1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2002
*
* Stable names and stable pointers.
*
* ---------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "RtsAPI.h"
#include "Hash.h"
#include "RtsUtils.h"
#include "Trace.h"
#include "Stable.h"
/* Comment from ADR's implementation in old RTS:
This files (together with @ghc/runtime/storage/PerformIO.lhc@ and a
small change in @HpOverflow.lc@) consists of the changes in the
runtime system required to implement "Stable Pointers". But we're
getting a bit ahead of ourselves --- what is a stable pointer and what
is it used for?
When Haskell calls C, it normally just passes over primitive integers,
floats, bools, strings, etc. This doesn't cause any problems at all
for garbage collection because the act of passing them makes a copy
from the heap, stack or wherever they are onto the C-world stack.
However, if we were to pass a heap object such as a (Haskell) @String@
and a garbage collection occured before we finished using it, we'd run
into problems since the heap object might have been moved or even
deleted.
So, if a C call is able to cause a garbage collection or we want to
store a pointer to a heap object between C calls, we must be careful
when passing heap objects. Our solution is to keep a table of all
objects we've given to the C-world and to make sure that the garbage
collector collects these objects --- updating the table as required to
make sure we can still find the object.
Of course, all this rather begs the question: why would we want to
pass a boxed value?
One very good reason is to preserve laziness across the language
interface. Rather than evaluating an integer or a string because it
{\em might\/} be required by the C function, we can wait until the C
function actually wants the value and then force an evaluation.
Another very good reason (the motivating reason!) is that the C code
might want to execute an object of sort $IO ()$ for the side-effects
it will produce. For example, this is used when interfacing to an X
widgets library to allow a direct implementation of callbacks.
The @makeStablePointer :: a -> IO (StablePtr a)@ function
converts a value into a stable pointer. It is part of the @PrimIO@
monad, because we want to be sure we don't allocate one twice by
accident, and then only free one of the copies.
\begin{verbatim}
makeStablePtr# :: a -> State# RealWorld -> (# RealWorld, a #)
freeStablePtr# :: StablePtr# a -> State# RealWorld -> State# RealWorld
deRefStablePtr# :: StablePtr# a -> State# RealWorld ->
(# State# RealWorld, a #)
\end{verbatim}
There may be additional functions on the C side to allow evaluation,
application, etc of a stable pointer.
*/
snEntry *stable_ptr_table = NULL;
static snEntry *stable_ptr_free = NULL;
static unsigned int SPT_size = 0;
#ifdef THREADED_RTS
static Mutex stable_mutex;
#endif
static void enlargeStablePtrTable(void);
/* This hash table maps Haskell objects to stable names, so that every
* call to lookupStableName on a given object will return the same
* stable name.
*
* OLD COMMENTS about reference counting follow. The reference count
* in a stable name entry is now just a counter.
*
* Reference counting
* ------------------
* A plain stable name entry has a zero reference count, which means
* the entry will dissappear when the object it points to is
* unreachable. For stable pointers, we need an entry that sticks
* around and keeps the object it points to alive, so each stable name
* entry has an associated reference count.
*
* A stable pointer has a weighted reference count N attached to it
* (actually in its upper 5 bits), which represents the weight
* 2^(N-1). The stable name entry keeps a 32-bit reference count, which
* represents any weight between 1 and 2^32 (represented as zero).
* When the weight is 2^32, the stable name table owns "all" of the
* stable pointers to this object, and the entry can be garbage
* collected if the object isn't reachable.
*
* A new stable pointer is given the weight log2(W/2), where W is the
* weight stored in the table entry. The new weight in the table is W
* - 2^log2(W/2).
*
* A stable pointer can be "split" into two stable pointers, by
* dividing the weight by 2 and giving each pointer half.
* When freeing a stable pointer, the weight of the pointer is added
* to the weight stored in the table entry.
* */
static HashTable *addrToStableHash = NULL;
#define INIT_SPT_SIZE 64
STATIC_INLINE void
initFreeList(snEntry *table, nat n, snEntry *free)
{
snEntry *p;
for (p = table + n - 1; p >= table; p--) {
p->addr = (P_)free;
p->old = NULL;
p->ref = 0;
p->sn_obj = NULL;
free = p;
}
stable_ptr_free = table;
}
void
initStablePtrTable(void)
{
if (SPT_size > 0)
return;
SPT_size = INIT_SPT_SIZE;
stable_ptr_table = stgMallocBytes(SPT_size * sizeof(snEntry),
"initStablePtrTable");
/* we don't use index 0 in the stable name table, because that
* would conflict with the hash table lookup operations which
* return NULL if an entry isn't found in the hash table.
*/
initFreeList(stable_ptr_table+1,INIT_SPT_SIZE-1,NULL);
addrToStableHash = allocHashTable();
#ifdef THREADED_RTS
initMutex(&stable_mutex);
#endif
}
void
exitStablePtrTable(void)
{
if (addrToStableHash)
freeHashTable(addrToStableHash, NULL);
addrToStableHash = NULL;
if (stable_ptr_table)
stgFree(stable_ptr_table);
stable_ptr_table = NULL;
SPT_size = 0;
#ifdef THREADED_RTS
closeMutex(&stable_mutex);
#endif
}
/*
* get at the real stuff...remove indirections.
* It untags pointers before dereferencing and
* retags the real stuff with its tag (if there
* is any) when returning.
*
* ToDo: move to a better home.
*/
static
StgClosure*
removeIndirections(StgClosure* p)
{
StgWord tag = GET_CLOSURE_TAG(p);
StgClosure* q = UNTAG_CLOSURE(p);
while (get_itbl(q)->type == IND ||
get_itbl(q)->type == IND_STATIC ||
get_itbl(q)->type == IND_PERM) {
q = ((StgInd *)q)->indirectee;
tag = GET_CLOSURE_TAG(q);
q = UNTAG_CLOSURE(q);
}
return TAG_CLOSURE(tag,q);
}
static StgWord
lookupStableName_(StgPtr p)
{
StgWord sn;
void* sn_tmp;
if (stable_ptr_free == NULL) {
enlargeStablePtrTable();
}
/* removing indirections increases the likelihood
* of finding a match in the stable name hash table.
*/
p = (StgPtr)removeIndirections((StgClosure*)p);
// register the untagged pointer. This just makes things simpler.
p = (StgPtr)UNTAG_CLOSURE((StgClosure*)p);
sn_tmp = lookupHashTable(addrToStableHash,(W_)p);
sn = (StgWord)sn_tmp;
if (sn != 0) {
ASSERT(stable_ptr_table[sn].addr == p);
debugTrace(DEBUG_stable, "cached stable name %ld at %p",sn,p);
return sn;
} else {
sn = stable_ptr_free - stable_ptr_table;
stable_ptr_free = (snEntry*)(stable_ptr_free->addr);
stable_ptr_table[sn].ref = 0;
stable_ptr_table[sn].addr = p;
stable_ptr_table[sn].sn_obj = NULL;
/* debugTrace(DEBUG_stable, "new stable name %d at %p\n",sn,p); */
/* add the new stable name to the hash table */
insertHashTable(addrToStableHash, (W_)p, (void *)sn);
return sn;
}
}
StgWord
lookupStableName(StgPtr p)
{
StgWord res;
initStablePtrTable();
ACQUIRE_LOCK(&stable_mutex);
res = lookupStableName_(p);
RELEASE_LOCK(&stable_mutex);
return res;
}
STATIC_INLINE void
freeStableName(snEntry *sn)
{
ASSERT(sn->sn_obj == NULL);
if (sn->addr != NULL) {
removeHashTable(addrToStableHash, (W_)sn->addr, NULL);
}
sn->addr = (P_)stable_ptr_free;
stable_ptr_free = sn;
}
StgStablePtr
getStablePtr(StgPtr p)
{
StgWord sn;
initStablePtrTable();
ACQUIRE_LOCK(&stable_mutex);
sn = lookupStableName_(p);
stable_ptr_table[sn].ref++;
RELEASE_LOCK(&stable_mutex);
return (StgStablePtr)(sn);
}
void
freeStablePtr(StgStablePtr sp)
{
snEntry *sn;
initStablePtrTable();
ACQUIRE_LOCK(&stable_mutex);
sn = &stable_ptr_table[(StgWord)sp];
ASSERT((StgWord)sp < SPT_size && sn->addr != NULL && sn->ref > 0);
sn->ref--;
// If this entry has no StableName attached, then just free it
// immediately. This is important; it might be a while before the
// next major GC which actually collects the entry.
if (sn->sn_obj == NULL && sn->ref == 0) {
freeStableName(sn);
}
RELEASE_LOCK(&stable_mutex);
}
static void
enlargeStablePtrTable(void)
{
nat old_SPT_size = SPT_size;
// 2nd and subsequent times
SPT_size *= 2;
stable_ptr_table =
stgReallocBytes(stable_ptr_table,
SPT_size * sizeof(snEntry),
"enlargeStablePtrTable");
initFreeList(stable_ptr_table + old_SPT_size, old_SPT_size, NULL);
}
/* -----------------------------------------------------------------------------
* We must lock the StablePtr table during GC, to prevent simultaneous
* calls to freeStablePtr().
* -------------------------------------------------------------------------- */
void
stablePtrPreGC(void)
{
ACQUIRE_LOCK(&stable_mutex);
}
void
stablePtrPostGC(void)
{
RELEASE_LOCK(&stable_mutex);
}
/* -----------------------------------------------------------------------------
* Treat stable pointers as roots for the garbage collector.
*
* A stable pointer is any stable name entry with a ref > 0. We'll
* take the opportunity to zero the "keep" flags at the same time.
* -------------------------------------------------------------------------- */
void
markStablePtrTable(evac_fn evac, void *user)
{
snEntry *p, *end_stable_ptr_table;
StgPtr q;
end_stable_ptr_table = &stable_ptr_table[SPT_size];
// Mark all the stable *pointers* (not stable names).
// _starting_ at index 1; index 0 is unused.
for (p = stable_ptr_table+1; p < end_stable_ptr_table; p++) {
q = p->addr;
// Internal pointers are free slots. If q == NULL, it's a
// stable name where the object has been GC'd, but the
// StableName object (sn_obj) is still alive.
if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {
// save the current addr away: we need to be able to tell
// whether the objects moved in order to be able to update
// the hash table later.
p->old = p->addr;
// if the ref is non-zero, treat addr as a root
if (p->ref != 0) {
evac(user, (StgClosure **)&p->addr);
}
}
}
}
/* -----------------------------------------------------------------------------
* Thread the stable pointer table for compacting GC.
*
* Here we must call the supplied evac function for each pointer into
* the heap from the stable pointer table, because the compacting
* collector may move the object it points to.
* -------------------------------------------------------------------------- */
void
threadStablePtrTable( evac_fn evac, void *user )
{
snEntry *p, *end_stable_ptr_table;
StgPtr q;
end_stable_ptr_table = &stable_ptr_table[SPT_size];
for (p = stable_ptr_table+1; p < end_stable_ptr_table; p++) {
if (p->sn_obj != NULL) {
evac(user, (StgClosure **)&p->sn_obj);
}
q = p->addr;
if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {
evac(user, (StgClosure **)&p->addr);
}
}
}
/* -----------------------------------------------------------------------------
* Garbage collect any dead entries in the stable pointer table.
*
* A dead entry has:
*
* - a zero reference count
* - a dead sn_obj
*
* Both of these conditions must be true in order to re-use the stable
* name table entry. We can re-use stable name table entries for live
* heap objects, as long as the program has no StableName objects that
* refer to the entry.
* -------------------------------------------------------------------------- */
void
gcStablePtrTable( void )
{
snEntry *p, *end_stable_ptr_table;
StgPtr q;
end_stable_ptr_table = &stable_ptr_table[SPT_size];
// NOTE: _starting_ at index 1; index 0 is unused.
for (p = stable_ptr_table + 1; p < end_stable_ptr_table; p++) {
// Update the pointer to the StableName object, if there is one
if (p->sn_obj != NULL) {
p->sn_obj = isAlive(p->sn_obj);
}
// Internal pointers are free slots. If q == NULL, it's a
// stable name where the object has been GC'd, but the
// StableName object (sn_obj) is still alive.
q = p->addr;
if (q && (q < (P_)stable_ptr_table || q >= (P_)end_stable_ptr_table)) {
// StableNames only:
if (p->ref == 0) {
if (p->sn_obj == NULL) {
// StableName object is dead
freeStableName(p);
debugTrace(DEBUG_stable, "GC'd Stable name %ld",
(long)(p - stable_ptr_table));
continue;
} else {
p->addr = (StgPtr)isAlive((StgClosure *)p->addr);
debugTrace(DEBUG_stable,
"stable name %ld still alive at %p, ref %ld\n",
(long)(p - stable_ptr_table), p->addr, p->ref);
}
}
}
}
}
/* -----------------------------------------------------------------------------
* Update the StablePtr/StableName hash table
*
* The boolean argument 'full' indicates that a major collection is
* being done, so we might as well throw away the hash table and build
* a new one. For a minor collection, we just re-hash the elements
* that changed.
* -------------------------------------------------------------------------- */
void
updateStablePtrTable(rtsBool full)
{
snEntry *p, *end_stable_ptr_table;
if (full && addrToStableHash != NULL) {
freeHashTable(addrToStableHash,NULL);
addrToStableHash = allocHashTable();
}
end_stable_ptr_table = &stable_ptr_table[SPT_size];
// NOTE: _starting_ at index 1; index 0 is unused.
for (p = stable_ptr_table + 1; p < end_stable_ptr_table; p++) {
if (p->addr == NULL) {
if (p->old != NULL) {
// The target has been garbage collected. Remove its
// entry from the hash table.
removeHashTable(addrToStableHash, (W_)p->old, NULL);
p->old = NULL;
}
}
else if (p->addr < (P_)stable_ptr_table
|| p->addr >= (P_)end_stable_ptr_table) {
// Target still alive, Re-hash this stable name
if (full) {
insertHashTable(addrToStableHash, (W_)p->addr,
(void *)(p - stable_ptr_table));
} else if (p->addr != p->old) {
removeHashTable(addrToStableHash, (W_)p->old, NULL);
insertHashTable(addrToStableHash, (W_)p->addr,
(void *)(p - stable_ptr_table));
}
}
}
}
|