1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2005
*
* Statistics and timing-related functions.
*
* ---------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "RtsFlags.h"
#include "RtsUtils.h"
#include "Schedule.h"
#include "Stats.h"
#include "Profiling.h"
#include "GetTime.h"
#include "sm/Storage.h"
#include "sm/GC.h" // gc_alloc_block_sync, whitehole_gc_spin
#include "sm/GCThread.h"
#include "sm/BlockAlloc.h"
#define TimeToSecondsDbl(t) ((double)(t) / TIME_RESOLUTION)
static Time
start_init_cpu, start_init_elapsed,
end_init_cpu, end_init_elapsed,
start_exit_cpu, start_exit_elapsed,
start_exit_gc_elapsed, start_exit_gc_cpu,
end_exit_cpu, end_exit_elapsed;
#if defined(PROFILING)
static Time RP_start_time = 0, RP_tot_time = 0; // retainer prof user time
static Time RPe_start_time = 0, RPe_tot_time = 0; // retainer prof elap time
static Time HC_start_time, HC_tot_time = 0; // heap census prof user time
static Time HCe_start_time, HCe_tot_time = 0; // heap census prof elap time
#endif
#if defined(PROFILING)
#define PROF_VAL(x) (x)
#else
#define PROF_VAL(x) 0
#endif
//
// All the stats!
//
// This is where we accumulate all the stats during execution, and it's also
// in a convenient form that we can copy over to a caller of getRTSStats().
//
static RTSStats stats;
static W_ GC_end_faults = 0;
static Time *GC_coll_cpu = NULL;
static Time *GC_coll_elapsed = NULL;
static Time *GC_coll_max_pause = NULL;
static void statsPrintf( char *s, ... ) GNUC3_ATTRIBUTE(format (PRINTF, 1, 2));
static void statsFlush( void );
static void statsClose( void );
/* -----------------------------------------------------------------------------
Current elapsed time
------------------------------------------------------------------------- */
Time stat_getElapsedTime(void)
{
return getProcessElapsedTime() - start_init_elapsed;
}
/* ---------------------------------------------------------------------------
Measure the current MUT time, for profiling
------------------------------------------------------------------------ */
double
mut_user_time_until( Time t )
{
return TimeToSecondsDbl(t - stats.gc_cpu_ns);
// heapCensus() time is included in GC_tot_cpu, so we don't need
// to subtract it here.
}
double
mut_user_time( void )
{
Time cpu;
cpu = getProcessCPUTime();
return mut_user_time_until(cpu);
}
#if defined(PROFILING)
/*
mut_user_time_during_RP() returns the MUT time during retainer profiling.
The same is for mut_user_time_during_HC();
*/
static double
mut_user_time_during_RP( void )
{
return TimeToSecondsDbl(RP_start_time - stats.gc_cpu_ns - RP_tot_time);
}
#endif /* PROFILING */
/* ---------------------------------------------------------------------------
initStats0() has no dependencies, it can be called right at the beginning
------------------------------------------------------------------------ */
void
initStats0(void)
{
start_init_cpu = 0;
start_init_elapsed = 0;
end_init_cpu = 0;
end_init_elapsed = 0;
start_exit_cpu = 0;
start_exit_elapsed = 0;
start_exit_gc_cpu = 0;
start_exit_gc_elapsed = 0;
end_exit_cpu = 0;
end_exit_elapsed = 0;
#if defined(PROFILING)
RP_start_time = 0;
RP_tot_time = 0;
RPe_start_time = 0;
RPe_tot_time = 0;
HC_start_time = 0;
HC_tot_time = 0;
HCe_start_time = 0;
HCe_tot_time = 0;
#endif
GC_end_faults = 0;
stats = (RTSStats) {
.gcs = 0,
.major_gcs = 0,
.allocated_bytes = 0,
.max_live_bytes = 0,
.max_large_objects_bytes = 0,
.max_compact_bytes = 0,
.max_slop_bytes = 0,
.max_mem_in_use_bytes = 0,
.cumulative_live_bytes = 0,
.copied_bytes = 0,
.par_copied_bytes = 0,
.cumulative_par_max_copied_bytes = 0,
.cumulative_par_balanced_copied_bytes = 0,
.mutator_cpu_ns = 0,
.mutator_elapsed_ns = 0,
.gc_cpu_ns = 0,
.gc_elapsed_ns = 0,
.cpu_ns = 0,
.elapsed_ns = 0,
.gc = {
.gen = 0,
.threads = 0,
.allocated_bytes = 0,
.live_bytes = 0,
.large_objects_bytes = 0,
.compact_bytes = 0,
.slop_bytes = 0,
.mem_in_use_bytes = 0,
.copied_bytes = 0,
.par_max_copied_bytes = 0,
.par_balanced_copied_bytes = 0,
.sync_elapsed_ns = 0,
.cpu_ns = 0,
.elapsed_ns = 0
}
};
}
/* ---------------------------------------------------------------------------
initStats1() can be called after setupRtsFlags()
------------------------------------------------------------------------ */
void
initStats1 (void)
{
uint32_t i;
if (RtsFlags.GcFlags.giveStats >= VERBOSE_GC_STATS) {
statsPrintf(" Alloc Copied Live GC GC TOT TOT Page Flts\n");
statsPrintf(" bytes bytes bytes user elap user elap\n");
}
GC_coll_cpu =
(Time *)stgMallocBytes(
sizeof(Time)*RtsFlags.GcFlags.generations,
"initStats");
GC_coll_elapsed =
(Time *)stgMallocBytes(
sizeof(Time)*RtsFlags.GcFlags.generations,
"initStats");
GC_coll_max_pause =
(Time *)stgMallocBytes(
sizeof(Time)*RtsFlags.GcFlags.generations,
"initStats");
for (i = 0; i < RtsFlags.GcFlags.generations; i++) {
GC_coll_cpu[i] = 0;
GC_coll_elapsed[i] = 0;
GC_coll_max_pause[i] = 0;
}
}
/* -----------------------------------------------------------------------------
Initialisation time...
-------------------------------------------------------------------------- */
void
stat_startInit(void)
{
getProcessTimes(&start_init_cpu, &start_init_elapsed);
}
void
stat_endInit(void)
{
getProcessTimes(&end_init_cpu, &end_init_elapsed);
}
/* -----------------------------------------------------------------------------
stat_startExit and stat_endExit
These two measure the time taken in shutdownHaskell().
-------------------------------------------------------------------------- */
void
stat_startExit(void)
{
getProcessTimes(&start_exit_cpu, &start_exit_elapsed);
start_exit_gc_elapsed = stats.gc_elapsed_ns;
start_exit_gc_cpu = stats.gc_cpu_ns;
}
void
stat_endExit(void)
{
getProcessTimes(&end_exit_cpu, &end_exit_elapsed);
}
void
stat_startGCSync (gc_thread *gct)
{
gct->gc_sync_start_elapsed = getProcessElapsedTime();
}
/* -----------------------------------------------------------------------------
Called at the beginning of each GC
-------------------------------------------------------------------------- */
void
stat_startGC (Capability *cap, gc_thread *gct)
{
if (RtsFlags.GcFlags.ringBell) {
debugBelch("\007");
}
getProcessTimes(&gct->gc_start_cpu, &gct->gc_start_elapsed);
// Post EVENT_GC_START with the same timestamp as used for stats
// (though converted from Time=StgInt64 to EventTimestamp=StgWord64).
// Here, as opposed to other places, the event is emitted on the cap
// that initiates the GC and external tools expect it to have the same
// timestamp as used in +RTS -s calculcations.
traceEventGcStartAtT(cap,
TimeToNS(gct->gc_start_elapsed - start_init_elapsed));
if (RtsFlags.GcFlags.giveStats != NO_GC_STATS)
{
gct->gc_start_faults = getPageFaults();
}
updateNurseriesStats();
}
/* -----------------------------------------------------------------------------
Called at the end of each GC
-------------------------------------------------------------------------- */
void
stat_endGC (Capability *cap, gc_thread *gct,
W_ live, W_ copied, W_ slop, uint32_t gen,
uint32_t par_n_threads, W_ par_max_copied,
W_ par_balanced_copied)
{
// -------------------------------------------------
// Collect all the stats about this GC in stats.gc. We always do this since
// it's relatively cheap and we need allocated_bytes to catch heap
// overflows.
stats.gc.gen = gen;
stats.gc.threads = par_n_threads;
uint64_t tot_alloc_bytes = calcTotalAllocated() * sizeof(W_);
// allocated since the last GC
stats.gc.allocated_bytes = tot_alloc_bytes - stats.allocated_bytes;
stats.gc.live_bytes = live * sizeof(W_);
stats.gc.large_objects_bytes = calcTotalLargeObjectsW() * sizeof(W_);
stats.gc.compact_bytes = calcTotalCompactW() * sizeof(W_);
stats.gc.slop_bytes = slop * sizeof(W_);
stats.gc.mem_in_use_bytes = mblocks_allocated * MBLOCK_SIZE;
stats.gc.copied_bytes = copied * sizeof(W_);
stats.gc.par_max_copied_bytes = par_max_copied * sizeof(W_);
stats.gc.par_balanced_copied_bytes = par_balanced_copied * sizeof(W_);
bool stats_enabled =
RtsFlags.GcFlags.giveStats != NO_GC_STATS ||
rtsConfig.gcDoneHook != NULL;
if (stats_enabled
|| RtsFlags.ProfFlags.doHeapProfile) // heap profiling needs GC_tot_time
{
// We only update the times when stats are explicitly enabled since
// getProcessTimes (e.g. requiring a system call) can be expensive on
// some platforms.
Time current_cpu, current_elapsed;
getProcessTimes(¤t_cpu, ¤t_elapsed);
stats.cpu_ns = current_cpu - start_init_cpu;
stats.elapsed_ns = current_elapsed - start_init_elapsed;
stats.gc.sync_elapsed_ns =
gct->gc_start_elapsed - gct->gc_sync_start_elapsed;
stats.gc.elapsed_ns = current_elapsed - gct->gc_start_elapsed;
stats.gc.cpu_ns = current_cpu - gct->gc_start_cpu;
}
// -------------------------------------------------
// Update the cumulative stats
stats.gcs++;
stats.allocated_bytes = tot_alloc_bytes;
stats.max_mem_in_use_bytes = peak_mblocks_allocated * MBLOCK_SIZE;
GC_coll_cpu[gen] += stats.gc.cpu_ns;
GC_coll_elapsed[gen] += stats.gc.elapsed_ns;
if (GC_coll_max_pause[gen] < stats.gc.elapsed_ns) {
GC_coll_max_pause[gen] = stats.gc.elapsed_ns;
}
stats.copied_bytes += stats.gc.copied_bytes;
if (par_n_threads > 1) {
stats.par_copied_bytes += stats.gc.copied_bytes;
stats.cumulative_par_max_copied_bytes +=
stats.gc.par_max_copied_bytes;
stats.cumulative_par_balanced_copied_bytes +=
stats.gc.par_balanced_copied_bytes;
}
stats.gc_cpu_ns += stats.gc.cpu_ns;
stats.gc_elapsed_ns += stats.gc.elapsed_ns;
if (gen == RtsFlags.GcFlags.generations-1) { // major GC?
stats.major_gcs++;
if (stats.gc.live_bytes > stats.max_live_bytes) {
stats.max_live_bytes = stats.gc.live_bytes;
}
if (stats.gc.large_objects_bytes > stats.max_large_objects_bytes) {
stats.max_large_objects_bytes = stats.gc.large_objects_bytes;
}
if (stats.gc.compact_bytes > stats.max_compact_bytes) {
stats.max_compact_bytes = stats.gc.compact_bytes;
}
if (stats.gc.slop_bytes > stats.max_slop_bytes) {
stats.max_slop_bytes = stats.gc.slop_bytes;
}
stats.cumulative_live_bytes += stats.gc.live_bytes;
}
// -------------------------------------------------
// Do the more expensive bits only when stats are enabled.
if (stats_enabled)
{
// -------------------------------------------------
// Emit events to the event log
// Has to be emitted while all caps stopped for GC, but before GC_END.
// See trac.haskell.org/ThreadScope/wiki/RTSsummaryEvents
// for a detailed design rationale of the current setup
// of GC eventlog events.
traceEventGcGlobalSync(cap);
// Emitted before GC_END on all caps, which simplifies tools code.
traceEventGcStats(cap,
CAPSET_HEAP_DEFAULT,
stats.gc.gen,
stats.gc.copied_bytes,
stats.gc.slop_bytes,
/* current loss due to fragmentation */
(mblocks_allocated * BLOCKS_PER_MBLOCK - n_alloc_blocks)
* BLOCK_SIZE,
par_n_threads,
stats.gc.par_max_copied_bytes,
stats.gc.copied_bytes,
stats.gc.par_balanced_copied_bytes);
// Post EVENT_GC_END with the same timestamp as used for stats
// (though converted from Time=StgInt64 to EventTimestamp=StgWord64).
// Here, as opposed to other places, the event is emitted on the cap
// that initiates the GC and external tools expect it to have the same
// timestamp as used in +RTS -s calculcations.
traceEventGcEndAtT(cap, TimeToNS(stats.elapsed_ns));
if (gen == RtsFlags.GcFlags.generations-1) { // major GC?
traceEventHeapLive(cap,
CAPSET_HEAP_DEFAULT,
stats.gc.live_bytes);
}
// -------------------------------------------------
// Print GC stats to stdout or a file (+RTS -S/-s)
if (RtsFlags.GcFlags.giveStats == VERBOSE_GC_STATS) {
W_ faults = getPageFaults();
statsPrintf("%9" FMT_Word64 " %9" FMT_Word64 " %9" FMT_Word64,
stats.gc.allocated_bytes, stats.gc.copied_bytes,
stats.gc.live_bytes);
statsPrintf(" %6.3f %6.3f %8.3f %8.3f %4"
FMT_Word " %4" FMT_Word " (Gen: %2d)\n",
TimeToSecondsDbl(stats.gc.cpu_ns),
TimeToSecondsDbl(stats.gc.elapsed_ns),
TimeToSecondsDbl(stats.cpu_ns),
TimeToSecondsDbl(stats.elapsed_ns),
faults - gct->gc_start_faults,
gct->gc_start_faults - GC_end_faults,
gen);
GC_end_faults = faults;
statsFlush();
}
if (rtsConfig.gcDoneHook != NULL) {
rtsConfig.gcDoneHook(&stats.gc);
}
traceEventHeapSize(cap,
CAPSET_HEAP_DEFAULT,
mblocks_allocated * MBLOCK_SIZE);
}
}
/* -----------------------------------------------------------------------------
Called at the beginning of each Retainer Profiliing
-------------------------------------------------------------------------- */
#if defined(PROFILING)
void
stat_startRP(void)
{
Time user, elapsed;
getProcessTimes( &user, &elapsed );
RP_start_time = user;
RPe_start_time = elapsed;
}
#endif /* PROFILING */
/* -----------------------------------------------------------------------------
Called at the end of each Retainer Profiliing
-------------------------------------------------------------------------- */
#if defined(PROFILING)
void
stat_endRP(
uint32_t retainerGeneration,
#if defined(DEBUG_RETAINER)
uint32_t maxCStackSize,
int maxStackSize,
#endif
double averageNumVisit)
{
Time user, elapsed;
getProcessTimes( &user, &elapsed );
RP_tot_time += user - RP_start_time;
RPe_tot_time += elapsed - RPe_start_time;
fprintf(prof_file, "Retainer Profiling: %d, at %f seconds\n",
retainerGeneration, mut_user_time_during_RP());
#if defined(DEBUG_RETAINER)
fprintf(prof_file, "\tMax C stack size = %u\n", maxCStackSize);
fprintf(prof_file, "\tMax auxiliary stack size = %u\n", maxStackSize);
#endif
fprintf(prof_file, "\tAverage number of visits per object = %f\n", averageNumVisit);
}
#endif /* PROFILING */
/* -----------------------------------------------------------------------------
Called at the beginning of each heap census
-------------------------------------------------------------------------- */
#if defined(PROFILING)
void
stat_startHeapCensus(void)
{
Time user, elapsed;
getProcessTimes( &user, &elapsed );
HC_start_time = user;
HCe_start_time = elapsed;
}
#endif /* PROFILING */
/* -----------------------------------------------------------------------------
Called at the end of each heap census
-------------------------------------------------------------------------- */
#if defined(PROFILING)
void
stat_endHeapCensus(void)
{
Time user, elapsed;
getProcessTimes( &user, &elapsed );
HC_tot_time += user - HC_start_time;
HCe_tot_time += elapsed - HCe_start_time;
}
#endif /* PROFILING */
/* -----------------------------------------------------------------------------
Called at the end of execution
NOTE: number of allocations is not entirely accurate: it doesn't
take into account the few bytes at the end of the heap that
were left unused when the heap-check failed.
-------------------------------------------------------------------------- */
#if defined(DEBUG)
#define TICK_VAR_INI(arity) \
StgInt SLOW_CALLS_##arity = 1; \
StgInt RIGHT_ARITY_##arity = 1; \
StgInt TAGGED_PTR_##arity = 0;
TICK_VAR_INI(1)
TICK_VAR_INI(2)
StgInt TOTAL_CALLS=1;
#endif
/* Report the value of a counter */
#define REPORT(counter) \
{ \
showStgWord64(counter,temp,true/*commas*/); \
statsPrintf(" (" #counter ") : %s\n",temp); \
}
/* Report the value of a counter as a percentage of another counter */
#define REPORT_PCT(counter,countertot) \
statsPrintf(" (" #counter ") %% of (" #countertot ") : %.1f%%\n", \
counter*100.0/countertot)
#define TICK_PRINT(arity) \
REPORT(SLOW_CALLS_##arity); \
REPORT_PCT(RIGHT_ARITY_##arity,SLOW_CALLS_##arity); \
REPORT_PCT(TAGGED_PTR_##arity,RIGHT_ARITY_##arity); \
REPORT(RIGHT_ARITY_##arity); \
REPORT(TAGGED_PTR_##arity)
#define TICK_PRINT_TOT(arity) \
statsPrintf(" (SLOW_CALLS_" #arity ") %% of (TOTAL_CALLS) : %.1f%%\n", \
SLOW_CALLS_##arity * 100.0/TOTAL_CALLS)
STATIC_INLINE Time get_init_cpu(void) {
return end_init_cpu - start_init_cpu;
}
STATIC_INLINE Time get_init_elapsed(void) {
return end_init_elapsed - start_init_elapsed;
}
void
stat_exit (void)
{
generation *gen;
Time gc_cpu = 0;
Time gc_elapsed = 0;
Time init_cpu = 0;
Time init_elapsed = 0;
Time mut_cpu = 0;
Time mut_elapsed = 0;
Time exit_cpu = 0;
Time exit_elapsed = 0;
Time exit_gc_cpu = 0;
Time exit_gc_elapsed = 0;
if (RtsFlags.GcFlags.giveStats != NO_GC_STATS) {
char temp[512];
Time tot_cpu;
Time tot_elapsed;
uint32_t g;
getProcessTimes( &tot_cpu, &tot_elapsed );
tot_cpu -= start_init_cpu;
tot_elapsed -= start_init_elapsed;
uint64_t tot_alloc_bytes = calcTotalAllocated() * sizeof(W_);
// allocated since the last GC
stats.gc.allocated_bytes = tot_alloc_bytes - stats.allocated_bytes;
stats.allocated_bytes = tot_alloc_bytes;
/* avoid divide by zero if tot_cpu is measured as 0.00 seconds -- SDM */
if (tot_cpu <= 0) tot_cpu = 1;
if (tot_elapsed <= 0) tot_elapsed = 1;
if (RtsFlags.GcFlags.giveStats >= VERBOSE_GC_STATS) {
statsPrintf("%9" FMT_Word " %9.9s %9.9s",
(W_)stats.gc.allocated_bytes, "", "");
statsPrintf(" %6.3f %6.3f\n\n", 0.0, 0.0);
}
// heapCensus() is called by the GC, so RP and HC time are
// included in the GC stats. We therefore subtract them to
// obtain the actual GC cpu time.
gc_cpu = stats.gc_cpu_ns - PROF_VAL(RP_tot_time + HC_tot_time);
gc_elapsed = stats.gc_elapsed_ns - PROF_VAL(RPe_tot_time + HCe_tot_time);
init_cpu = get_init_cpu();
init_elapsed = get_init_elapsed();
// We do a GC during the EXIT phase. We'll attribute the cost of that
// to GC instead of EXIT, so carefully subtract it from the EXIT time.
exit_gc_cpu = stats.gc_cpu_ns - start_exit_gc_cpu;
exit_gc_elapsed = stats.gc_elapsed_ns - start_exit_gc_elapsed;
exit_cpu = end_exit_cpu - start_exit_cpu - exit_gc_cpu;
exit_elapsed = end_exit_elapsed - start_exit_elapsed - exit_gc_elapsed;
mut_elapsed = start_exit_elapsed - end_init_elapsed -
(gc_elapsed - exit_gc_elapsed) -
PROF_VAL(RPe_tot_time + HCe_tot_time);
mut_cpu = start_exit_cpu - end_init_cpu - (gc_cpu - exit_gc_cpu)
- PROF_VAL(RP_tot_time + HC_tot_time);
if (mut_cpu < 0) { mut_cpu = 0; }
// The subdivision of runtime into INIT/EXIT/GC/MUT is just adding and
// subtracting, so the parts should add up to the total exactly. Note
// that tot_elapsed is captured a tiny bit later than end_exit_elapsed,
// so we don't use it here.
ASSERT(init_elapsed + mut_elapsed + gc_elapsed + exit_elapsed
== end_exit_elapsed - start_init_elapsed);
if (RtsFlags.GcFlags.giveStats >= SUMMARY_GC_STATS) {
showStgWord64(stats.allocated_bytes, temp, true/*commas*/);
statsPrintf("%16s bytes allocated in the heap\n", temp);
showStgWord64(stats.copied_bytes, temp, true/*commas*/);
statsPrintf("%16s bytes copied during GC\n", temp);
if ( stats.major_gcs > 0 ) {
showStgWord64(stats.max_live_bytes, temp, true/*commas*/);
statsPrintf("%16s bytes maximum residency (%" FMT_Word32
" sample(s))\n",
temp, stats.major_gcs);
}
showStgWord64(stats.max_slop_bytes, temp, true/*commas*/);
statsPrintf("%16s bytes maximum slop\n", temp);
statsPrintf("%16" FMT_SizeT " MB total memory in use (%"
FMT_SizeT " MB lost due to fragmentation)\n\n",
(size_t)(peak_mblocks_allocated * MBLOCK_SIZE_W) / (1024 * 1024 / sizeof(W_)),
(size_t)(peak_mblocks_allocated * BLOCKS_PER_MBLOCK * BLOCK_SIZE_W - hw_alloc_blocks * BLOCK_SIZE_W) / (1024 * 1024 / sizeof(W_)));
/* Print garbage collections in each gen */
statsPrintf(" Tot time (elapsed) Avg pause Max pause\n");
for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
gen = &generations[g];
statsPrintf(" Gen %2d %5d colls, %5d par %6.3fs %6.3fs %3.4fs %3.4fs\n",
gen->no,
gen->collections,
gen->par_collections,
TimeToSecondsDbl(GC_coll_cpu[g]),
TimeToSecondsDbl(GC_coll_elapsed[g]),
gen->collections == 0 ? 0 : TimeToSecondsDbl(GC_coll_elapsed[g] / gen->collections),
TimeToSecondsDbl(GC_coll_max_pause[g]));
}
#if defined(THREADED_RTS)
if (RtsFlags.ParFlags.parGcEnabled && stats.par_copied_bytes > 0) {
// See Note [Work Balance]
statsPrintf("\n Parallel GC work balance: %.2f%% (serial 0%%, perfect 100%%)\n",
100 * (double)stats.cumulative_par_balanced_copied_bytes /
(double)stats.par_copied_bytes);
}
#endif
statsPrintf("\n");
#if defined(THREADED_RTS)
statsPrintf(" TASKS: %d (%d bound, %d peak workers (%d total), using -N%d)\n",
taskCount, taskCount - workerCount,
peakWorkerCount, workerCount,
n_capabilities);
statsPrintf("\n");
{
uint32_t i;
SparkCounters sparks = { 0, 0, 0, 0, 0, 0};
for (i = 0; i < n_capabilities; i++) {
sparks.created += capabilities[i]->spark_stats.created;
sparks.dud += capabilities[i]->spark_stats.dud;
sparks.overflowed+= capabilities[i]->spark_stats.overflowed;
sparks.converted += capabilities[i]->spark_stats.converted;
sparks.gcd += capabilities[i]->spark_stats.gcd;
sparks.fizzled += capabilities[i]->spark_stats.fizzled;
}
statsPrintf(" SPARKS: %" FMT_Word " (%" FMT_Word " converted, %" FMT_Word " overflowed, %" FMT_Word " dud, %" FMT_Word " GC'd, %" FMT_Word " fizzled)\n\n",
sparks.created + sparks.dud + sparks.overflowed,
sparks.converted, sparks.overflowed, sparks.dud,
sparks.gcd, sparks.fizzled);
}
#endif
statsPrintf(" INIT time %7.3fs (%7.3fs elapsed)\n",
TimeToSecondsDbl(init_cpu), TimeToSecondsDbl(init_elapsed));
statsPrintf(" MUT time %7.3fs (%7.3fs elapsed)\n",
TimeToSecondsDbl(mut_cpu), TimeToSecondsDbl(mut_elapsed));
statsPrintf(" GC time %7.3fs (%7.3fs elapsed)\n",
TimeToSecondsDbl(gc_cpu), TimeToSecondsDbl(gc_elapsed));
#if defined(PROFILING)
statsPrintf(" RP time %7.3fs (%7.3fs elapsed)\n",
TimeToSecondsDbl(RP_tot_time), TimeToSecondsDbl(RPe_tot_time));
statsPrintf(" PROF time %7.3fs (%7.3fs elapsed)\n",
TimeToSecondsDbl(HC_tot_time), TimeToSecondsDbl(HCe_tot_time));
#endif
statsPrintf(" EXIT time %7.3fs (%7.3fs elapsed)\n",
TimeToSecondsDbl(exit_cpu), TimeToSecondsDbl(exit_elapsed));
statsPrintf(" Total time %7.3fs (%7.3fs elapsed)\n\n",
TimeToSecondsDbl(tot_cpu), TimeToSecondsDbl(tot_elapsed));
#if !defined(THREADED_RTS)
statsPrintf(" %%GC time %5.1f%% (%.1f%% elapsed)\n\n",
TimeToSecondsDbl(gc_cpu)*100/TimeToSecondsDbl(tot_cpu),
TimeToSecondsDbl(gc_elapsed)*100/TimeToSecondsDbl(tot_elapsed));
#endif
if (mut_cpu == 0) {
showStgWord64(0, temp, true/*commas*/);
} else {
showStgWord64(
(StgWord64)((double)stats.allocated_bytes /
TimeToSecondsDbl(mut_cpu)),
temp, true/*commas*/);
}
statsPrintf(" Alloc rate %s bytes per MUT second\n\n", temp);
statsPrintf(" Productivity %5.1f%% of total user, %.1f%% of total elapsed\n\n",
TimeToSecondsDbl(tot_cpu - gc_cpu -
PROF_VAL(RP_tot_time + HC_tot_time) - init_cpu) * 100
/ TimeToSecondsDbl(tot_cpu),
TimeToSecondsDbl(tot_elapsed - gc_elapsed -
PROF_VAL(RPe_tot_time + HCe_tot_time) - init_elapsed) * 100
/ TimeToSecondsDbl(tot_elapsed));
#if defined(THREADED_RTS) && defined(PROF_SPIN)
{
uint32_t g;
statsPrintf("gc_alloc_block_sync: %"FMT_Word64"\n", gc_alloc_block_sync.spin);
statsPrintf("whitehole_gc_spin: %"FMT_Word64"\n"
, whitehole_gc_spin);
for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
statsPrintf("gen[%d].sync: %"FMT_Word64"\n", g, generations[g].sync.spin);
}
}
#endif
}
if (RtsFlags.GcFlags.giveStats == ONELINE_GC_STATS) {
char *fmt;
if (RtsFlags.MiscFlags.machineReadable) {
fmt =
" [(\"bytes allocated\", \"%" FMT_Word64 "\")\n"
" ,(\"num_GCs\", \"%" FMT_Word32 "\")\n"
" ,(\"average_bytes_used\", \"%" FMT_Word64 "\")\n"
" ,(\"max_bytes_used\", \"%" FMT_Word64 "\")\n"
" ,(\"num_byte_usage_samples\", \"%" FMT_Word32 "\")\n"
" ,(\"peak_megabytes_allocated\", \"%" FMT_Word64 "\")\n"
" ,(\"init_cpu_seconds\", \"%.3f\")\n"
" ,(\"init_wall_seconds\", \"%.3f\")\n"
" ,(\"mutator_cpu_seconds\", \"%.3f\")\n"
" ,(\"mutator_wall_seconds\", \"%.3f\")\n"
" ,(\"GC_cpu_seconds\", \"%.3f\")\n"
" ,(\"GC_wall_seconds\", \"%.3f\")\n"
" ]\n";
}
else {
fmt =
"<<ghc: %" FMT_Word64 " bytes, "
"%" FMT_Word32 " GCs, "
"%" FMT_Word64 "/%" FMT_Word64 " avg/max bytes residency (%" FMT_Word32 " samples), "
"%" FMT_Word64 "M in use, "
"%.3f INIT (%.3f elapsed), "
"%.3f MUT (%.3f elapsed), "
"%.3f GC (%.3f elapsed) :ghc>>\n";
}
/* print the long long separately to avoid bugginess on mingwin (2001-07-02, mingw-0.5) */
statsPrintf(fmt,
stats.allocated_bytes,
stats.gcs,
(uint64_t)
(stats.major_gcs == 0 ? 0 :
stats.cumulative_live_bytes/stats.major_gcs),
stats.max_live_bytes,
stats.major_gcs,
(uint64_t) (peak_mblocks_allocated * MBLOCK_SIZE / (1024L * 1024L)),
TimeToSecondsDbl(init_cpu), TimeToSecondsDbl(init_elapsed),
TimeToSecondsDbl(mut_cpu), TimeToSecondsDbl(mut_elapsed),
TimeToSecondsDbl(gc_cpu), TimeToSecondsDbl(gc_elapsed));
}
statsFlush();
statsClose();
}
if (GC_coll_cpu) {
stgFree(GC_coll_cpu);
GC_coll_cpu = NULL;
}
if (GC_coll_elapsed) {
stgFree(GC_coll_elapsed);
GC_coll_elapsed = NULL;
}
if (GC_coll_max_pause) {
stgFree(GC_coll_max_pause);
GC_coll_max_pause = NULL;
}
}
/* Note [Work Balance]
----------------------
Work balance is a measure of how evenly the work done during parallel garbage
collection is spread across threads. To compute work balance we must take care
to account for the number of GC threads changing between GCs. The statistics we
track must have the number of GC threads "integrated out".
We accumulate two values from each garbage collection:
* par_copied: is a measure of the total work done during parallel garbage
collection
* par_balanced_copied: is a measure of the balanced work done
during parallel garbage collection.
par_copied is simple to compute, but par_balanced_copied_bytes is somewhat more
complicated:
For a given garbage collection:
Let gc_copied := total copies during the gc
gc_copied_i := copies by the ith thread during the gc
num_gc_threads := the number of threads participating in the gc
balance_limit := (gc_copied / num_gc_threads)
If we were to graph gc_copied_i, sorted from largest to smallest we would see
something like:
|X
^ |X X
| |X X X X: unbalanced copies
copies |----------- Y: balanced copies by the busiest GC thread
|Y Z Z Z: other balanced copies
|Y Z Z Z
|Y Z Z Z Z
|Y Z Z Z Z Z
|===========
|1 2 3 4 5 6
i ->
where the --- line is at balance_limit. Balanced copies are those under the ---
line, i.e. the area of the Ys and Zs. Note that the area occupied by the Ys will
always equal balance_limit. Completely balanced gc has every thread copying
balance_limit and a completely unbalanced gc has a single thread copying
gc_copied.
One could define par_balance_copied as the areas of the Ys and Zs in the graph
above, however we would like the ratio of (par_balance_copied / gc_copied) to
range from 0 to 1, so that work_balance will be a nice percentage, also ranging
from 0 to 1. We therefore define par_balanced_copied as:
( num_gc_threads )
{Sum[Min(gc_copied_i,balance_limit)] - balance_limit} * (------------------)
i (num_gc_threads - 1)
vvv vvv
S T
Where the S and T terms serve to remove the area of the Ys, and
to normalize the result to lie between 0 and gc_copied.
Note that the implementation orders these operations differently to minimize
error due to integer rounding.
Then cumulative work balance is computed as
(cumulative_par_balanced_copied_bytes / par_copied_byes)
Previously, cumulative work balance was computed as:
(cumulative_par_max_copied_bytes)
(-------------------------------) - 1
( par_copied_bytes )
-------------------------------------
(n_capabilities - 1)
This was less accurate than the current method, and invalid whenever a garbage
collection had occurred with num_gc_threads /= n_capabilities; which can happen
when setNumCapabilities is called, when -qn is passed as an RTS option, or when
the number of gc threads is limited to the number of cores.
See #13830
*/
/* -----------------------------------------------------------------------------
stat_describe_gens
Produce some detailed info on the state of the generational GC.
-------------------------------------------------------------------------- */
void
statDescribeGens(void)
{
uint32_t g, mut, lge, compacts, i;
W_ gen_slop;
W_ tot_live, tot_slop;
W_ gen_live, gen_blocks;
bdescr *bd;
generation *gen;
debugBelch(
"----------------------------------------------------------------------\n"
" Gen Max Mut-list Blocks Large Compacts Live Slop\n"
" Blocks Bytes Objects \n"
"----------------------------------------------------------------------\n");
tot_live = 0;
tot_slop = 0;
for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
gen = &generations[g];
for (bd = gen->large_objects, lge = 0; bd; bd = bd->link) {
lge++;
}
for (bd = gen->compact_objects, compacts = 0; bd; bd = bd->link) {
compacts++;
}
gen_live = genLiveWords(gen);
gen_blocks = genLiveBlocks(gen);
mut = 0;
for (i = 0; i < n_capabilities; i++) {
mut += countOccupied(capabilities[i]->mut_lists[g]);
// Add the pinned object block.
bd = capabilities[i]->pinned_object_block;
if (bd != NULL) {
gen_live += bd->free - bd->start;
gen_blocks += bd->blocks;
}
gen_live += gcThreadLiveWords(i,g);
gen_blocks += gcThreadLiveBlocks(i,g);
}
debugBelch("%5d %7" FMT_Word " %9d", g, (W_)gen->max_blocks, mut);
gen_slop = gen_blocks * BLOCK_SIZE_W - gen_live;
debugBelch("%8" FMT_Word " %8d %8d %9" FMT_Word " %9" FMT_Word "\n", gen_blocks, lge, compacts,
gen_live*(W_)sizeof(W_), gen_slop*(W_)sizeof(W_));
tot_live += gen_live;
tot_slop += gen_slop;
}
debugBelch("----------------------------------------------------------------------\n");
debugBelch("%51s%9" FMT_Word " %9" FMT_Word "\n",
"",tot_live*sizeof(W_),tot_slop*sizeof(W_));
debugBelch("----------------------------------------------------------------------\n");
debugBelch("\n");
}
/* -----------------------------------------------------------------------------
Stats available via a programmatic interface, so eg. GHCi can time
each compilation and expression evaluation.
-------------------------------------------------------------------------- */
uint64_t getAllocations( void )
{
return stats.allocated_bytes;
}
int getRTSStatsEnabled( void )
{
return RtsFlags.GcFlags.giveStats != NO_GC_STATS;
}
void getRTSStats( RTSStats *s )
{
Time current_elapsed = 0;
Time current_cpu = 0;
*s = stats;
getProcessTimes(¤t_cpu, ¤t_elapsed);
s->cpu_ns = current_cpu - end_init_cpu;
s->elapsed_ns = current_elapsed - end_init_elapsed;
s->mutator_cpu_ns = current_cpu - end_init_cpu - stats.gc_cpu_ns;
s->mutator_elapsed_ns = current_elapsed - end_init_elapsed -
stats.gc_elapsed_ns;
}
/* -----------------------------------------------------------------------------
Dumping stuff in the stats file, or via the debug message interface
-------------------------------------------------------------------------- */
void
statsPrintf( char *s, ... )
{
FILE *sf = RtsFlags.GcFlags.statsFile;
va_list ap;
va_start(ap,s);
if (sf == NULL) {
vdebugBelch(s,ap);
} else {
vfprintf(sf, s, ap);
}
va_end(ap);
}
static void
statsFlush( void )
{
FILE *sf = RtsFlags.GcFlags.statsFile;
if (sf != NULL) {
fflush(sf);
}
}
static void
statsClose( void )
{
FILE *sf = RtsFlags.GcFlags.statsFile;
if (sf != NULL) {
fclose(sf);
}
}
|