1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
/* -----------------------------------------------------------------------------
* AMD64/Windows architecture adjustor thunk logic.
* ---------------------------------------------------------------------------*/
#include "rts/PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
#include "StablePtr.h"
#if defined(LEADING_UNDERSCORE)
#define UNDERSCORE "_"
#else
#define UNDERSCORE ""
#endif
/*
Now here's something obscure for you:
When generating an adjustor thunk that uses the C calling
convention, we have to make sure that the thunk kicks off
the process of jumping into Haskell with a tail jump. Why?
Because as a result of jumping in into Haskell we may end
up freeing the very adjustor thunk we came from using
freeHaskellFunctionPtr(). Hence, we better not return to
the adjustor code on our way out, since it could by then
point to junk.
The fix is readily at hand, just include the opcodes
for the C stack fixup code that we need to perform when
returning in some static piece of memory and arrange
to return to it before tail jumping from the adjustor thunk.
*/
static void GNUC3_ATTRIBUTE(used) obscure_ccall_wrapper(void)
{
__asm__ (
".globl " UNDERSCORE "obscure_ccall_ret_code\n"
UNDERSCORE "obscure_ccall_ret_code:\n\t"
"addq $0x8, %rsp\n\t"
/* On Win64, we had to put the original return address after the
arg 1-4 spill slots, ro now we have to move it back */
"movq 0x20(%rsp), %rcx\n"
"movq %rcx, (%rsp)\n"
"ret"
);
}
extern void obscure_ccall_ret_code(void);
void initAdjustors() { }
void*
createAdjustor(int cconv, StgStablePtr hptr,
StgFunPtr wptr,
char *typeString
)
{
switch (cconv)
{
case 1: /* _ccall */
/*
stack at call:
argn
...
arg5
return address
%rcx,%rdx,%r8,%r9 = arg1..arg4
if there are <4 integer args, then we can just push the
StablePtr into %rcx and shuffle the other args up.
If there are >=4 integer args, then we have to flush one arg
to the stack, and arrange to adjust the stack ptr on return.
The stack will be rearranged to this:
argn
...
arg5
return address *** <-- dummy arg in stub fn.
arg4
obscure_ccall_ret_code
This unfortunately means that the type of the stub function
must have a dummy argument for the original return address
pointer inserted just after the 4th integer argument.
Code for the simple case:
0: 4d 89 c1 mov %r8,%r9
3: 49 89 d0 mov %rdx,%r8
6: 48 89 ca mov %rcx,%rdx
9: f2 0f 10 da movsd %xmm2,%xmm3
d: f2 0f 10 d1 movsd %xmm1,%xmm2
11: f2 0f 10 c8 movsd %xmm0,%xmm1
15: 48 8b 0d 0c 00 00 00 mov 0xc(%rip),%rcx # 28 <.text+0x28>
1c: ff 25 0e 00 00 00 jmpq *0xe(%rip) # 30 <.text+0x30>
22: 90 nop
[...]
And the version for >=4 integer arguments:
[we want to push the 4th argument (either %r9 or %xmm3, depending on
whether it is a floating arg or not) and the return address onto the
stack. However, slots 1-4 are reserved for code we call to spill its
args 1-4 into, so we can't just push them onto the bottom of the stack.
So first put the 4th argument onto the stack, above what will be the
spill slots.]
0: 48 83 ec 08 sub $0x8,%rsp
[if non-floating arg, then do this:]
4: 90 nop
5: 4c 89 4c 24 20 mov %r9,0x20(%rsp)
[else if floating arg then do this:]
4: f2 0f 11 5c 24 20 movsd %xmm3,0x20(%rsp)
[end if]
[Now push the new return address onto the stack]
a: ff 35 30 00 00 00 pushq 0x30(%rip) # 40 <.text+0x40>
[But the old return address has been moved up into a spill slot, so
we need to move it above them]
10: 4c 8b 4c 24 10 mov 0x10(%rsp),%r9
15: 4c 89 4c 24 30 mov %r9,0x30(%rsp)
[Now we do the normal register shuffle-up etc]
1a: 4d 89 c1 mov %r8,%r9
1d: 49 89 d0 mov %rdx,%r8
20: 48 89 ca mov %rcx,%rdx
23: f2 0f 10 da movsd %xmm2,%xmm3
27: f2 0f 10 d1 movsd %xmm1,%xmm2
2b: f2 0f 10 c8 movsd %xmm0,%xmm1
2f: 48 8b 0d 12 00 00 00 mov 0x12(%rip),%rcx # 48 <.text+0x48>
36: ff 25 14 00 00 00 jmpq *0x14(%rip) # 50 <.text+0x50>
3c: 90 nop
3d: 90 nop
3e: 90 nop
3f: 90 nop
[...]
*/
{
// determine whether we have 4 or more integer arguments,
// and therefore need to flush one to the stack.
if ((typeString[0] == '\0') ||
(typeString[1] == '\0') ||
(typeString[2] == '\0') ||
(typeString[3] == '\0')) {
ExecPage *page = allocateExecPage();
if (page == NULL) {
barf("createAdjustor: failed to allocate executable page\n");
}
StgWord8 *adj_code = (StgWord8*) page;
*(StgInt32 *)adj_code = 0x49c1894d;
*(StgInt32 *)(adj_code+0x4) = 0x8948d089;
*(StgInt32 *)(adj_code+0x8) = 0x100ff2ca;
*(StgInt32 *)(adj_code+0xc) = 0x100ff2da;
*(StgInt32 *)(adj_code+0x10) = 0x100ff2d1;
*(StgInt32 *)(adj_code+0x14) = 0x0d8b48c8;
*(StgInt32 *)(adj_code+0x18) = 0x0000000c;
*(StgInt32 *)(adj_code+0x1c) = 0x000e25ff;
*(StgInt32 *)(adj_code+0x20) = 0x00000000;
*(StgInt64 *)(adj_code+0x28) = (StgInt64)hptr;
*(StgInt64 *)(adj_code+0x30) = (StgInt64)wptr;
freezeExecPage(page);
return page;
}
else
{
bool fourthFloating = (typeString[3] == 'f' || typeString[3] == 'd');
ExecPage *page = allocateExecPage();
if (page == NULL) {
barf("createAdjustor: failed to allocate executable page\n");
}
StgWord8 *adj_code = (StgWord8*) page;
*(StgInt32 *)adj_code = 0x08ec8348;
*(StgInt32 *)(adj_code+0x4) = fourthFloating ? 0x5c110ff2
: 0x4c894c90;
*(StgInt32 *)(adj_code+0x8) = 0x35ff2024;
*(StgInt32 *)(adj_code+0xc) = 0x00000030;
*(StgInt32 *)(adj_code+0x10) = 0x244c8b4c;
*(StgInt32 *)(adj_code+0x14) = 0x4c894c10;
*(StgInt32 *)(adj_code+0x18) = 0x894d3024;
*(StgInt32 *)(adj_code+0x1c) = 0xd08949c1;
*(StgInt32 *)(adj_code+0x20) = 0xf2ca8948;
*(StgInt32 *)(adj_code+0x24) = 0xf2da100f;
*(StgInt32 *)(adj_code+0x28) = 0xf2d1100f;
*(StgInt32 *)(adj_code+0x2c) = 0x48c8100f;
*(StgInt32 *)(adj_code+0x30) = 0x00120d8b;
*(StgInt32 *)(adj_code+0x34) = 0x25ff0000;
*(StgInt32 *)(adj_code+0x38) = 0x00000014;
*(StgInt32 *)(adj_code+0x3c) = 0x90909090;
*(StgInt64 *)(adj_code+0x40) = (StgInt64)obscure_ccall_ret_code;
*(StgInt64 *)(adj_code+0x48) = (StgInt64)hptr;
*(StgInt64 *)(adj_code+0x50) = (StgInt64)wptr;
freezeExecPage(page);
return page;
}
}
default:
barf("createAdjustor: Unsupported calling convention");
break;
}
}
void freeHaskellFunctionPtr(void* ptr)
{
if ( *(StgWord16 *)ptr == 0x894d ) {
freeStablePtr(*(StgStablePtr*)((StgWord8*)ptr+0x28));
} else if ( *(StgWord16 *)ptr == 0x8348 ) {
freeStablePtr(*(StgStablePtr*)((StgWord8*)ptr+0x48));
} else {
errorBelch("freeHaskellFunctionPtr: not for me, guv! %p\n", ptr);
return;
}
freeExecPage((ExecPage *) ptr);
}
|