summaryrefslogtreecommitdiff
path: root/rts/Task.c
blob: ac86311844ea0f648a279ae058b4da66d0457e19 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team 2001-2005
 *
 * The task manager subsystem.  Tasks execute STG code, with this
 * module providing the API which the Scheduler uses to control their
 * creation and destruction.
 *
 * -------------------------------------------------------------------------*/

#include "PosixSource.h"
#include "Rts.h"

#include "RtsUtils.h"
#include "Task.h"
#include "Capability.h"
#include "Stats.h"
#include "Schedule.h"
#include "Hash.h"
#include "Trace.h"

#include <string.h>

#if HAVE_SIGNAL_H
#include <signal.h>
#endif

// Task lists and global counters.
// Locks required: all_tasks_mutex.
Task *all_tasks = NULL;

// current number of bound tasks + total number of worker tasks.
uint32_t taskCount;
uint32_t workerCount;
uint32_t currentWorkerCount;
uint32_t peakWorkerCount;

static int tasksInitialized = 0;

static void   freeTask  (Task *task);
static Task * newTask   (bool);

#if defined(THREADED_RTS)
Mutex all_tasks_mutex;
#endif

/* -----------------------------------------------------------------------------
 * Remembering the current thread's Task
 * -------------------------------------------------------------------------- */

// A thread-local-storage key that we can use to get access to the
// current thread's Task structure.
#if defined(THREADED_RTS)
# if defined(MYTASK_USE_TLV)
__thread Task *my_task;
# else
ThreadLocalKey currentTaskKey;
# endif
#else
Task *my_task;
#endif

/* -----------------------------------------------------------------------------
 * Rest of the Task API
 * -------------------------------------------------------------------------- */

void
initTaskManager (void)
{
    if (!tasksInitialized) {
        taskCount = 0;
        workerCount = 0;
        currentWorkerCount = 0;
        peakWorkerCount = 0;
        tasksInitialized = 1;
#if defined(THREADED_RTS)
#if !defined(MYTASK_USE_TLV)
        newThreadLocalKey(&currentTaskKey);
#endif
        initMutex(&all_tasks_mutex);
#endif
    }
}

uint32_t
freeTaskManager (void)
{
    Task *task, *next;
    uint32_t tasksRunning = 0;

    ACQUIRE_LOCK(&all_tasks_mutex);

    for (task = all_tasks; task != NULL; task = next) {
        next = task->all_next;
        if (task->stopped) {
            freeTask(task);
        } else {
            tasksRunning++;
        }
    }

    debugTrace(DEBUG_sched, "freeing task manager, %d tasks still running",
               tasksRunning);

    all_tasks = NULL;

    RELEASE_LOCK(&all_tasks_mutex);

#if defined(THREADED_RTS)
    closeMutex(&all_tasks_mutex);
#if !defined(MYTASK_USE_TLV)
    freeThreadLocalKey(&currentTaskKey);
#endif
#endif

    tasksInitialized = 0;

    return tasksRunning;
}

Task* getTask (void)
{
    Task *task;

    task = myTask();
    if (task != NULL) {
        return task;
    } else {
        task = newTask(false);
#if defined(THREADED_RTS)
        task->id = osThreadId();
#endif
        setMyTask(task);
        return task;
    }
}

void freeMyTask (void)
{
    Task *task;

    task = myTask();

    if (task == NULL) return;

    if (!task->stopped) {
        errorBelch(
            "freeMyTask() called, but the Task is not stopped; ignoring");
        return;
    }

    if (task->worker) {
        errorBelch("freeMyTask() called on a worker; ignoring");
        return;
    }

    ACQUIRE_LOCK(&all_tasks_mutex);

    if (task->all_prev) {
        task->all_prev->all_next = task->all_next;
    } else {
        all_tasks = task->all_next;
    }
    if (task->all_next) {
        task->all_next->all_prev = task->all_prev;
    }

    taskCount--;

    RELEASE_LOCK(&all_tasks_mutex);

    freeTask(task);
    setMyTask(NULL);
}

static void
freeTask (Task *task)
{
    InCall *incall, *next;

    // We only free resources if the Task is not in use.  A
    // Task may still be in use if we have a Haskell thread in
    // a foreign call while we are attempting to shut down the
    // RTS (see conc059).
#if defined(THREADED_RTS)
    closeCondition(&task->cond);
    closeMutex(&task->lock);
#endif

    for (incall = task->incall; incall != NULL; incall = next) {
        next = incall->prev_stack;
        stgFree(incall);
    }
    for (incall = task->spare_incalls; incall != NULL; incall = next) {
        next = incall->next;
        stgFree(incall);
    }

    stgFree(task);
}

/* Must take all_tasks_mutex */
static Task*
newTask (bool worker)
{
    Task *task;

#define ROUND_TO_CACHE_LINE(x) ((((x)+63) / 64) * 64)
    task = stgMallocBytes(ROUND_TO_CACHE_LINE(sizeof(Task)), "newTask");

    task->cap           = NULL;
    task->worker        = worker;
    task->stopped       = true;
    task->running_finalizers = false;
    task->n_spare_incalls = 0;
    task->spare_incalls = NULL;
    task->incall        = NULL;
    task->preferred_capability = -1;

#if defined(THREADED_RTS)
    initCondition(&task->cond);
    initMutex(&task->lock);
    task->wakeup = false;
    task->node = 0;
#endif

    task->next = NULL;

    ACQUIRE_LOCK(&all_tasks_mutex);

    task->all_prev = NULL;
    task->all_next = all_tasks;
    if (all_tasks != NULL) {
        all_tasks->all_prev = task;
    }
    all_tasks = task;

    taskCount++;
    if (worker) {
        workerCount++;
        currentWorkerCount++;
        if (currentWorkerCount > peakWorkerCount) {
            peakWorkerCount = currentWorkerCount;
        }
    }
    RELEASE_LOCK(&all_tasks_mutex);

    return task;
}

// avoid the spare_incalls list growing unboundedly
#define MAX_SPARE_INCALLS 8

static void
newInCall (Task *task)
{
    InCall *incall;

    if (task->spare_incalls != NULL) {
        incall = task->spare_incalls;
        task->spare_incalls = incall->next;
        task->n_spare_incalls--;
    } else {
        incall = stgMallocBytes((sizeof(InCall)), "newInCall");
    }

    incall->tso = NULL;
    incall->task = task;
    incall->suspended_tso = NULL;
    incall->suspended_cap = NULL;
    incall->rstat         = NoStatus;
    incall->ret           = NULL;
    incall->next = NULL;
    incall->prev = NULL;
    incall->prev_stack = task->incall;
    task->incall = incall;
}

static void
endInCall (Task *task)
{
    InCall *incall;

    incall = task->incall;
    incall->tso = NULL;
    task->incall = task->incall->prev_stack;

    if (task->n_spare_incalls >= MAX_SPARE_INCALLS) {
        stgFree(incall);
    } else {
        incall->next = task->spare_incalls;
        task->spare_incalls = incall;
        task->n_spare_incalls++;
    }
}


Task *
newBoundTask (void)
{
    Task *task;

    if (!tasksInitialized) {
        errorBelch("newBoundTask: RTS is not initialised; call hs_init() first");
        stg_exit(EXIT_FAILURE);
    }

    task = getTask();

    task->stopped = false;

    newInCall(task);

    debugTrace(DEBUG_sched, "new task (taskCount: %d)", taskCount);
    return task;
}

void
boundTaskExiting (Task *task)
{
#if defined(THREADED_RTS)
    ASSERT(osThreadId() == task->id);
#endif
    ASSERT(myTask() == task);

    endInCall(task);

    // Set task->stopped, but only if this is the last call (#4850).
    // Remember that we might have a worker Task that makes a foreign
    // call and then a callback, so it can transform into a bound
    // Task for the duration of the callback.
    if (task->incall == NULL) {
        task->stopped = true;
    }

    debugTrace(DEBUG_sched, "task exiting");
}


#if defined(THREADED_RTS)
#define TASK_ID(t) (t)->id
#else
#define TASK_ID(t) (t)
#endif

void
discardTasksExcept (Task *keep)
{
    Task *task, *next;

    // Wipe the task list, except the current Task.
    ACQUIRE_LOCK(&all_tasks_mutex);
    for (task = all_tasks; task != NULL; task=next) {
        next = task->all_next;
        if (task != keep) {
            debugTrace(DEBUG_sched, "discarding task %" FMT_SizeT "", (size_t)TASK_ID(task));
#if defined(THREADED_RTS)
            // It is possible that some of these tasks are currently blocked
            // (in the parent process) either on their condition variable
            // `cond` or on their mutex `lock`. If they are we may deadlock
            // when `freeTask` attempts to call `closeCondition` or
            // `closeMutex` (the behaviour of these functions is documented to
            // be undefined in the case that there are threads blocked on
            // them). To avoid this, we re-initialize both the condition
            // variable and the mutex before calling `freeTask` (we do
            // precisely the same for all global locks in `forkProcess`).
            initCondition(&task->cond);
            initMutex(&task->lock);
#endif

            // Note that we do not traceTaskDelete here because
            // we are not really deleting a task.
            // The OS threads for all these tasks do not exist in
            // this process (since we're currently
            // in the child of a forkProcess).
            freeTask(task);
        }
    }
    all_tasks = keep;
    keep->all_next = NULL;
    keep->all_prev = NULL;
    RELEASE_LOCK(&all_tasks_mutex);
}

#if defined(THREADED_RTS)

void
workerTaskStop (Task *task)
{
    DEBUG_ONLY( OSThreadId id );
    DEBUG_ONLY( id = osThreadId() );
    ASSERT(task->id == id);
    ASSERT(myTask() == task);

    ACQUIRE_LOCK(&all_tasks_mutex);

    if (task->all_prev) {
        task->all_prev->all_next = task->all_next;
    } else {
        all_tasks = task->all_next;
    }
    if (task->all_next) {
        task->all_next->all_prev = task->all_prev;
    }

    currentWorkerCount--;

    RELEASE_LOCK(&all_tasks_mutex);

    traceTaskDelete(task);

    freeTask(task);
}

#endif

#if defined(THREADED_RTS)

static void* OSThreadProcAttr
workerStart(Task *task)
{
    Capability *cap;

    // See startWorkerTask().
    ACQUIRE_LOCK(&task->lock);
    cap = task->cap;
    RELEASE_LOCK(&task->lock);

    if (RtsFlags.ParFlags.setAffinity) {
        setThreadAffinity(cap->no, n_capabilities);
    }
    if (RtsFlags.GcFlags.numa && !RtsFlags.DebugFlags.numa) {
        setThreadNode(numa_map[task->node]);
    }

    // set the thread-local pointer to the Task:
    setMyTask(task);

    newInCall(task);

    // Everything set up; emit the event before the worker starts working.
    traceTaskCreate(task, cap);

    scheduleWorker(cap,task);

    return NULL;
}

/* N.B. must take all_tasks_mutex */
void
startWorkerTask (Capability *cap)
{
  int r;
  OSThreadId tid;
  Task *task;

  // A worker always gets a fresh Task structure.
  task = newTask(true);
  task->stopped = false;

  // The lock here is to synchronise with taskStart(), to make sure
  // that we have finished setting up the Task structure before the
  // worker thread reads it.
  ACQUIRE_LOCK(&task->lock);

  // We don't emit a task creation event here, but in workerStart,
  // where the kernel thread id is known.
  task->cap = cap;
  task->node = cap->node;

  // Give the capability directly to the worker; we can't let anyone
  // else get in, because the new worker Task has nowhere to go to
  // sleep so that it could be woken up again.
  ASSERT_LOCK_HELD(&cap->lock);
  cap->running_task = task;

  // Set the name of the worker thread to the original process name followed by
  // ":w", but only if we're on Linux where the program_invocation_short_name
  // global is available.
#if defined(linux_HOST_OS)
  size_t procname_len = strlen(program_invocation_short_name);
  char worker_name[16];
  // The kernel only allocates 16 bytes for thread names, so we truncate if the
  // original name is too long. Process names go in another table that has more
  // capacity.
  if (procname_len >= 13) {
      strncpy(worker_name, program_invocation_short_name, 13);
      strcpy(worker_name + 13, ":w");
  } else {
      strcpy(worker_name, program_invocation_short_name);
      strcpy(worker_name + procname_len, ":w");
  }
#else
  char * worker_name = "ghc_worker";
#endif
  r = createOSThread(&tid, worker_name, (OSThreadProc*)workerStart, task);
  if (r != 0) {
    sysErrorBelch("failed to create OS thread");
    stg_exit(EXIT_FAILURE);
  }

  debugTrace(DEBUG_sched, "new worker task (taskCount: %d)", taskCount);

  task->id = tid;

  // ok, finished with the Task struct.
  RELEASE_LOCK(&task->lock);
}

void
interruptWorkerTask (Task *task)
{
  ASSERT(osThreadId() != task->id);    // seppuku not allowed
  ASSERT(task->incall->suspended_tso); // use this only for FFI calls
  interruptOSThread(task->id);
  debugTrace(DEBUG_sched, "interrupted worker task %#" FMT_HexWord64,
             serialisableTaskId(task));
}

#endif /* THREADED_RTS */

void rts_setInCallCapability (
    int preferred_capability,
    int affinity USED_IF_THREADS)
{
    Task *task = getTask();
    task->preferred_capability = preferred_capability;

#if defined(THREADED_RTS)
    if (affinity) {
        if (RtsFlags.ParFlags.setAffinity) {
            setThreadAffinity(preferred_capability, n_capabilities);
        }
    }
#endif
}

void rts_pinThreadToNumaNode (
    int node USED_IF_THREADS)
{
#if defined(THREADED_RTS)
    if (RtsFlags.GcFlags.numa) {
        Task *task = getTask();
        task->node = capNoToNumaNode(node);
        if (!DEBUG_IS_ON || !RtsFlags.DebugFlags.numa) { // faking NUMA
            setThreadNode(numa_map[task->node]);
        }
    }
#endif
}

#if defined(DEBUG)

void printAllTasks(void);

void
printAllTasks(void)
{
    Task *task;
    for (task = all_tasks; task != NULL; task = task->all_next) {
        debugBelch("task %#" FMT_HexWord64 " is %s, ", serialisableTaskId(task),
                   task->stopped ? "stopped" : "alive");
        if (!task->stopped) {
            if (task->cap) {
                debugBelch("on capability %d, ", task->cap->no);
            }
            if (task->incall->tso) {
              debugBelch("bound to thread %lu",
                         (unsigned long)task->incall->tso->id);
            } else {
                debugBelch("worker");
            }
        }
        debugBelch("\n");
    }
}

#endif