summaryrefslogtreecommitdiff
path: root/rts/gmp/mpn/generic/mul_fft.c
blob: 00fd6d72dec091eface831fbc0842cbb94d38e3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
/* An implementation in GMP of Scho"nhage's fast multiplication algorithm
   modulo 2^N+1, by Paul Zimmermann, INRIA Lorraine, February 1998.

   THE CONTENTS OF THIS FILE ARE FOR INTERNAL USE AND THE FUNCTIONS HAVE
   MUTABLE INTERFACES.  IT IS ONLY SAFE TO REACH THEM THROUGH DOCUMENTED
   INTERFACES.  IT IS ALMOST GUARANTEED THAT THEY'LL CHANGE OR DISAPPEAR IN
   A FUTURE GNU MP RELEASE.

Copyright (C) 1998, 1999, 2000 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */


/* References:

   Schnelle Multiplikation grosser Zahlen, by Arnold Scho"nhage and Volker
   Strassen, Computing 7, p. 281-292, 1971.

   Asymptotically fast algorithms for the numerical multiplication
   and division of polynomials with complex coefficients, by Arnold Scho"nhage,
   Computer Algebra, EUROCAM'82, LNCS 144, p. 3-15, 1982.

   Tapes versus Pointers, a study in implementing fast algorithms,
   by Arnold Scho"nhage, Bulletin of the EATCS, 30, p. 23-32, 1986.

   See also http://www.loria.fr/~zimmerma/bignum


   Future:

   K==2 isn't needed in the current uses of this code and the bits specific
   for that could be dropped.

   It might be possible to avoid a small number of MPN_COPYs by using a
   rotating temporary or two.

   Multiplications of unequal sized operands can be done with this code, but
   it needs a tighter test for identifying squaring (same sizes as well as
   same pointers).  */


#include <stdio.h>
#include "gmp.h"
#include "gmp-impl.h"


/* Change this to "#define TRACE(x) x" for some traces. */
#define TRACE(x)



FFT_TABLE_ATTRS mp_size_t mpn_fft_table[2][MPN_FFT_TABLE_SIZE] = {
  FFT_MUL_TABLE,
  FFT_SQR_TABLE
};


static void mpn_mul_fft_internal
_PROTO ((mp_limb_t *op, mp_srcptr n, mp_srcptr m, mp_size_t pl,
         int k, int K,
         mp_limb_t **Ap, mp_limb_t **Bp,
         mp_limb_t *A, mp_limb_t *B,
         mp_size_t nprime, mp_size_t l, mp_size_t Mp, int **_fft_l,
         mp_limb_t *T, int rec));


/* Find the best k to use for a mod 2^(n*BITS_PER_MP_LIMB)+1 FFT.
   sqr==0 if for a multiply, sqr==1 for a square */
int
#if __STDC__
mpn_fft_best_k (mp_size_t n, int sqr)
#else
mpn_fft_best_k (n, sqr)
     mp_size_t n;
     int       sqr;
#endif
{
  mp_size_t  t;
  int        i;

  for (i = 0; mpn_fft_table[sqr][i] != 0; i++)
    if (n < mpn_fft_table[sqr][i])
      return i + FFT_FIRST_K;

  /* treat 4*last as one further entry */
  if (i == 0 || n < 4*mpn_fft_table[sqr][i-1])
    return i + FFT_FIRST_K;
  else
    return i + FFT_FIRST_K + 1;
}


/* Returns smallest possible number of limbs >= pl for a fft of size 2^k.
   FIXME: Is this simply pl rounded up to the next multiple of 2^k ?  */

mp_size_t
#if __STDC__
mpn_fft_next_size (mp_size_t pl, int k)
#else
mpn_fft_next_size (pl, k)
     mp_size_t pl;
     int       k;
#endif
{
  mp_size_t N, M;
  int       K;

  /*  if (k==0) k = mpn_fft_best_k (pl, sqr); */
  N = pl*BITS_PER_MP_LIMB;
  K = 1<<k;
  if (N%K) N=(N/K+1)*K;
  M = N/K;
  if (M%BITS_PER_MP_LIMB) N=((M/BITS_PER_MP_LIMB)+1)*BITS_PER_MP_LIMB*K;
  return (N/BITS_PER_MP_LIMB);
}


static void
#if __STDC__
mpn_fft_initl(int **l, int k)
#else
mpn_fft_initl(l, k)
     int  **l;
     int  k;
#endif
{
    int i,j,K;

    l[0][0] = 0;
    for (i=1,K=2;i<=k;i++,K*=2) {
	for (j=0;j<K/2;j++) {
	    l[i][j] = 2*l[i-1][j];
	    l[i][K/2+j] = 1+l[i][j];
	}
    }
}


/* a <- -a mod 2^(n*BITS_PER_MP_LIMB)+1 */
static void
#if __STDC__
mpn_fft_neg_modF(mp_limb_t *ap, mp_size_t n)
#else
mpn_fft_neg_modF(ap, n)
     mp_limb_t *ap;
     mp_size_t n;
#endif
{
  mp_limb_t c;

  c = ap[n]+2;
  mpn_com_n (ap, ap, n);
  ap[n]=0; mpn_incr_u(ap, c);
}


/* a <- a*2^e mod 2^(n*BITS_PER_MP_LIMB)+1 */
static void
#if __STDC__
mpn_fft_mul_2exp_modF(mp_limb_t *ap, int e, mp_size_t n, mp_limb_t *tp)
#else
mpn_fft_mul_2exp_modF(ap, e, n, tp)
     mp_limb_t *ap;
     int e;
     mp_size_t n;
     mp_limb_t *tp;
#endif
{
  int d, sh, i; mp_limb_t cc;

  d = e%(n*BITS_PER_MP_LIMB); /* 2^e = (+/-) 2^d */
  sh = d % BITS_PER_MP_LIMB;
  if (sh) mpn_lshift(tp, ap, n+1, sh); /* no carry here */
  else MPN_COPY(tp, ap, n+1);
  d /= BITS_PER_MP_LIMB; /* now shift of d limbs to the left */
 if (d) { 
   /* ap[d..n-1] = tp[0..n-d-1], ap[0..d-1] = -tp[n-d..n-1] */
   /* mpn_xor would be more efficient here */
   for (i=d-1;i>=0;i--) ap[i] = ~tp[n-d+i];
   cc = 1-mpn_add_1(ap, ap, d, 1);
   if (cc) cc=mpn_sub_1(ap+d, tp, n-d, 1);
   else MPN_COPY(ap+d, tp, n-d);
   if (cc+=mpn_sub_1(ap+d, ap+d, n-d, tp[n]))
     ap[n]=mpn_add_1(ap, ap, n, cc);
   else ap[n]=0;
  }
  else if ((ap[n]=mpn_sub_1(ap, tp, n, tp[n]))) {
    ap[n]=mpn_add_1(ap, ap, n, 1);
  }
  if ((e/(n*BITS_PER_MP_LIMB))%2) mpn_fft_neg_modF(ap, n);
}


/* a <- a+b mod 2^(n*BITS_PER_MP_LIMB)+1 */
static void
#if __STDC__
mpn_fft_add_modF (mp_limb_t *ap, mp_limb_t *bp, int n)
#else
mpn_fft_add_modF (ap, bp, n)
     mp_limb_t *ap,*bp;
     int n;
#endif
{
  mp_limb_t c;

  c = ap[n] + bp[n] + mpn_add_n(ap, ap, bp, n);
  if (c>1) c -= 1+mpn_sub_1(ap,ap,n,1);
  ap[n]=c;
}


/* input: A[0] ... A[inc*(K-1)] are residues mod 2^N+1 where
          N=n*BITS_PER_MP_LIMB 
          2^omega is a primitive root mod 2^N+1
   output: A[inc*l[k][i]] <- \sum (2^omega)^(ij) A[inc*j] mod 2^N+1 */

static void
#if __STDC__
mpn_fft_fft_sqr (mp_limb_t **Ap, mp_size_t K, int **ll,
                 mp_size_t omega, mp_size_t n, mp_size_t inc, mp_limb_t *tp)
#else
mpn_fft_fft_sqr(Ap,K,ll,omega,n,inc,tp)
mp_limb_t **Ap,*tp;
mp_size_t K,omega,n,inc;
int       **ll;
#endif
{
  if (K==2) {
#ifdef ADDSUB
      if (mpn_addsub_n(Ap[0], Ap[inc], Ap[0], Ap[inc], n+1) & 1)
#else
      MPN_COPY(tp, Ap[0], n+1);
      mpn_add_n(Ap[0], Ap[0], Ap[inc],n+1);
      if (mpn_sub_n(Ap[inc], tp, Ap[inc],n+1))
#endif
      	Ap[inc][n] = mpn_add_1(Ap[inc], Ap[inc], n, 1);
    }
    else {
      int       j, inc2=2*inc;
      int       *lk = *ll;
      mp_limb_t *tmp;
      TMP_DECL(marker);

      TMP_MARK(marker);
      tmp = TMP_ALLOC_LIMBS (n+1);
	mpn_fft_fft_sqr(Ap, K/2,ll-1,2*omega,n,inc2, tp);
	mpn_fft_fft_sqr(Ap+inc, K/2,ll-1,2*omega,n,inc2, tp);
	/* A[2*j*inc]   <- A[2*j*inc] + omega^l[k][2*j*inc] A[(2j+1)inc]
	   A[(2j+1)inc] <- A[2*j*inc] + omega^l[k][(2j+1)inc] A[(2j+1)inc] */
	for (j=0;j<K/2;j++,lk+=2,Ap+=2*inc) {
	  MPN_COPY(tp, Ap[inc], n+1);
	  mpn_fft_mul_2exp_modF(Ap[inc], lk[1]*omega, n, tmp);
	  mpn_fft_add_modF(Ap[inc], Ap[0], n);
	  mpn_fft_mul_2exp_modF(tp,lk[0]*omega, n, tmp);
	  mpn_fft_add_modF(Ap[0], tp, n);
	}
        TMP_FREE(marker);
    }
}


/* input: A[0] ... A[inc*(K-1)] are residues mod 2^N+1 where
          N=n*BITS_PER_MP_LIMB 
         2^omega is a primitive root mod 2^N+1 
   output: A[inc*l[k][i]] <- \sum (2^omega)^(ij) A[inc*j] mod 2^N+1 */

static void
#if __STDC__
mpn_fft_fft (mp_limb_t **Ap, mp_limb_t **Bp, mp_size_t K, int **ll,
             mp_size_t omega, mp_size_t n, mp_size_t inc, mp_limb_t *tp)
#else
mpn_fft_fft(Ap,Bp,K,ll,omega,n,inc,tp)
     mp_limb_t **Ap,**Bp,*tp;
     mp_size_t K,omega,n,inc;
     int       **ll;
#endif
{
  if (K==2) {
#ifdef ADDSUB
      if (mpn_addsub_n(Ap[0], Ap[inc], Ap[0], Ap[inc], n+1) & 1)
#else
      MPN_COPY(tp, Ap[0], n+1);
      mpn_add_n(Ap[0], Ap[0], Ap[inc],n+1);
      if (mpn_sub_n(Ap[inc], tp, Ap[inc],n+1))
#endif
      	Ap[inc][n] = mpn_add_1(Ap[inc], Ap[inc], n, 1);
#ifdef ADDSUB
      if (mpn_addsub_n(Bp[0], Bp[inc], Bp[0], Bp[inc], n+1) & 1)
#else
      MPN_COPY(tp, Bp[0], n+1);
      mpn_add_n(Bp[0], Bp[0], Bp[inc],n+1);
      if (mpn_sub_n(Bp[inc], tp, Bp[inc],n+1))
#endif
      	Bp[inc][n] = mpn_add_1(Bp[inc], Bp[inc], n, 1);
    }
    else {
	int       j, inc2=2*inc;
        int       *lk=*ll;
        mp_limb_t *tmp;
	TMP_DECL(marker);

	TMP_MARK(marker);
	tmp = TMP_ALLOC_LIMBS (n+1);
	mpn_fft_fft(Ap, Bp, K/2,ll-1,2*omega,n,inc2, tp);
	mpn_fft_fft(Ap+inc, Bp+inc, K/2,ll-1,2*omega,n,inc2, tp);
	/* A[2*j*inc]   <- A[2*j*inc] + omega^l[k][2*j*inc] A[(2j+1)inc]
	   A[(2j+1)inc] <- A[2*j*inc] + omega^l[k][(2j+1)inc] A[(2j+1)inc] */
	for (j=0;j<K/2;j++,lk+=2,Ap+=2*inc,Bp+=2*inc) {
	  MPN_COPY(tp, Ap[inc], n+1);
	  mpn_fft_mul_2exp_modF(Ap[inc], lk[1]*omega, n, tmp);
	  mpn_fft_add_modF(Ap[inc], Ap[0], n);
	  mpn_fft_mul_2exp_modF(tp,lk[0]*omega, n, tmp);
	  mpn_fft_add_modF(Ap[0], tp, n);
	  MPN_COPY(tp, Bp[inc], n+1);
	  mpn_fft_mul_2exp_modF(Bp[inc], lk[1]*omega, n, tmp);
	  mpn_fft_add_modF(Bp[inc], Bp[0], n);
	  mpn_fft_mul_2exp_modF(tp,lk[0]*omega, n, tmp);
	  mpn_fft_add_modF(Bp[0], tp, n);
	}
	TMP_FREE(marker);
    }
}


/* a[i] <- a[i]*b[i] mod 2^(n*BITS_PER_MP_LIMB)+1 for 0 <= i < K */
static void
#if __STDC__
mpn_fft_mul_modF_K (mp_limb_t **ap, mp_limb_t **bp, mp_size_t n, int K) 
#else
mpn_fft_mul_modF_K(ap, bp, n, K) 
     mp_limb_t **ap, **bp;
     mp_size_t n;
     int       K;
#endif
{
  int  i;
  int  sqr = (ap == bp);
  TMP_DECL(marker);
  
  TMP_MARK(marker); 

  if (n >= (sqr ? FFT_MODF_SQR_THRESHOLD : FFT_MODF_MUL_THRESHOLD)) {
    int k, K2,nprime2,Nprime2,M2,maxLK,l,Mp2;
    int       **_fft_l;
    mp_limb_t **Ap,**Bp,*A,*B,*T;

    k = mpn_fft_best_k (n, sqr);
    K2 = 1<<k;
    maxLK = (K2>BITS_PER_MP_LIMB) ? K2 : BITS_PER_MP_LIMB;
    M2 = n*BITS_PER_MP_LIMB/K2;
    l = n/K2;
    Nprime2 = ((2*M2+k+2+maxLK)/maxLK)*maxLK; /* ceil((2*M2+k+3)/maxLK)*maxLK*/
    nprime2 = Nprime2/BITS_PER_MP_LIMB;
    Mp2 = Nprime2/K2;

    Ap = TMP_ALLOC_MP_PTRS (K2);
    Bp = TMP_ALLOC_MP_PTRS (K2);
    A = TMP_ALLOC_LIMBS (2*K2*(nprime2+1));
    T = TMP_ALLOC_LIMBS (nprime2+1);
    B = A + K2*(nprime2+1);
    _fft_l = TMP_ALLOC_TYPE (k+1, int*);
    for (i=0;i<=k;i++)
      _fft_l[i] = TMP_ALLOC_TYPE (1<<i, int);
    mpn_fft_initl(_fft_l, k);

    TRACE (printf("recurse: %dx%d limbs -> %d times %dx%d (%1.2f)\n", n,
                  n, K2, nprime2, nprime2, 2.0*(double)n/nprime2/K2));

    for (i=0;i<K;i++,ap++,bp++)
      mpn_mul_fft_internal(*ap, *ap, *bp, n, k, K2, Ap, Bp, A, B, nprime2,
	 l, Mp2, _fft_l, T, 1);
  }
  else {
     mp_limb_t *a, *b, cc, *tp, *tpn; int n2=2*n;
     tp = TMP_ALLOC_LIMBS (n2);
     tpn = tp+n;
     TRACE (printf ("  mpn_mul_n %d of %d limbs\n", K, n));
     for (i=0;i<K;i++) {
        a = *ap++; b=*bp++;
        if (sqr)
          mpn_sqr_n(tp, a, n);
        else
          mpn_mul_n(tp, b, a, n);
	if (a[n]) cc=mpn_add_n(tpn, tpn, b, n); else cc=0;
	if (b[n]) cc += mpn_add_n(tpn, tpn, a, n) + a[n];
	if (cc) {
          cc = mpn_add_1(tp, tp, n2, cc);
          ASSERT_NOCARRY (mpn_add_1(tp, tp, n2, cc));
        }
	a[n] = mpn_sub_n(a, tp, tpn, n) && mpn_add_1(a, a, n, 1); 
     }
  }
  TMP_FREE(marker); 
}


/* input: A^[l[k][0]] A^[l[k][1]] ... A^[l[k][K-1]]
   output: K*A[0] K*A[K-1] ... K*A[1] */

static void
#if __STDC__
mpn_fft_fftinv (mp_limb_t **Ap, int K, mp_size_t omega, mp_size_t n,
                mp_limb_t *tp)
#else
mpn_fft_fftinv(Ap,K,omega,n,tp)
     mp_limb_t **Ap, *tp;
     int       K;
     mp_size_t omega, n;
#endif
{
    if (K==2) {
#ifdef ADDSUB
      if (mpn_addsub_n(Ap[0], Ap[1], Ap[0], Ap[1], n+1) & 1)
#else
      MPN_COPY(tp, Ap[0], n+1);
      mpn_add_n(Ap[0], Ap[0], Ap[1], n+1);
      if (mpn_sub_n(Ap[1], tp, Ap[1], n+1))
#endif
        Ap[1][n] = mpn_add_1(Ap[1], Ap[1], n, 1);
    }
    else {
	int j, K2=K/2; mp_limb_t **Bp=Ap+K2, *tmp; 
	TMP_DECL(marker);

	TMP_MARK(marker);
	tmp = TMP_ALLOC_LIMBS (n+1);
	mpn_fft_fftinv(Ap, K2, 2*omega, n, tp);
	mpn_fft_fftinv(Bp, K2, 2*omega, n, tp);
	/* A[j]     <- A[j] + omega^j A[j+K/2]
	   A[j+K/2] <- A[j] + omega^(j+K/2) A[j+K/2] */
        for (j=0;j<K2;j++,Ap++,Bp++) {
	  MPN_COPY(tp, Bp[0], n+1);
	  mpn_fft_mul_2exp_modF(Bp[0], (j+K2)*omega, n, tmp);
	  mpn_fft_add_modF(Bp[0], Ap[0], n);
	  mpn_fft_mul_2exp_modF(tp, j*omega, n, tmp);
	  mpn_fft_add_modF(Ap[0], tp, n);
	}
	TMP_FREE(marker);
    }
}


/* A <- A/2^k mod 2^(n*BITS_PER_MP_LIMB)+1 */
static void
#if __STDC__
mpn_fft_div_2exp_modF (mp_limb_t *ap, int k, mp_size_t n, mp_limb_t *tp)
#else
mpn_fft_div_2exp_modF(ap,k,n,tp)
     mp_limb_t *ap,*tp;
     int       k;
     mp_size_t n;
#endif
{
    int i;
    
    i = 2*n*BITS_PER_MP_LIMB;
    i = (i-k) % i;
    mpn_fft_mul_2exp_modF(ap,i,n,tp); 
    /* 1/2^k = 2^(2nL-k) mod 2^(n*BITS_PER_MP_LIMB)+1 */
    /* normalize so that A < 2^(n*BITS_PER_MP_LIMB)+1 */
    if (ap[n]==1) {
      for (i=0;i<n && ap[i]==0;i++);
      if (i<n) {
	ap[n]=0;
	mpn_sub_1(ap, ap, n, 1);
      }
    }
}


/* R <- A mod 2^(n*BITS_PER_MP_LIMB)+1, n<=an<=3*n */
static void
#if __STDC__
mpn_fft_norm_modF(mp_limb_t *rp, mp_limb_t *ap, mp_size_t n, mp_size_t an) 
#else
mpn_fft_norm_modF(rp, ap, n, an)
     mp_limb_t *rp;
     mp_limb_t *ap;
     mp_size_t n;
     mp_size_t an;
#endif
{
  mp_size_t l;

   if (an>2*n) {
     l = n;
     rp[n] = mpn_add_1(rp+an-2*n, ap+an-2*n, 3*n-an, 
		       mpn_add_n(rp,ap,ap+2*n,an-2*n));
   }
   else {
     l = an-n;
     MPN_COPY(rp, ap, n);
     rp[n]=0;
   }
   if (mpn_sub_n(rp,rp,ap+n,l)) {
     if (mpn_sub_1(rp+l,rp+l,n+1-l,1))
       rp[n]=mpn_add_1(rp,rp,n,1); 
   }
}


static void
#if __STDC__
mpn_mul_fft_internal(mp_limb_t *op, mp_srcptr n, mp_srcptr m, mp_size_t pl,
                     int k, int K,
                     mp_limb_t **Ap, mp_limb_t **Bp,
                     mp_limb_t *A, mp_limb_t *B,
                     mp_size_t nprime, mp_size_t l, mp_size_t Mp,
                     int **_fft_l,
                     mp_limb_t *T, int rec)
#else
mpn_mul_fft_internal(op,n,m,pl,k,K,Ap,Bp,A,B,nprime,l,Mp,_fft_l,T,rec)
     mp_limb_t *op;
     mp_srcptr n, m;
     mp_limb_t **Ap,**Bp,*A,*B,*T;
     mp_size_t pl,nprime;
     int       **_fft_l;
     int       k,K,l,Mp,rec;
#endif
{
  int       i, sqr, pla, lo, sh, j;
  mp_limb_t *p;

    sqr = (n==m);

    TRACE (printf ("pl=%d k=%d K=%d np=%d l=%d Mp=%d rec=%d sqr=%d\n",
                   pl,k,K,nprime,l,Mp,rec,sqr));

    /* decomposition of inputs into arrays Ap[i] and Bp[i] */
    if (rec) for (i=0;i<K;i++) {
      Ap[i] = A+i*(nprime+1); Bp[i] = B+i*(nprime+1);
      /* store the next M bits of n into A[i] */
      /* supposes that M is a multiple of BITS_PER_MP_LIMB */
      MPN_COPY(Ap[i], n, l); n+=l; MPN_ZERO(Ap[i]+l, nprime+1-l);
      /* set most significant bits of n and m (important in recursive calls) */
      if (i==K-1) Ap[i][l]=n[0];
      mpn_fft_mul_2exp_modF(Ap[i], i*Mp, nprime, T);
      if (!sqr) {
	MPN_COPY(Bp[i], m, l); m+=l; MPN_ZERO(Bp[i]+l, nprime+1-l);
	if (i==K-1) Bp[i][l]=m[0];
	mpn_fft_mul_2exp_modF(Bp[i], i*Mp, nprime, T);
      }
    }

    /* direct fft's */
    if (sqr) mpn_fft_fft_sqr(Ap,K,_fft_l+k,2*Mp,nprime,1, T);
    else mpn_fft_fft(Ap,Bp,K,_fft_l+k,2*Mp,nprime,1, T);

    /* term to term multiplications */
    mpn_fft_mul_modF_K(Ap, (sqr) ? Ap : Bp, nprime, K);

    /* inverse fft's */
    mpn_fft_fftinv(Ap, K, 2*Mp, nprime, T);

    /* division of terms after inverse fft */
    for (i=0;i<K;i++) mpn_fft_div_2exp_modF(Ap[i],k+((K-i)%K)*Mp,nprime, T);

    /* addition of terms in result p */
    MPN_ZERO(T,nprime+1); 
    pla = l*(K-1)+nprime+1; /* number of required limbs for p */
    p = B; /* B has K*(n'+1) limbs, which is >= pla, i.e. enough */
    MPN_ZERO(p, pla);
    sqr=0; /* will accumulate the (signed) carry at p[pla] */
    for (i=K-1,lo=l*i+nprime,sh=l*i;i>=0;i--,lo-=l,sh-=l) {
        mp_ptr n = p+sh;
	j = (K-i)%K;
	if (mpn_add_n(n,n,Ap[j],nprime+1))
	  sqr += mpn_add_1(n+nprime+1,n+nprime+1,pla-sh-nprime-1,1);
	T[2*l]=i+1; /* T = (i+1)*2^(2*M) */
	if (mpn_cmp(Ap[j],T,nprime+1)>0) { /* subtract 2^N'+1 */
	  sqr -= mpn_sub_1(n,n,pla-sh,1);
	  sqr -= mpn_sub_1(p+lo,p+lo,pla-lo,1);
	}
    }
    if (sqr==-1) {
      if ((sqr=mpn_add_1(p+pla-pl,p+pla-pl,pl,1))) {
	/* p[pla-pl]...p[pla-1] are all zero */
        mpn_sub_1(p+pla-pl-1,p+pla-pl-1,pl+1,1);
	mpn_sub_1(p+pla-1,p+pla-1,1,1);
      }
    }
    else if (sqr==1) {
	    if (pla>=2*pl)
	      while ((sqr=mpn_add_1(p+pla-2*pl,p+pla-2*pl,2*pl,sqr)));
	    else {
	      sqr = mpn_sub_1(p+pla-pl,p+pla-pl,pl,sqr);
              ASSERT (sqr == 0);
	    }
    }
    else
      ASSERT (sqr == 0);

    /* here p < 2^(2M) [K 2^(M(K-1)) + (K-1) 2^(M(K-2)) + ... ]
              < K 2^(2M) [2^(M(K-1)) + 2^(M(K-2)) + ... ]
	      < K 2^(2M) 2^(M(K-1))*2 = 2^(M*K+M+k+1) */
    mpn_fft_norm_modF(op,p,pl,pla);
}


/* op <- n*m mod 2^N+1 with fft of size 2^k where N=pl*BITS_PER_MP_LIMB
   n and m have respectively nl and ml limbs
   op must have space for pl+1 limbs
   One must have pl = mpn_fft_next_size(pl, k).
*/

void
#if __STDC__
mpn_mul_fft (mp_ptr op, mp_size_t pl,
             mp_srcptr n, mp_size_t nl,
             mp_srcptr m, mp_size_t ml,
             int k)
#else
mpn_mul_fft (op, pl, n, nl, m, ml, k)
     mp_ptr    op;
     mp_size_t pl;
     mp_srcptr n;
     mp_size_t nl;
     mp_srcptr m;
     mp_size_t ml;
     int k;
#endif
{
    int        K,maxLK,i,j;
    mp_size_t  N,Nprime,nprime,M,Mp,l;
    mp_limb_t  **Ap,**Bp,*A,*T,*B;
    int        **_fft_l;
    int        sqr = (n==m && nl==ml);
    TMP_DECL(marker);

    TRACE (printf ("\nmpn_mul_fft pl=%ld nl=%ld ml=%ld k=%d\n",
                   pl, nl, ml, k));
    ASSERT_ALWAYS (mpn_fft_next_size(pl, k) == pl);

    TMP_MARK(marker);
    N = pl*BITS_PER_MP_LIMB;
    _fft_l = TMP_ALLOC_TYPE (k+1, int*);
    for (i=0;i<=k;i++)
      _fft_l[i] = TMP_ALLOC_TYPE (1<<i, int);
    mpn_fft_initl(_fft_l, k);
    K = 1<<k;
    M = N/K;	/* N = 2^k M */
    l = M/BITS_PER_MP_LIMB;
    maxLK = (K>BITS_PER_MP_LIMB) ? K : BITS_PER_MP_LIMB;

    Nprime = ((2*M+k+2+maxLK)/maxLK)*maxLK; /* ceil((2*M+k+3)/maxLK)*maxLK; */
    nprime = Nprime/BITS_PER_MP_LIMB; 
    TRACE (printf ("N=%d K=%d, M=%d, l=%d, maxLK=%d, Np=%d, np=%d\n",
                   N, K, M, l, maxLK, Nprime, nprime));
    if (nprime >= (sqr ? FFT_MODF_SQR_THRESHOLD : FFT_MODF_MUL_THRESHOLD)) {
      maxLK = (1<<mpn_fft_best_k(nprime,n==m))*BITS_PER_MP_LIMB;
      if (Nprime % maxLK) {
	Nprime=((Nprime/maxLK)+1)*maxLK;
	nprime = Nprime/BITS_PER_MP_LIMB;
      }
      TRACE (printf ("new maxLK=%d, Np=%d, np=%d\n", maxLK, Nprime, nprime));
    }

    T = TMP_ALLOC_LIMBS (nprime+1);
    Mp = Nprime/K;

    TRACE (printf("%dx%d limbs -> %d times %dx%d limbs (%1.2f)\n",
                  pl,pl,K,nprime,nprime,2.0*(double)N/Nprime/K);
           printf("   temp space %ld\n", 2*K*(nprime+1)));

    A = _MP_ALLOCATE_FUNC_LIMBS (2*K*(nprime+1));
    B = A+K*(nprime+1);
    Ap = TMP_ALLOC_MP_PTRS (K); 
    Bp = TMP_ALLOC_MP_PTRS (K); 
    /* special decomposition for main call */
    for (i=0;i<K;i++) {
      Ap[i] = A+i*(nprime+1); Bp[i] = B+i*(nprime+1);
      /* store the next M bits of n into A[i] */
      /* supposes that M is a multiple of BITS_PER_MP_LIMB */
      if (nl>0) {
	j = (nl>=l) ? l : nl; /* limbs to store in Ap[i] */
	MPN_COPY(Ap[i], n, j); n+=l; MPN_ZERO(Ap[i]+j, nprime+1-j);
	mpn_fft_mul_2exp_modF(Ap[i], i*Mp, nprime, T);
      }
      else MPN_ZERO(Ap[i], nprime+1);
      nl -= l;
      if (n!=m) {
	if (ml>0) {
	  j = (ml>=l) ? l : ml; /* limbs to store in Bp[i] */
	  MPN_COPY(Bp[i], m, j); m+=l; MPN_ZERO(Bp[i]+j, nprime+1-j);
	  mpn_fft_mul_2exp_modF(Bp[i], i*Mp, nprime, T);
	}
	else MPN_ZERO(Bp[i], nprime+1);
      }
      ml -= l;
    }
    mpn_mul_fft_internal(op,n,m,pl,k,K,Ap,Bp,A,B,nprime,l,Mp,_fft_l,T,0);
    TMP_FREE(marker);
    _MP_FREE_FUNC_LIMBS (A, 2*K*(nprime+1));
}


#if WANT_ASSERT
static int
#if __STDC__
mpn_zero_p (mp_ptr p, mp_size_t n)
#else
     mpn_zero_p (p, n)
     mp_ptr p;
     mp_size_t n;
#endif
{
  mp_size_t i;

  for (i = 0; i < n; i++)
    {
      if (p[i] != 0)
        return 0;
    }

  return 1;
}
#endif


/* Multiply {n,nl}*{m,ml} and write the result to {op,nl+ml}.

   FIXME: Duplicating the result like this is wasteful, do something better
   perhaps at the norm_modF stage above. */

void
#if __STDC__
mpn_mul_fft_full (mp_ptr op,
                  mp_srcptr n, mp_size_t nl,
                  mp_srcptr m, mp_size_t ml)
#else
mpn_mul_fft_full (op, n, nl, m, ml)
     mp_ptr    op;
     mp_srcptr n;
     mp_size_t nl;
     mp_srcptr m;
     mp_size_t ml;
#endif
{
  mp_ptr     pad_op;
  mp_size_t  pl;
  int        k;
  int        sqr = (n==m && nl==ml);

  k = mpn_fft_best_k (nl+ml, sqr);
  pl = mpn_fft_next_size (nl+ml, k);

  TRACE (printf ("mpn_mul_fft_full nl=%ld ml=%ld -> pl=%ld k=%d\n",
                 nl, ml, pl, k));

  pad_op = _MP_ALLOCATE_FUNC_LIMBS (pl+1);
  mpn_mul_fft (pad_op, pl, n, nl, m, ml, k);

  ASSERT (mpn_zero_p (pad_op+nl+ml, pl+1-(nl+ml)));
  MPN_COPY (op, pad_op, nl+ml);

  _MP_FREE_FUNC_LIMBS (pad_op, pl+1);
}