summaryrefslogtreecommitdiff
path: root/rts/StablePtr.c
blob: 2181b83d904194bdd20f207552ca37767b0f50e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/* -*- tab-width: 4 -*- */

/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 1998-2002
 *
 * Stable pointers
 *
 * ---------------------------------------------------------------------------*/

#include "PosixSource.h"
#include "Rts.h"
#include "RtsAPI.h"

#include "Hash.h"
#include "RtsUtils.h"
#include "Trace.h"
#include "StablePtr.h"

#include <string.h>

/* Comment from ADR's implementation in old RTS:

  This files (together with @ghc/runtime/storage/PerformIO.lhc@ and a
  small change in @HpOverflow.lc@) consists of the changes in the
  runtime system required to implement "Stable Pointers". But we're
  getting a bit ahead of ourselves --- what is a stable pointer and what
  is it used for?

  When Haskell calls C, it normally just passes over primitive integers,
  floats, bools, strings, etc.  This doesn't cause any problems at all
  for garbage collection because the act of passing them makes a copy
  from the heap, stack or wherever they are onto the C-world stack.
  However, if we were to pass a heap object such as a (Haskell) @String@
  and a garbage collection occured before we finished using it, we'd run
  into problems since the heap object might have been moved or even
  deleted.

  So, if a C call is able to cause a garbage collection or we want to
  store a pointer to a heap object between C calls, we must be careful
  when passing heap objects. Our solution is to keep a table of all
  objects we've given to the C-world and to make sure that the garbage
  collector collects these objects --- updating the table as required to
  make sure we can still find the object.


  Of course, all this rather begs the question: why would we want to
  pass a boxed value?

  One very good reason is to preserve laziness across the language
  interface. Rather than evaluating an integer or a string because it
  {\em might\/} be required by the C function, we can wait until the C
  function actually wants the value and then force an evaluation.

  Another very good reason (the motivating reason!) is that the C code
  might want to execute an object of sort $IO ()$ for the side-effects
  it will produce. For example, this is used when interfacing to an X
  widgets library to allow a direct implementation of callbacks.

  One final reason is that we may want to store composite Haskell
  values in data structures implemented in the C side. Serializing and
  deserializing these structures into unboxed form suitable for C may
  be more expensive than maintaining the extra layer of indirection of
  stable pointers.

  The @makeStablePointer :: a -> IO (StablePtr a)@ function
  converts a value into a stable pointer.  It is part of the @PrimIO@
  monad, because we want to be sure we don't allocate one twice by
  accident, and then only free one of the copies.

  \begin{verbatim}
  makeStablePtr#  :: a -> State# RealWorld -> (# RealWorld, a #)
  freeStablePtr#  :: StablePtr# a -> State# RealWorld -> State# RealWorld
  deRefStablePtr# :: StablePtr# a -> State# RealWorld ->
        (# State# RealWorld, a #)
  \end{verbatim}

  There may be additional functions on the C side to allow evaluation,
  application, etc of a stable pointer.

  Stable Pointers are exported to the outside world as indices and not
  pointers, because the stable pointer table is allowed to be
  reallocated for growth. The table is never shrunk for its space to
  be reclaimed.

  Future plans for stable ptrs include distinguishing them by the
  generation of the pointed object. See
  https://gitlab.haskell.org/ghc/ghc/issues/7670 for details.
*/

spEntry *stable_ptr_table = NULL;
static spEntry *stable_ptr_free = NULL;
static unsigned int SPT_size = 0;
#define INIT_SPT_SIZE 64

/* Each time the stable pointer table is enlarged, we temporarily retain the old
 * version to ensure dereferences are thread-safe (see Note [Enlarging the
 * stable pointer table]).  Since we double the size of the table each time, we
 * can (theoretically) enlarge it at most N times on an N-bit machine.  Thus,
 * there will never be more than N old versions of the table.
 */
#if SIZEOF_VOID_P == 4
#define MAX_N_OLD_SPTS 32
#elif SIZEOF_VOID_P == 8
#define MAX_N_OLD_SPTS 64
#else
#error unknown SIZEOF_VOID_P
#endif

static spEntry *old_SPTs[MAX_N_OLD_SPTS];
static uint32_t n_old_SPTs = 0;

#if defined(THREADED_RTS)
Mutex stable_ptr_mutex;
#endif

static void enlargeStablePtrTable(void);

/* -----------------------------------------------------------------------------
 * We must lock the StablePtr table during GC, to prevent simultaneous
 * calls to freeStablePtr().
 * -------------------------------------------------------------------------- */

void
stablePtrLock(void)
{
    initStablePtrTable();
    ACQUIRE_LOCK(&stable_ptr_mutex);
}

void
stablePtrUnlock(void)
{
    RELEASE_LOCK(&stable_ptr_mutex);
}

/* -----------------------------------------------------------------------------
 * Initialising the table
 * -------------------------------------------------------------------------- */

STATIC_INLINE void
initSpEntryFreeList(spEntry *table, uint32_t n, spEntry *free)
{
  spEntry *p;
  for (p = table + n - 1; p >= table; p--) {
      p->addr = (P_)free;
      free = p;
  }
  stable_ptr_free = table;
}

void
initStablePtrTable(void)
{
    if (SPT_size > 0) return;
    SPT_size = INIT_SPT_SIZE;
    stable_ptr_table = stgMallocBytes(SPT_size * sizeof(spEntry),
                                      "initStablePtrTable");
    initSpEntryFreeList(stable_ptr_table,INIT_SPT_SIZE,NULL);

#if defined(THREADED_RTS)
    initMutex(&stable_ptr_mutex);
#endif
}

/* -----------------------------------------------------------------------------
 * Enlarging the table
 * -------------------------------------------------------------------------- */

// Must be holding stable_ptr_mutex
static void
enlargeStablePtrTable(void)
{
    uint32_t old_SPT_size = SPT_size;
    spEntry *new_stable_ptr_table;

    // 2nd and subsequent times
    SPT_size *= 2;

    /* We temporarily retain the old version instead of freeing it; see Note
     * [Enlarging the stable pointer table].
     */
    new_stable_ptr_table =
        stgMallocBytes(SPT_size * sizeof(spEntry),
                       "enlargeStablePtrTable");
    memcpy(new_stable_ptr_table,
           stable_ptr_table,
           old_SPT_size * sizeof(spEntry));
    ASSERT(n_old_SPTs < MAX_N_OLD_SPTS);
    old_SPTs[n_old_SPTs++] = stable_ptr_table;

    /* When using the threaded RTS, the update of stable_ptr_table is assumed to
     * be atomic, so that another thread simultaneously dereferencing a stable
     * pointer will always read a valid address.
     */
    stable_ptr_table = new_stable_ptr_table;

    initSpEntryFreeList(stable_ptr_table + old_SPT_size, old_SPT_size, NULL);
}

/* Note [Enlarging the stable pointer table]
 *
 * To enlarge the stable pointer table, we allocate a new table, copy the
 * existing entries, and then store the old version of the table in old_SPTs
 * until we free it during GC.  By not immediately freeing the old version
 * (or equivalently by not growing the table using realloc()), we ensure that
 * another thread simultaneously dereferencing a stable pointer using the old
 * version can safely access the table without causing a segfault (see Trac
 * #10296).
 *
 * Note that because the stable pointer table is doubled in size each time it is
 * enlarged, the total memory needed to store the old versions is always less
 * than that required to hold the current version.
 */


/* -----------------------------------------------------------------------------
 * Freeing entries and tables
 * -------------------------------------------------------------------------- */

static void
freeOldSPTs(void)
{
    uint32_t i;

    for (i = 0; i < n_old_SPTs; i++) {
        stgFree(old_SPTs[i]);
    }
    n_old_SPTs = 0;
}

void
exitStablePtrTable(void)
{
    if (stable_ptr_table)
        stgFree(stable_ptr_table);
    stable_ptr_table = NULL;
    SPT_size = 0;

    freeOldSPTs();

#if defined(THREADED_RTS)
    closeMutex(&stable_ptr_mutex);
#endif
}

STATIC_INLINE void
freeSpEntry(spEntry *sp)
{
    sp->addr = (P_)stable_ptr_free;
    stable_ptr_free = sp;
}

void
freeStablePtrUnsafe(StgStablePtr sp)
{
    ASSERT((StgWord)sp < SPT_size);
    freeSpEntry(&stable_ptr_table[(StgWord)sp]);
}

void
freeStablePtr(StgStablePtr sp)
{
    stablePtrLock();
    freeStablePtrUnsafe(sp);
    stablePtrUnlock();
}

/* -----------------------------------------------------------------------------
 * Looking up
 * -------------------------------------------------------------------------- */

StgStablePtr
getStablePtr(StgPtr p)
{
  StgWord sp;

  stablePtrLock();
  if (!stable_ptr_free) enlargeStablePtrTable();
  sp = stable_ptr_free - stable_ptr_table;
  stable_ptr_free  = (spEntry*)(stable_ptr_free->addr);
  stable_ptr_table[sp].addr = p;
  stablePtrUnlock();
  return (StgStablePtr)(sp);
}

/* -----------------------------------------------------------------------------
 * Treat stable pointers as roots for the garbage collector.
 * -------------------------------------------------------------------------- */

#define FOR_EACH_STABLE_PTR(p, CODE)                                    \
    do {                                                                \
        spEntry *p;                                                     \
        spEntry *__end_ptr = &stable_ptr_table[SPT_size];               \
        for (p = stable_ptr_table; p < __end_ptr; p++) {                \
            /* Internal pointers are free slots. NULL is last in free */ \
            /* list. */                                                 \
            if (p->addr &&                                              \
                (p->addr < (P_)stable_ptr_table || p->addr >= (P_)__end_ptr)) \
            {                                                           \
                do { CODE } while(0);                                   \
            }                                                           \
        }                                                               \
    } while(0)

void
markStablePtrTable(evac_fn evac, void *user)
{
    /* Since no other thread can currently be dereferencing a stable pointer, it
     * is safe to free the old versions of the table.
     */
    freeOldSPTs();

    FOR_EACH_STABLE_PTR(p, evac(user, (StgClosure **)&p->addr););
}

/* -----------------------------------------------------------------------------
 * Thread the stable pointer table for compacting GC.
 *
 * Here we must call the supplied evac function for each pointer into
 * the heap from the stable tables, because the compacting
 * collector may move the object it points to.
 * -------------------------------------------------------------------------- */

void
threadStablePtrTable( evac_fn evac, void *user )
{
    FOR_EACH_STABLE_PTR(p, evac(user, (StgClosure **)&p->addr););
}