1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1995-2005
*
* Interval timer service for profiling and pre-emptive scheduling.
*
* ---------------------------------------------------------------------------*/
/*
* The interval timer is used for profiling and for context switching in the
* threaded build.
*
* This file defines the platform-independent view of interval timing, relying
* on platform-specific services to install and run the timers.
*
*/
#include "PosixSource.h"
#include "Rts.h"
#include "Timer.h"
#include "Proftimer.h"
#include "Schedule.h"
#include "Ticker.h"
#include "Capability.h"
#include "RtsSignals.h"
// This global counter is used to allow multiple threads to stop the
// timer temporarily with a stopTimer()/startTimer() pair. If
// timer_enabled == 0 timer is enabled
// timer_disabled == N, N > 0 timer is disabled by N threads
// When timer_enabled makes a transition to 0, we enable the timer,
// and when it makes a transition to non-0 we disable it.
static StgWord timer_disabled;
/* ticks left before next pre-emptive context switch */
static int ticks_to_ctxt_switch = 0;
/*
Note [GC During Idle Time]
--------------------------
In the threaded RTS, a major GC can be performed during idle time (i.e., when
no Haskell computations are ready to run). This can be beneficial for two
reasons. First, running the GC during idle time makes it less likely that a GC
will be triggered when the process is active, increasing apparent
responsiveness. Second, these idle time GCs allow finalizers to run,
preventing resources from being held indefinitely when the process is otherwise
idle for extended periods.
There are two runtime RTS options to control idle time GC timing. The primary
control is set by `-I<n>`, which specifies the minimum period of time the
process must be idle before a GC is automatically triggered. It defaults to
0.3 seconds for the threaded runtime and 0 (which disables idle GC entirely)
for the non-threaded runtime. For certain workflows, the 0.3 second delay for
the threaded RTS may be too small. If an application must process an extended
burst of short-lived requests occurring a couple of times a second, it may go
idle for >0.3 seconds frequently, resulting in potentially dozens of major
GCs triggered every minute (and resulting heavy CPU load) while the burst
lasts. Setting the `-I<n>` value higher will prevent this flurry of major GCs,
though there is a danger that setting the value too high will prevent automatic
GCs entirely, if the process never gets a chance to go idle for long enough to
meet the larger threshold.
In this case, the second control, set by `-Iw<n>` may be helpful. For example,
setting `-I0.3 -Iw30` triggers automatic GCs after only 0.3 seconds of idle
time, but subject to a minimum delay *between* automatic GCs of at least 30
seconds. This is likely to work well for applications that must process a
nearly constant stream of frequent, short-lived requests, ensuring that
automatic GCs are triggered promptly when the process goes idle while limiting
the overall frequency of such GCs. (The default is `-Iw0`, meaning no limit on
frequency of GCs.)
Automatic GC timing is implemented below using two count-down timers. The
`idle_ticks_to_gc` timer counts down the `-I<n>` setting: it is initialized
when the process goes idle and counts down idle time before an automatic GC
becomes possible. The `inter_gc_ticks_to_gc` counts down the `-Iw<n>` setting:
it is initialized when an automatic GC is actually performed, and holds off the
next automatic GC until its count expires, limiting the overall frequency of
automatic GCs. Both timers must expire before an automatic GC is triggered.
See issue #11134 for additional detail.
*/
/* - countdown for minimum idle time before we start a GC (set by -I) */
static int idle_ticks_to_gc = 0;
/* - countdown for minimum time *between* idle GCs (set by -Iw) */
static int inter_gc_ticks_to_gc = 0;
/*
* Function: handle_tick()
*
* At each occurrence of a tick, the OS timer will invoke
* handle_tick().
*/
static
void
handle_tick(int unused STG_UNUSED)
{
handleProfTick();
if (RtsFlags.ConcFlags.ctxtSwitchTicks > 0
&& SEQ_CST_LOAD(&timer_disabled) == 0)
{
ticks_to_ctxt_switch--;
if (ticks_to_ctxt_switch <= 0) {
ticks_to_ctxt_switch = RtsFlags.ConcFlags.ctxtSwitchTicks;
contextSwitchAllCapabilities(); /* schedule a context switch */
}
}
/*
* If we've been inactive for idleGCDelayTime (set by +RTS
* -I), tell the scheduler to wake up and do a GC, to check
* for threads that are deadlocked. However, ensure we wait
* at least interIdleGCWait (+RTS -Iw) between idle GCs.
*/
switch (SEQ_CST_LOAD(&recent_activity)) {
case ACTIVITY_YES:
SEQ_CST_STORE(&recent_activity, ACTIVITY_MAYBE_NO);
idle_ticks_to_gc = RtsFlags.GcFlags.idleGCDelayTime /
RtsFlags.MiscFlags.tickInterval;
break;
case ACTIVITY_MAYBE_NO:
if (idle_ticks_to_gc == 0 && inter_gc_ticks_to_gc == 0) {
if (RtsFlags.GcFlags.doIdleGC) {
SEQ_CST_STORE(&recent_activity, ACTIVITY_INACTIVE);
inter_gc_ticks_to_gc = RtsFlags.GcFlags.interIdleGCWait /
RtsFlags.MiscFlags.tickInterval;
#if defined(THREADED_RTS)
wakeUpRts();
// The scheduler will call stopTimer() when it has done
// the GC.
#endif
} else {
SEQ_CST_STORE(&recent_activity, ACTIVITY_DONE_GC);
// disable timer signals (see #1623, #5991, #9105)
// but only if we're not profiling (e.g. passed -h or -p RTS
// flags). If we are profiling we need to keep the timer active
// so that samples continue to be collected.
#if defined(PROFILING)
if (!(RtsFlags.ProfFlags.doHeapProfile
|| RtsFlags.CcFlags.doCostCentres)) {
stopTimer();
}
#else
stopTimer();
#endif
}
} else {
if (idle_ticks_to_gc) idle_ticks_to_gc--;
if (inter_gc_ticks_to_gc) inter_gc_ticks_to_gc--;
}
break;
default:
break;
}
}
void
initTimer(void)
{
initProfTimer();
if (RtsFlags.MiscFlags.tickInterval != 0) {
initTicker(RtsFlags.MiscFlags.tickInterval, handle_tick);
}
SEQ_CST_STORE(&timer_disabled, 1);
}
void
startTimer(void)
{
if (atomic_dec(&timer_disabled) == 0) {
if (RtsFlags.MiscFlags.tickInterval != 0) {
startTicker();
}
}
}
void
stopTimer(void)
{
if (atomic_inc(&timer_disabled, 1) == 1) {
if (RtsFlags.MiscFlags.tickInterval != 0) {
stopTicker();
}
}
}
void
exitTimer (bool wait)
{
if (RtsFlags.MiscFlags.tickInterval != 0) {
exitTicker(wait);
}
}
|