table is doubled in size each time it is
 * enlarged, the total memory needed to store the old versions is always less
 * than that required to hold the current version.
 */


/* -----------------------------------------------------------------------------
 * Freeing entries and tables
 * -------------------------------------------------------------------------- */

static void
freeOldSPTs(void)
{
    uint32_t i;

    for (i = 0; i < n_old_SPTs; i++) {
        stgFree(old_SPTs[i]);
    }
    n_old_SPTs = 0;
}

void
exitStableTables(void)
{
    if (addrToStableHash)
        freeHashTable(addrToStableHash, NULL);
    addrToStableHash = NULL;

    if (stable_name_table)
        stgFree(stable_name_table);
    stable_name_table = NULL;
    SNT_size = 0;

    if (stable_ptr_table)
        stgFree(stable_ptr_table);
    stable_ptr_table = NULL;
    SPT_size = 0;

    freeOldSPTs();

#if defined(THREADED_RTS)
    closeMutex(&stable_mutex);
#endif
}

STATIC_INLINE void
freeSnEntry(snEntry *sn)
{
  ASSERT(sn->sn_obj == NULL);
  removeHashTable(addrToStableHash, (W_)sn->old, NULL);
  sn->addr = (P_)stable_name_free;
  stable_name_free = sn;
}

STATIC_INLINE void
freeSpEntry(spEntry *sp)
{
    sp->addr = (P_)stable_ptr_free;
    stable_ptr_free = sp;
}

void
freeStablePtrUnsafe(StgStablePtr sp)
{
    ASSERT((StgWord)sp < SPT_size);
    freeSpEntry(&stable_ptr_table[(StgWord)sp]);
}

void
freeStablePtr(StgStablePtr sp)
{
    stableLock();
    freeStablePtrUnsafe(sp);
    stableUnlock();
}

/* -----------------------------------------------------------------------------
 * Looking up
 * -------------------------------------------------------------------------- */

/*
 * get at the real stuff...remove indirections.
 */
static StgClosure*
removeIndirections (StgClosure* p)
{
    StgClosure* q;

    while (1)
    {
        q = UNTAG_CLOSURE(p);

        switch (get_itbl(q)->type) {
        case IND:
        case IND_STATIC:
            p = ((StgInd *)q)->indirectee;
            continue;

        case BLACKHOLE:
            p = ((StgInd *)q)->indirectee;
            if (GET_CLOSURE_TAG(p) != 0) {
                continue;
            } else {
                break;
            }

        default:
            break;
        }
        return p;
    }
}

StgWord
lookupStableName (StgPtr p)
{
  stableLock();

  if (stable_name_free == NULL) {
    enlargeStableNameTable();
  }

  /* removing indirections increases the likelihood
   * of finding a match in the stable name hash table.
   */
  p = (StgPtr)removeIndirections((StgClosure*)p);

  // register the untagged pointer.  This just makes things simpler.
  p = (StgPtr)UNTAG_CLOSURE((StgClosure*)p);

  StgWord sn = (StgWord)lookupHashTable(addrToStableHash,(W_)p);

  if (sn != 0) {
    ASSERT(stable_name_table[sn].addr == p);
    debugTrace(DEBUG_stable, "cached stable name %ld at %p",sn,p);
    stableUnlock();
    return sn;
  }

  sn = stable_name_free - stable_name_table;
  stable_name_free  = (snEntry*)(stable_name_free->addr);
  stable_name_table[sn].addr = p;
  stable_name_table[sn].sn_obj = NULL;
  /* debugTrace(DEBUG_stable, "new stable name %d at %p\n",sn,p); */

  /* add the new stable name to the hash table */
  insertHashTable(addrToStableHash, (W_)p, (void *)sn);

  stableUnlock();

  return sn;
}

StgStablePtr
getStablePtr(StgPtr p)
{
  StgWord sp;

  stableLock();
  if (!stable_ptr_free) enlargeStablePtrTable();
  sp = stable_ptr_free - stable_ptr_table;
  stable_ptr_free  = (spEntry*)(stable_ptr_free->addr);
  stable_ptr_table[sp].addr = p;
  stableUnlock();
  return (StgStablePtr)(sp);
}

/* -----------------------------------------------------------------------------
 * Treat stable pointers as roots for the garbage collector.
 * -------------------------------------------------------------------------- */

#define FOR_EACH_STABLE_PTR(p, CODE)                                    \
    do {                                                                \
        spEntry *p;                                                     \
        spEntry *__end_ptr = &stable_ptr_table[SPT_size];               \
        for (p = stable_ptr_table; p < __end_ptr; p++) {                \
            /* Internal pointers are free slots. NULL is last in free */ \
            /* list. */                                                 \
            if (p->addr &&                                              \
                (p->addr < (P_)stable_ptr_table || p->addr >= (P_)__end_ptr)) \
            {                                                           \
                do { CODE } while(0);                                   \
            }                                                           \
        }                                                               \
    } while(0)

#define FOR_EACH_STABLE_NAME(p, CODE)                                   \
    do {                                                                \
        snEntry *p;                                                     \
        snEntry *__end_ptr = &stable_name_table[SNT_size];              \
        for (p = stable_name_table + 1; p < __end_ptr; p++) {           \
            /* Internal pointers are free slots.  */                    \
            /* If p->addr == NULL, it's a */                            \
            /* stable name where the object has been GC'd, but the */   \
            /* StableName object (sn_obj) is still alive. */            \
            if ((p->addr < (P_)stable_name_table ||                     \
                 p->addr >= (P_)__end_ptr))                             \
            {                                                           \
                /* NOTE: There is an ambiguity here if p->addr == NULL */ \
                /* it is either the last item in the free list or it */ \
                /* is a stable name whose pointee died. sn_obj == NULL */ \
                /* disambiguates as last free list item. */             \
                do { CODE } while(0);                                   \
            }                                                           \
        }                                                               \
    } while(0)

STATIC_INLINE void
markStablePtrTable(evac_fn evac, void *user)
{
    FOR_EACH_STABLE_PTR(p, evac(user, (StgClosure **)&p->addr););
}

STATIC_INLINE void
rememberOldStableNameAddresses(void)
{
    /* TODO: Only if !full GC */
    FOR_EACH_STABLE_NAME(p, p->old = p->addr;);
}

void
markStableTables(evac_fn evac, void *user)
{
    /* Since no other thread can currently be dereferencing a stable pointer, it
     * is safe to free the old versions of the table.
     */
    freeOldSPTs();

    markStablePtrTable(evac, user);
    rememberOldStableNameAddresses();
}

/* -----------------------------------------------------------------------------
 * Thread the stable pointer table for compacting GC.
 *
 * Here we must call the supplied evac function for each pointer into
 * the heap from the stable tables, because the compacting
 * collector may move the object it points to.
 * -------------------------------------------------------------------------- */

STATIC_INLINE void
threadStableNameTable( evac_fn evac, void *user )
{
    FOR_EACH_STABLE_NAME(p, {
        if (p->sn_obj != NULL) {
            evac(user, (StgClosure **)&p->sn_obj);
        }
        if (p->addr != NULL) {
            evac(user, (StgClosure **)&p->addr);
        }
    });
}

STATIC_INLINE void
threadStablePtrTable( evac_fn evac, void *user )
{
    FOR_EACH_STABLE_PTR(p, evac(user, (StgClosure **)&p->addr););
}

void
threadStableTables( evac_fn evac, void *user )
{
    threadStableNameTable(evac, user);
    threadStablePtrTable(evac, user);
}

/* -----------------------------------------------------------------------------
 * Garbage collect any dead entries in the stable name table.
 *
 * A dead entry has:
 *
 *          - a zero reference count
 *          - a dead sn_obj
 *
 * Both of these conditions must be true in order to re-use the stable
 * name table entry.  We can re-use stable name table entries for live
 * heap objects, as long as the program has no StableName objects that
 * refer to the entry.
 * -------------------------------------------------------------------------- */

void
gcStableTables( void )
{
    FOR_EACH_STABLE_NAME(
        p, {
            // FOR_EACH_STABLE_NAME traverses free entries too, so
            // check sn_obj
            if (p->sn_obj != NULL) {
                // Update the pointer to the StableName object, if there is one
                p->sn_obj = isAlive(p->sn_obj);
                if (p->sn_obj == NULL) {
                    // StableName object died
                    debugTrace(DEBUG_stable, "GC'd StableName %ld (addr=%p)",
                               (long)(p - stable_name_table), p->addr);
                    freeSnEntry(p);
                } else if (p->addr != NULL) {
                    // sn_obj is alive, update pointee
                    p->addr = (StgPtr)isAlive((StgClosure *)p->addr);
                    if (p->addr == NULL) {
                        // Pointee died
                        debugTrace(DEBUG_stable, "GC'd pointee %ld",
                                   (long)(p - stable_name_table));
                    }
                }
            }
        });
}

/* -----------------------------------------------------------------------------
 * Update the StableName hash table
 *
 * The boolean argument 'full' indicates that a major collection is
 * being done, so we might as well throw away the hash table and build
 * a new one.  For a minor collection, we just re-hash the elements
 * that changed.
 * -------------------------------------------------------------------------- */

void
updateStableTables(bool full)
{
    if (full && addrToStableHash != NULL && 0 != keyCountHashTable(addrToStableHash)) {
        freeHashTable(addrToStableHash,NULL);
        addrToStableHash = allocHashTable();
    }

    if(full) {
        FOR_EACH_STABLE_NAME(
            p, {
                if (p->addr != NULL) {
                    // Target still alive, Re-hash this stable name
                    insertHashTable(addrToStableHash, (W_)p->addr, (void *)(p - stable_name_table));
                }
            });
    } else {
        FOR_EACH_STABLE_NAME(
            p, {
                if (p->addr != p->old) {
                    removeHashTable(addrToStableHash, (W_)p->old, NULL);
                    /* Movement happened: */
                    if (p->addr != NULL) {
                        insertHashTable(addrToStableHash, (W_)p->addr, (void *)(p - stable_name_table));
                    }
                }
            });
    }
}