1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team 1998-2006
*
* Tidying up a thread when it stops running
*
* ---------------------------------------------------------------------------*/
// #include "PosixSource.h"
#include "Rts.h"
#include "ThreadPaused.h"
#include "sm/Storage.h"
#include "Updates.h"
#include "RaiseAsync.h"
#include "Trace.h"
#include "Threads.h"
#include <string.h> // for memmove()
/* -----------------------------------------------------------------------------
* Stack squeezing
*
* Code largely pinched from old RTS, then hacked to bits. We also do
* lazy black holing here.
*
* -------------------------------------------------------------------------- */
struct stack_gap { StgWord gap_size; struct stack_gap *next_gap; };
static struct stack_gap *
updateAdjacentFrames (Capability *cap, StgTSO *tso,
StgUpdateFrame *upd, nat count, struct stack_gap *next)
{
StgClosure *updatee;
struct stack_gap *gap;
nat i;
// The first one (highest address) is the frame we take the
// "master" updatee from; all the others will be made indirections
// to this one. It is essential that we do it this way around: we
// used to make the lowest-addressed frame the "master" frame and
// shuffle it down, but a bad case cropped up (#5505) where this
// happened repeatedly, generating a chain of indirections which
// the GC repeatedly traversed (indirection chains longer than one
// are not supposed to happen). So now after identifying a block
// of adjacent update frames we walk downwards again updating them
// all to point to the highest one, before squeezing out all but
// the highest one.
updatee = upd->updatee;
count--;
upd--;
gap = (struct stack_gap*)upd;
for (i = count; i > 0; i--, upd--) {
/*
* Check two things: that the two update frames
* don't point to the same object, and that the
* updatee_bypass isn't already an indirection.
* Both of these cases only happen when we're in a
* block hole-style loop (and there are multiple
* update frames on the stack pointing to the same
* closure), but they can both screw us up if we
* don't check.
*/
if (upd->updatee != updatee && !closure_IND(upd->updatee)) {
updateThunk(cap, tso, upd->updatee, updatee);
}
}
gap->gap_size = count * sizeofW(StgUpdateFrame);
gap->next_gap = next;
return gap;
}
static void
stackSqueeze(Capability *cap, StgTSO *tso, StgPtr bottom)
{
StgPtr frame;
nat adjacent_update_frames;
struct stack_gap *gap;
// Stage 1:
// Traverse the stack upwards, replacing adjacent update frames
// with a single update frame and a "stack gap". A stack gap
// contains two values: the size of the gap, and the distance
// to the next gap (or the stack top).
frame = tso->stackobj->sp;
ASSERT(frame < bottom);
adjacent_update_frames = 0;
gap = (struct stack_gap *) (frame - sizeofW(StgUpdateFrame));
while (frame <= bottom)
{
switch (get_ret_itbl((StgClosure *)frame)->i.type) {
case UPDATE_FRAME:
{
if (adjacent_update_frames > 0) {
TICK_UPD_SQUEEZED();
}
adjacent_update_frames++;
frame += sizeofW(StgUpdateFrame);
continue;
}
default:
// we're not in a gap... check whether this is the end of a gap
// (an update frame can't be the end of a gap).
if (adjacent_update_frames > 1) {
gap = updateAdjacentFrames(cap, tso,
(StgUpdateFrame*)(frame - sizeofW(StgUpdateFrame)),
adjacent_update_frames, gap);
}
adjacent_update_frames = 0;
frame += stack_frame_sizeW((StgClosure *)frame);
continue;
}
}
if (adjacent_update_frames > 1) {
gap = updateAdjacentFrames(cap, tso,
(StgUpdateFrame*)(frame - sizeofW(StgUpdateFrame)),
adjacent_update_frames, gap);
}
// Now we have a stack with gaps in it, and we have to walk down
// shoving the stack up to fill in the gaps. A diagram might
// help:
//
// +| ********* |
// | ********* | <- sp
// | |
// | | <- gap_start
// | ......... | |
// | stack_gap | <- gap | chunk_size
// | ......... | |
// | ......... | <- gap_end v
// | ********* |
// | ********* |
// | ********* |
// -| ********* |
//
// 'sp' points the the current top-of-stack
// 'gap' points to the stack_gap structure inside the gap
// ***** indicates real stack data
// ..... indicates gap
// <empty> indicates unused
//
{
StgWord8 *sp;
StgWord8 *gap_start, *next_gap_start, *gap_end;
nat chunk_size;
next_gap_start = (StgWord8*)gap + sizeof(StgUpdateFrame);
sp = next_gap_start;
while ((StgPtr)gap > tso->stackobj->sp) {
// we're working in *bytes* now...
gap_start = next_gap_start;
gap_end = gap_start - gap->gap_size * sizeof(W_);
gap = gap->next_gap;
next_gap_start = (StgWord8*)gap + sizeof(StgUpdateFrame);
chunk_size = gap_end - next_gap_start;
sp -= chunk_size;
memmove(sp, next_gap_start, chunk_size);
}
tso->stackobj->sp = (StgPtr)sp;
}
}
/* -----------------------------------------------------------------------------
* Pausing a thread
*
* We have to prepare for GC - this means doing lazy black holing
* here. We also take the opportunity to do stack squeezing if it's
* turned on.
* -------------------------------------------------------------------------- */
void
threadPaused(Capability *cap, StgTSO *tso)
{
StgClosure *frame;
StgRetInfoTable *info;
const StgInfoTable *bh_info;
const StgInfoTable *cur_bh_info USED_IF_THREADS;
StgClosure *bh;
StgPtr stack_end;
nat words_to_squeeze = 0;
nat weight = 0;
nat weight_pending = 0;
rtsBool prev_was_update_frame = rtsFalse;
// Check to see whether we have threads waiting to raise
// exceptions, and we're not blocking exceptions, or are blocked
// interruptibly. This is important; if a thread is running with
// TSO_BLOCKEX and becomes blocked interruptibly, this is the only
// place we ensure that the blocked_exceptions get a chance.
maybePerformBlockedException (cap, tso);
if (tso->what_next == ThreadKilled) { return; }
// NB. Blackholing is *compulsory*, we must either do lazy
// blackholing, or eager blackholing consistently. See Note
// [upd-black-hole] in sm/Scav.c.
stack_end = tso->stackobj->stack + tso->stackobj->stack_size;
frame = (StgClosure *)tso->stackobj->sp;
while ((P_)frame < stack_end) {
info = get_ret_itbl(frame);
switch (info->i.type) {
case UPDATE_FRAME:
// If we've already marked this frame, then stop here.
if (frame->header.info == (StgInfoTable *)&stg_marked_upd_frame_info) {
if (prev_was_update_frame) {
words_to_squeeze += sizeofW(StgUpdateFrame);
weight += weight_pending;
weight_pending = 0;
}
goto end;
}
SET_INFO(frame, (StgInfoTable *)&stg_marked_upd_frame_info);
bh = ((StgUpdateFrame *)frame)->updatee;
bh_info = bh->header.info;
#ifdef THREADED_RTS
retry:
#endif
// If the info table is a WHITEHOLE or a BLACKHOLE, then
// another thread has claimed it (via the SET_INFO()
// below), or is in the process of doing so. In that case
// we want to suspend the work that the current thread has
// done on this thunk and wait until the other thread has
// finished.
//
// If eager blackholing is taking place, it could be the
// case that the blackhole points to the current
// TSO. e.g.:
//
// this thread other thread
// --------------------------------------------------------
// c->indirectee = other_tso;
// c->header.info = EAGER_BH
// threadPaused():
// c->header.info = WHITEHOLE
// c->indirectee = other_tso
// c->indirectee = this_tso;
// c->header.info = EAGER_BH
// c->header.info = BLACKHOLE
// threadPaused()
// *** c->header.info is now BLACKHOLE,
// c->indirectee points to this_tso
//
// So in this case do *not* suspend the work of the
// current thread, because the current thread will become
// deadlocked on itself. See #5226 for an instance of
// this bug.
//
if ((bh_info == &stg_WHITEHOLE_info ||
bh_info == &stg_BLACKHOLE_info)
&&
((StgInd*)bh)->indirectee != (StgClosure*)tso)
{
debugTrace(DEBUG_squeeze,
"suspending duplicate work: %ld words of stack",
(long)((StgPtr)frame - tso->stackobj->sp));
// If this closure is already an indirection, then
// suspend the computation up to this point.
// NB. check raiseAsync() to see what happens when
// we're in a loop (#2783).
suspendComputation(cap,tso,(StgUpdateFrame*)frame);
// Now drop the update frame, and arrange to return
// the value to the frame underneath:
tso->stackobj->sp = (StgPtr)frame + sizeofW(StgUpdateFrame) - 2;
tso->stackobj->sp[1] = (StgWord)bh;
ASSERT(bh->header.info != &stg_TSO_info);
tso->stackobj->sp[0] = (W_)&stg_enter_info;
// And continue with threadPaused; there might be
// yet more computation to suspend.
frame = (StgClosure *)(tso->stackobj->sp + 2);
prev_was_update_frame = rtsFalse;
continue;
}
// zero out the slop so that the sanity checker can tell
// where the next closure is.
OVERWRITING_CLOSURE(bh);
// an EAGER_BLACKHOLE or CAF_BLACKHOLE gets turned into a
// BLACKHOLE here.
#ifdef THREADED_RTS
// first we turn it into a WHITEHOLE to claim it, and if
// successful we write our TSO and then the BLACKHOLE info pointer.
cur_bh_info = (const StgInfoTable *)
cas((StgVolatilePtr)&bh->header.info,
(StgWord)bh_info,
(StgWord)&stg_WHITEHOLE_info);
if (cur_bh_info != bh_info) {
bh_info = cur_bh_info;
goto retry;
}
#endif
// The payload of the BLACKHOLE points to the TSO
((StgInd *)bh)->indirectee = (StgClosure *)tso;
write_barrier();
SET_INFO(bh,&stg_BLACKHOLE_info);
// .. and we need a write barrier, since we just mutated the closure:
recordClosureMutated(cap,bh);
// We pretend that bh has just been created.
LDV_RECORD_CREATE(bh);
frame = (StgClosure *) ((StgUpdateFrame *)frame + 1);
if (prev_was_update_frame) {
words_to_squeeze += sizeofW(StgUpdateFrame);
weight += weight_pending;
weight_pending = 0;
}
prev_was_update_frame = rtsTrue;
break;
case UNDERFLOW_FRAME:
case STOP_FRAME:
goto end;
// normal stack frames; do nothing except advance the pointer
default:
{
nat frame_size = stack_frame_sizeW(frame);
weight_pending += frame_size;
frame = (StgClosure *)((StgPtr)frame + frame_size);
prev_was_update_frame = rtsFalse;
}
}
}
end:
debugTrace(DEBUG_squeeze,
"words_to_squeeze: %d, weight: %d, squeeze: %s",
words_to_squeeze, weight,
((weight <= 8 && words_to_squeeze > 0) || weight < words_to_squeeze) ? "YES" : "NO");
// Should we squeeze or not? Arbitrary heuristic: we squeeze if
// the number of words we have to shift down is less than the
// number of stack words we squeeze away by doing so.
if (RtsFlags.GcFlags.squeezeUpdFrames == rtsTrue &&
((weight <= 8 && words_to_squeeze > 0) || weight < words_to_squeeze)) {
// threshold above bumped from 5 to 8 as a result of #2797
stackSqueeze(cap, tso, (StgPtr)frame);
tso->flags |= TSO_SQUEEZED;
// This flag tells threadStackOverflow() that the stack was
// squeezed, because it may not need to be expanded.
} else {
tso->flags &= ~TSO_SQUEEZED;
}
}
|