1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team 2001-2005
*
* The task manager subsystem. Tasks execute STG code, with this
* module providing the API which the Scheduler uses to control their
* creation and destruction.
*
* -------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
#include "Task.h"
#include "Capability.h"
#include "Stats.h"
#include "Schedule.h"
#include "Hash.h"
#include "Trace.h"
#if HAVE_SIGNAL_H
#include <signal.h>
#endif
// Task lists and global counters.
// Locks required: all_tasks_mutex.
Task *all_tasks = NULL;
nat taskCount;
nat workerCount;
nat currentWorkerCount;
nat peakWorkerCount;
static int tasksInitialized = 0;
static void freeTask (Task *task);
static Task * allocTask (void);
static Task * newTask (rtsBool);
#if defined(THREADED_RTS)
static Mutex all_tasks_mutex;
#endif
/* -----------------------------------------------------------------------------
* Remembering the current thread's Task
* -------------------------------------------------------------------------- */
// A thread-local-storage key that we can use to get access to the
// current thread's Task structure.
#if defined(THREADED_RTS)
# if defined(MYTASK_USE_TLV)
__thread Task *my_task;
# else
ThreadLocalKey currentTaskKey;
# endif
#ifdef llvm_CC_FLAVOR
ThreadLocalKey gctKey;
#endif
#else
Task *my_task;
#endif
/* -----------------------------------------------------------------------------
* Rest of the Task API
* -------------------------------------------------------------------------- */
void
initTaskManager (void)
{
if (!tasksInitialized) {
taskCount = 0;
workerCount = 0;
currentWorkerCount = 0;
peakWorkerCount = 0;
tasksInitialized = 1;
#if defined(THREADED_RTS)
#if !defined(MYTASK_USE_TLV)
newThreadLocalKey(¤tTaskKey);
#endif
#if defined(llvm_CC_FLAVOR)
newThreadLocalKey(&gctKey);
#endif
initMutex(&all_tasks_mutex);
#endif
}
}
nat
freeTaskManager (void)
{
Task *task, *next;
nat tasksRunning = 0;
ACQUIRE_LOCK(&all_tasks_mutex);
for (task = all_tasks; task != NULL; task = next) {
next = task->all_next;
if (task->stopped) {
freeTask(task);
} else {
tasksRunning++;
}
}
debugTrace(DEBUG_sched, "freeing task manager, %d tasks still running",
tasksRunning);
all_tasks = NULL;
RELEASE_LOCK(&all_tasks_mutex);
#if defined(THREADED_RTS)
closeMutex(&all_tasks_mutex);
#if !defined(MYTASK_USE_TLV)
freeThreadLocalKey(¤tTaskKey);
#endif
#if defined(llvm_CC_FLAVOR)
freeThreadLocalKey(&gctKey);
#endif
#endif
tasksInitialized = 0;
return tasksRunning;
}
static Task *
allocTask (void)
{
Task *task;
task = myTask();
if (task != NULL) {
return task;
} else {
task = newTask(rtsFalse);
#if defined(THREADED_RTS)
task->id = osThreadId();
#endif
setMyTask(task);
return task;
}
}
static void
freeTask (Task *task)
{
InCall *incall, *next;
// We only free resources if the Task is not in use. A
// Task may still be in use if we have a Haskell thread in
// a foreign call while we are attempting to shut down the
// RTS (see conc059).
#if defined(THREADED_RTS)
closeCondition(&task->cond);
closeMutex(&task->lock);
#endif
for (incall = task->incall; incall != NULL; incall = next) {
next = incall->prev_stack;
stgFree(incall);
}
for (incall = task->spare_incalls; incall != NULL; incall = next) {
next = incall->next;
stgFree(incall);
}
stgFree(task);
}
static Task*
newTask (rtsBool worker)
{
Task *task;
#define ROUND_TO_CACHE_LINE(x) ((((x)+63) / 64) * 64)
task = stgMallocBytes(ROUND_TO_CACHE_LINE(sizeof(Task)), "newTask");
task->cap = NULL;
task->worker = worker;
task->stopped = rtsFalse;
task->running_finalizers = rtsFalse;
task->n_spare_incalls = 0;
task->spare_incalls = NULL;
task->incall = NULL;
#if defined(THREADED_RTS)
initCondition(&task->cond);
initMutex(&task->lock);
task->wakeup = rtsFalse;
#endif
task->next = NULL;
ACQUIRE_LOCK(&all_tasks_mutex);
task->all_prev = NULL;
task->all_next = all_tasks;
if (all_tasks != NULL) {
all_tasks->all_prev = task;
}
all_tasks = task;
taskCount++;
if (worker) {
workerCount++;
currentWorkerCount++;
if (currentWorkerCount > peakWorkerCount) {
peakWorkerCount = currentWorkerCount;
}
}
RELEASE_LOCK(&all_tasks_mutex);
return task;
}
// avoid the spare_incalls list growing unboundedly
#define MAX_SPARE_INCALLS 8
static void
newInCall (Task *task)
{
InCall *incall;
if (task->spare_incalls != NULL) {
incall = task->spare_incalls;
task->spare_incalls = incall->next;
task->n_spare_incalls--;
} else {
incall = stgMallocBytes((sizeof(InCall)), "newBoundTask");
}
incall->tso = NULL;
incall->task = task;
incall->suspended_tso = NULL;
incall->suspended_cap = NULL;
incall->stat = NoStatus;
incall->ret = NULL;
incall->next = NULL;
incall->prev = NULL;
incall->prev_stack = task->incall;
task->incall = incall;
}
static void
endInCall (Task *task)
{
InCall *incall;
incall = task->incall;
incall->tso = NULL;
task->incall = task->incall->prev_stack;
if (task->n_spare_incalls >= MAX_SPARE_INCALLS) {
stgFree(incall);
} else {
incall->next = task->spare_incalls;
task->spare_incalls = incall;
task->n_spare_incalls++;
}
}
Task *
newBoundTask (void)
{
Task *task;
if (!tasksInitialized) {
errorBelch("newBoundTask: RTS is not initialised; call hs_init() first");
stg_exit(EXIT_FAILURE);
}
task = allocTask();
task->stopped = rtsFalse;
newInCall(task);
debugTrace(DEBUG_sched, "new task (taskCount: %d)", taskCount);
return task;
}
void
boundTaskExiting (Task *task)
{
#if defined(THREADED_RTS)
ASSERT(osThreadId() == task->id);
#endif
ASSERT(myTask() == task);
endInCall(task);
// Set task->stopped, but only if this is the last call (#4850).
// Remember that we might have a worker Task that makes a foreign
// call and then a callback, so it can transform into a bound
// Task for the duration of the callback.
if (task->incall == NULL) {
task->stopped = rtsTrue;
}
debugTrace(DEBUG_sched, "task exiting");
}
#ifdef THREADED_RTS
#define TASK_ID(t) (t)->id
#else
#define TASK_ID(t) (t)
#endif
void
discardTasksExcept (Task *keep)
{
Task *task, *next;
// Wipe the task list, except the current Task.
ACQUIRE_LOCK(&all_tasks_mutex);
for (task = all_tasks; task != NULL; task=next) {
next = task->all_next;
if (task != keep) {
debugTrace(DEBUG_sched, "discarding task %" FMT_SizeT "", (size_t)TASK_ID(task));
freeTask(task);
}
}
all_tasks = keep;
keep->all_next = NULL;
keep->all_prev = NULL;
RELEASE_LOCK(&all_tasks_mutex);
}
//
// After the capabilities[] array has moved, we have to adjust all
// (Capability *) pointers to point to the new array. The old array
// is still valid at this point.
//
void updateCapabilityRefs (void)
{
Task *task;
InCall *incall;
ACQUIRE_LOCK(&all_tasks_mutex);
for (task = all_tasks; task != NULL; task=task->all_next) {
if (task->cap != NULL) {
task->cap = &capabilities[task->cap->no];
}
for (incall = task->incall; incall != NULL; incall = incall->prev_stack) {
if (incall->suspended_cap != NULL) {
incall->suspended_cap = &capabilities[incall->suspended_cap->no];
}
}
}
RELEASE_LOCK(&all_tasks_mutex);
}
#if defined(THREADED_RTS)
void
workerTaskStop (Task *task)
{
DEBUG_ONLY( OSThreadId id );
DEBUG_ONLY( id = osThreadId() );
ASSERT(task->id == id);
ASSERT(myTask() == task);
ACQUIRE_LOCK(&all_tasks_mutex);
if (task->all_prev) {
task->all_prev->all_next = task->all_next;
} else {
all_tasks = task->all_next;
}
if (task->all_next) {
task->all_next->all_prev = task->all_prev;
}
currentWorkerCount--;
RELEASE_LOCK(&all_tasks_mutex);
freeTask(task);
}
#endif
#ifdef DEBUG
// We don't replace this function with serialisableTaskId,
// because debug prints as pointers are more readable than random
// 64-bit intergers (especially on 32-bit architectures)
// and because we want to use this function also for non-treaded RTS.
static void *taskId(Task *task)
{
#ifdef THREADED_RTS
return (void *)(size_t)task->id;
#else
return (void *)task;
#endif
}
#endif
#if defined(THREADED_RTS)
static void OSThreadProcAttr
workerStart(Task *task)
{
Capability *cap;
// See startWorkerTask().
ACQUIRE_LOCK(&task->lock);
cap = task->cap;
RELEASE_LOCK(&task->lock);
if (RtsFlags.ParFlags.setAffinity) {
setThreadAffinity(cap->no, n_capabilities);
}
// set the thread-local pointer to the Task:
setMyTask(task);
newInCall(task);
scheduleWorker(cap,task);
}
void
startWorkerTask (Capability *cap)
{
int r;
OSThreadId tid;
Task *task;
// A worker always gets a fresh Task structure.
task = newTask(rtsTrue);
// The lock here is to synchronise with taskStart(), to make sure
// that we have finished setting up the Task structure before the
// worker thread reads it.
ACQUIRE_LOCK(&task->lock);
task->cap = cap;
// Give the capability directly to the worker; we can't let anyone
// else get in, because the new worker Task has nowhere to go to
// sleep so that it could be woken up again.
ASSERT_LOCK_HELD(&cap->lock);
cap->running_task = task;
r = createOSThread(&tid, (OSThreadProc*)workerStart, task);
if (r != 0) {
sysErrorBelch("failed to create OS thread");
stg_exit(EXIT_FAILURE);
}
debugTrace(DEBUG_sched, "new worker task (taskCount: %d)", taskCount);
task->id = tid;
// ok, finished with the Task struct.
RELEASE_LOCK(&task->lock);
}
void
interruptWorkerTask (Task *task)
{
ASSERT(osThreadId() != task->id); // seppuku not allowed
ASSERT(task->incall->suspended_tso); // use this only for FFI calls
interruptOSThread(task->id);
debugTrace(DEBUG_sched, "interrupted worker task %p", taskId(task));
}
#endif /* THREADED_RTS */
#ifdef DEBUG
void printAllTasks(void);
void
printAllTasks(void)
{
Task *task;
for (task = all_tasks; task != NULL; task = task->all_next) {
debugBelch("task %p is %s, ", taskId(task), task->stopped ? "stopped" : "alive");
if (!task->stopped) {
if (task->cap) {
debugBelch("on capability %d, ", task->cap->no);
}
if (task->incall->tso) {
debugBelch("bound to thread %lu",
(unsigned long)task->incall->tso->id);
} else {
debugBelch("worker");
}
}
debugBelch("\n");
}
}
#endif
|