1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
/* mpn_sqrtrem (root_ptr, rem_ptr, op_ptr, op_size)
Write the square root of {OP_PTR, OP_SIZE} at ROOT_PTR.
Write the remainder at REM_PTR, if REM_PTR != NULL.
Return the size of the remainder.
(The size of the root is always half of the size of the operand.)
OP_PTR and ROOT_PTR may not point to the same object.
OP_PTR and REM_PTR may point to the same object.
If REM_PTR is NULL, only the root is computed and the return value of
the function is 0 if OP is a perfect square, and *any* non-zero number
otherwise.
Copyright (C) 1993, 1994, 1996, 1997, 1998, 1999, 2000 Free Software
Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
/* This code is just correct if "unsigned char" has at least 8 bits. It
doesn't help to use CHAR_BIT from limits.h, as the real problem is
the static arrays. */
#include <stdio.h> /* for NULL */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
/* Square root algorithm:
1. Shift OP (the input) to the left an even number of bits s.t. there
are an even number of words and either (or both) of the most
significant bits are set. This way, sqrt(OP) has exactly half as
many words as OP, and has its most significant bit set.
2. Get a 9-bit approximation to sqrt(OP) using the pre-computed tables.
This approximation is used for the first single-precision
iterations of Newton's method, yielding a full-word approximation
to sqrt(OP).
3. Perform multiple-precision Newton iteration until we have the
exact result. Only about half of the input operand is used in
this calculation, as the square root is perfectly determinable
from just the higher half of a number. */
/* Define this macro for IEEE P854 machines with a fast sqrt instruction. */
#if defined __GNUC__ && ! defined __SOFT_FLOAT
#if defined (__sparc__) && BITS_PER_MP_LIMB == 32
#define SQRT(a) \
({ \
double __sqrt_res; \
asm ("fsqrtd %1,%0" : "=f" (__sqrt_res) : "f" (a)); \
__sqrt_res; \
})
#endif
#if defined (__HAVE_68881__)
#define SQRT(a) \
({ \
double __sqrt_res; \
asm ("fsqrtx %1,%0" : "=f" (__sqrt_res) : "f" (a)); \
__sqrt_res; \
})
#endif
#if defined (__hppa) && BITS_PER_MP_LIMB == 32
#define SQRT(a) \
({ \
double __sqrt_res; \
asm ("fsqrt,dbl %1,%0" : "=fx" (__sqrt_res) : "fx" (a)); \
__sqrt_res; \
})
#endif
#if defined (_ARCH_PWR2) && BITS_PER_MP_LIMB == 32
#define SQRT(a) \
({ \
double __sqrt_res; \
asm ("fsqrt %0,%1" : "=f" (__sqrt_res) : "f" (a)); \
__sqrt_res; \
})
#endif
#if 0
#if defined (__i386__) || defined (__i486__)
#define SQRT(a) \
({ \
double __sqrt_res; \
asm ("fsqrt" : "=t" (__sqrt_res) : "0" (a)); \
__sqrt_res; \
})
#endif
#endif
#endif
#ifndef SQRT
/* Tables for initial approximation of the square root. These are
indexed with bits 1-8 of the operand for which the square root is
calculated, where bit 0 is the most significant non-zero bit. I.e.
the most significant one-bit is not used, since that per definition
is one. Likewise, the tables don't return the highest bit of the
result. That bit must be inserted by or:ing the returned value with
0x100. This way, we get a 9-bit approximation from 8-bit tables! */
/* Table to be used for operands with an even total number of bits.
(Exactly as in the decimal system there are similarities between the
square root of numbers with the same initial digits and an even
difference in the total number of digits. Consider the square root
of 1, 10, 100, 1000, ...) */
static const unsigned char even_approx_tab[256] =
{
0x6a, 0x6a, 0x6b, 0x6c, 0x6c, 0x6d, 0x6e, 0x6e,
0x6f, 0x70, 0x71, 0x71, 0x72, 0x73, 0x73, 0x74,
0x75, 0x75, 0x76, 0x77, 0x77, 0x78, 0x79, 0x79,
0x7a, 0x7b, 0x7b, 0x7c, 0x7d, 0x7d, 0x7e, 0x7f,
0x80, 0x80, 0x81, 0x81, 0x82, 0x83, 0x83, 0x84,
0x85, 0x85, 0x86, 0x87, 0x87, 0x88, 0x89, 0x89,
0x8a, 0x8b, 0x8b, 0x8c, 0x8d, 0x8d, 0x8e, 0x8f,
0x8f, 0x90, 0x90, 0x91, 0x92, 0x92, 0x93, 0x94,
0x94, 0x95, 0x96, 0x96, 0x97, 0x97, 0x98, 0x99,
0x99, 0x9a, 0x9b, 0x9b, 0x9c, 0x9c, 0x9d, 0x9e,
0x9e, 0x9f, 0xa0, 0xa0, 0xa1, 0xa1, 0xa2, 0xa3,
0xa3, 0xa4, 0xa4, 0xa5, 0xa6, 0xa6, 0xa7, 0xa7,
0xa8, 0xa9, 0xa9, 0xaa, 0xaa, 0xab, 0xac, 0xac,
0xad, 0xad, 0xae, 0xaf, 0xaf, 0xb0, 0xb0, 0xb1,
0xb2, 0xb2, 0xb3, 0xb3, 0xb4, 0xb5, 0xb5, 0xb6,
0xb6, 0xb7, 0xb7, 0xb8, 0xb9, 0xb9, 0xba, 0xba,
0xbb, 0xbb, 0xbc, 0xbd, 0xbd, 0xbe, 0xbe, 0xbf,
0xc0, 0xc0, 0xc1, 0xc1, 0xc2, 0xc2, 0xc3, 0xc3,
0xc4, 0xc5, 0xc5, 0xc6, 0xc6, 0xc7, 0xc7, 0xc8,
0xc9, 0xc9, 0xca, 0xca, 0xcb, 0xcb, 0xcc, 0xcc,
0xcd, 0xce, 0xce, 0xcf, 0xcf, 0xd0, 0xd0, 0xd1,
0xd1, 0xd2, 0xd3, 0xd3, 0xd4, 0xd4, 0xd5, 0xd5,
0xd6, 0xd6, 0xd7, 0xd7, 0xd8, 0xd9, 0xd9, 0xda,
0xda, 0xdb, 0xdb, 0xdc, 0xdc, 0xdd, 0xdd, 0xde,
0xde, 0xdf, 0xe0, 0xe0, 0xe1, 0xe1, 0xe2, 0xe2,
0xe3, 0xe3, 0xe4, 0xe4, 0xe5, 0xe5, 0xe6, 0xe6,
0xe7, 0xe7, 0xe8, 0xe8, 0xe9, 0xea, 0xea, 0xeb,
0xeb, 0xec, 0xec, 0xed, 0xed, 0xee, 0xee, 0xef,
0xef, 0xf0, 0xf0, 0xf1, 0xf1, 0xf2, 0xf2, 0xf3,
0xf3, 0xf4, 0xf4, 0xf5, 0xf5, 0xf6, 0xf6, 0xf7,
0xf7, 0xf8, 0xf8, 0xf9, 0xf9, 0xfa, 0xfa, 0xfb,
0xfb, 0xfc, 0xfc, 0xfd, 0xfd, 0xfe, 0xfe, 0xff,
};
/* Table to be used for operands with an odd total number of bits.
(Further comments before previous table.) */
static const unsigned char odd_approx_tab[256] =
{
0x00, 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03,
0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07,
0x07, 0x08, 0x08, 0x09, 0x09, 0x0a, 0x0a, 0x0b,
0x0b, 0x0c, 0x0c, 0x0d, 0x0d, 0x0e, 0x0e, 0x0f,
0x0f, 0x10, 0x10, 0x10, 0x11, 0x11, 0x12, 0x12,
0x13, 0x13, 0x14, 0x14, 0x15, 0x15, 0x16, 0x16,
0x16, 0x17, 0x17, 0x18, 0x18, 0x19, 0x19, 0x1a,
0x1a, 0x1b, 0x1b, 0x1b, 0x1c, 0x1c, 0x1d, 0x1d,
0x1e, 0x1e, 0x1f, 0x1f, 0x20, 0x20, 0x20, 0x21,
0x21, 0x22, 0x22, 0x23, 0x23, 0x23, 0x24, 0x24,
0x25, 0x25, 0x26, 0x26, 0x27, 0x27, 0x27, 0x28,
0x28, 0x29, 0x29, 0x2a, 0x2a, 0x2a, 0x2b, 0x2b,
0x2c, 0x2c, 0x2d, 0x2d, 0x2d, 0x2e, 0x2e, 0x2f,
0x2f, 0x30, 0x30, 0x30, 0x31, 0x31, 0x32, 0x32,
0x32, 0x33, 0x33, 0x34, 0x34, 0x35, 0x35, 0x35,
0x36, 0x36, 0x37, 0x37, 0x37, 0x38, 0x38, 0x39,
0x39, 0x39, 0x3a, 0x3a, 0x3b, 0x3b, 0x3b, 0x3c,
0x3c, 0x3d, 0x3d, 0x3d, 0x3e, 0x3e, 0x3f, 0x3f,
0x40, 0x40, 0x40, 0x41, 0x41, 0x41, 0x42, 0x42,
0x43, 0x43, 0x43, 0x44, 0x44, 0x45, 0x45, 0x45,
0x46, 0x46, 0x47, 0x47, 0x47, 0x48, 0x48, 0x49,
0x49, 0x49, 0x4a, 0x4a, 0x4b, 0x4b, 0x4b, 0x4c,
0x4c, 0x4c, 0x4d, 0x4d, 0x4e, 0x4e, 0x4e, 0x4f,
0x4f, 0x50, 0x50, 0x50, 0x51, 0x51, 0x51, 0x52,
0x52, 0x53, 0x53, 0x53, 0x54, 0x54, 0x54, 0x55,
0x55, 0x56, 0x56, 0x56, 0x57, 0x57, 0x57, 0x58,
0x58, 0x59, 0x59, 0x59, 0x5a, 0x5a, 0x5a, 0x5b,
0x5b, 0x5b, 0x5c, 0x5c, 0x5d, 0x5d, 0x5d, 0x5e,
0x5e, 0x5e, 0x5f, 0x5f, 0x60, 0x60, 0x60, 0x61,
0x61, 0x61, 0x62, 0x62, 0x62, 0x63, 0x63, 0x63,
0x64, 0x64, 0x65, 0x65, 0x65, 0x66, 0x66, 0x66,
0x67, 0x67, 0x67, 0x68, 0x68, 0x68, 0x69, 0x69,
};
#endif
mp_size_t
#if __STDC__
mpn_sqrtrem (mp_ptr root_ptr, mp_ptr rem_ptr, mp_srcptr op_ptr, mp_size_t op_size)
#else
mpn_sqrtrem (root_ptr, rem_ptr, op_ptr, op_size)
mp_ptr root_ptr;
mp_ptr rem_ptr;
mp_srcptr op_ptr;
mp_size_t op_size;
#endif
{
/* R (root result) */
mp_ptr rp; /* Pointer to least significant word */
mp_size_t rsize; /* The size in words */
/* T (OP shifted to the left a.k.a. normalized) */
mp_ptr tp; /* Pointer to least significant word */
mp_size_t tsize; /* The size in words */
mp_ptr t_end_ptr; /* Pointer right beyond most sign. word */
mp_limb_t t_high0, t_high1; /* The two most significant words */
/* TT (temporary for numerator/remainder) */
mp_ptr ttp; /* Pointer to least significant word */
/* X (temporary for quotient in main loop) */
mp_ptr xp; /* Pointer to least significant word */
mp_size_t xsize; /* The size in words */
unsigned cnt;
mp_limb_t initial_approx; /* Initially made approximation */
mp_size_t tsizes[BITS_PER_MP_LIMB]; /* Successive calculation precisions */
mp_size_t tmp;
mp_size_t i;
mp_limb_t cy_limb;
TMP_DECL (marker);
/* If OP is zero, both results are zero. */
if (op_size == 0)
return 0;
count_leading_zeros (cnt, op_ptr[op_size - 1]);
tsize = op_size;
if ((tsize & 1) != 0)
{
cnt += BITS_PER_MP_LIMB;
tsize++;
}
rsize = tsize / 2;
rp = root_ptr;
TMP_MARK (marker);
/* Shift OP an even number of bits into T, such that either the most or
the second most significant bit is set, and such that the number of
words in T becomes even. This way, the number of words in R=sqrt(OP)
is exactly half as many as in OP, and the most significant bit of R
is set.
Also, the initial approximation is simplified by this up-shifted OP.
Finally, the Newtonian iteration which is the main part of this
program performs division by R. The fast division routine expects
the divisor to be "normalized" in exactly the sense of having the
most significant bit set. */
tp = (mp_ptr) TMP_ALLOC (tsize * BYTES_PER_MP_LIMB);
if ((cnt & ~1) % BITS_PER_MP_LIMB != 0)
t_high0 = mpn_lshift (tp + cnt / BITS_PER_MP_LIMB, op_ptr, op_size,
(cnt & ~1) % BITS_PER_MP_LIMB);
else
MPN_COPY (tp + cnt / BITS_PER_MP_LIMB, op_ptr, op_size);
if (cnt >= BITS_PER_MP_LIMB)
tp[0] = 0;
t_high0 = tp[tsize - 1];
t_high1 = tp[tsize - 2]; /* Never stray. TSIZE is >= 2. */
/* Is there a fast sqrt instruction defined for this machine? */
#ifdef SQRT
{
initial_approx = SQRT (t_high0 * MP_BASE_AS_DOUBLE + t_high1);
/* If t_high0,,t_high1 is big, the result in INITIAL_APPROX might have
become incorrect due to overflow in the conversion from double to
mp_limb_t above. It will typically be zero in that case, but might be
a small number on some machines. The most significant bit of
INITIAL_APPROX should be set, so that bit is a good overflow
indication. */
if ((mp_limb_signed_t) initial_approx >= 0)
initial_approx = ~(mp_limb_t)0;
}
#else
/* Get a 9 bit approximation from the tables. The tables expect to
be indexed with the 8 high bits right below the highest bit.
Also, the highest result bit is not returned by the tables, and
must be or:ed into the result. The scheme gives 9 bits of start
approximation with just 256-entry 8 bit tables. */
if ((cnt & 1) == 0)
{
/* The most significant bit of t_high0 is set. */
initial_approx = t_high0 >> (BITS_PER_MP_LIMB - 8 - 1);
initial_approx &= 0xff;
initial_approx = even_approx_tab[initial_approx];
}
else
{
/* The most significant bit of t_high0 is unset,
the second most significant is set. */
initial_approx = t_high0 >> (BITS_PER_MP_LIMB - 8 - 2);
initial_approx &= 0xff;
initial_approx = odd_approx_tab[initial_approx];
}
initial_approx |= 0x100;
initial_approx <<= BITS_PER_MP_LIMB - 8 - 1;
/* Perform small precision Newtonian iterations to get a full word
approximation. For small operands, these iterations will do the
entire job. */
if (t_high0 == ~(mp_limb_t)0)
initial_approx = t_high0;
else
{
mp_limb_t quot;
if (t_high0 >= initial_approx)
initial_approx = t_high0 + 1;
/* First get about 18 bits with pure C arithmetics. */
quot = t_high0 / (initial_approx >> BITS_PER_MP_LIMB/2) << BITS_PER_MP_LIMB/2;
initial_approx = (initial_approx + quot) / 2;
initial_approx |= (mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1);
/* Now get a full word by one (or for > 36 bit machines) several
iterations. */
for (i = 18; i < BITS_PER_MP_LIMB; i <<= 1)
{
mp_limb_t ignored_remainder;
udiv_qrnnd (quot, ignored_remainder,
t_high0, t_high1, initial_approx);
initial_approx = (initial_approx + quot) / 2;
initial_approx |= (mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1);
}
}
#endif
rp[0] = initial_approx;
rsize = 1;
#ifdef SQRT_DEBUG
printf ("\n\nT = ");
mpn_dump (tp, tsize);
#endif
if (tsize > 2)
{
/* Determine the successive precisions to use in the iteration. We
minimize the precisions, beginning with the highest (i.e. last
iteration) to the lowest (i.e. first iteration). */
xp = (mp_ptr) TMP_ALLOC (tsize * BYTES_PER_MP_LIMB);
ttp = (mp_ptr) TMP_ALLOC (tsize * BYTES_PER_MP_LIMB);
t_end_ptr = tp + tsize;
tmp = tsize / 2;
for (i = 0;; i++)
{
tsize = (tmp + 1) / 2;
if (tmp == tsize)
break;
tsizes[i] = tsize + tmp;
tmp = tsize;
}
/* Main Newton iteration loop. For big arguments, most of the
time is spent here. */
/* It is possible to do a great optimization here. The successive
divisors in the mpn_divmod call below have more and more leading
words equal to its predecessor. Therefore the beginning of
each division will repeat the same work as did the last
division. If we could guarantee that the leading words of two
consecutive divisors are the same (i.e. in this case, a later
divisor has just more digits at the end) it would be a simple
matter of just using the old remainder of the last division in
a subsequent division, to take care of this optimization. This
idea would surely make a difference even for small arguments. */
/* Loop invariants:
R <= shiftdown_to_same_size(floor(sqrt(OP))) < R + 1.
X - 1 < shiftdown_to_same_size(floor(sqrt(OP))) <= X.
R <= shiftdown_to_same_size(X). */
while (--i >= 0)
{
mp_limb_t cy;
#ifdef SQRT_DEBUG
mp_limb_t old_least_sign_r = rp[0];
mp_size_t old_rsize = rsize;
printf ("R = ");
mpn_dump (rp, rsize);
#endif
tsize = tsizes[i];
/* Need to copy the numerator into temporary space, as
mpn_divmod overwrites its numerator argument with the
remainder (which we currently ignore). */
MPN_COPY (ttp, t_end_ptr - tsize, tsize);
cy = mpn_divmod (xp, ttp, tsize, rp, rsize);
xsize = tsize - rsize;
#ifdef SQRT_DEBUG
printf ("X =%d ", cy);
mpn_dump (xp, xsize);
#endif
/* Add X and R with the most significant limbs aligned,
temporarily ignoring at least one limb at the low end of X. */
tmp = xsize - rsize;
cy += mpn_add_n (xp + tmp, rp, xp + tmp, rsize);
/* If T begins with more than 2 x BITS_PER_MP_LIMB of ones, we get
intermediate roots that'd need an extra bit. We don't want to
handle that since it would make the subsequent divisor
non-normalized, so round such roots down to be only ones in the
current precision. */
if (cy == 2)
{
mp_size_t j;
for (j = xsize; j >= 0; j--)
xp[j] = ~(mp_limb_t)0;
}
/* Divide X by 2 and put the result in R. This is the new
approximation. Shift in the carry from the addition. */
mpn_rshift (rp, xp, xsize, 1);
rp[xsize - 1] |= ((mp_limb_t) 1 << (BITS_PER_MP_LIMB - 1));
rsize = xsize;
#ifdef SQRT_DEBUG
if (old_least_sign_r != rp[rsize - old_rsize])
printf (">>>>>>>> %d: %0*lX, %0*lX <<<<<<<<\n",
i, 2 * BYTES_PER_MP_LIMB, old_least_sign_r,
2 * BYTES_PER_MP_LIMB, rp[rsize - old_rsize]);
#endif
}
}
#ifdef SQRT_DEBUG
printf ("(final) R = ");
mpn_dump (rp, rsize);
#endif
/* We computed the square root of OP * 2**(2*floor(cnt/2)).
This has resulted in R being 2**floor(cnt/2) to large.
Shift it down here to fix that. */
if (cnt / 2 != 0)
{
mpn_rshift (rp, rp, rsize, cnt/2);
rsize -= rp[rsize - 1] == 0;
}
/* Calculate the remainder. */
mpn_mul_n (tp, rp, rp, rsize);
tsize = rsize + rsize;
tsize -= tp[tsize - 1] == 0;
if (op_size < tsize
|| (op_size == tsize && mpn_cmp (op_ptr, tp, op_size) < 0))
{
/* R is too large. Decrement it. */
/* These operations can't overflow. */
cy_limb = mpn_sub_n (tp, tp, rp, rsize);
cy_limb += mpn_sub_n (tp, tp, rp, rsize);
mpn_decr_u (tp + rsize, cy_limb);
mpn_incr_u (tp, (mp_limb_t) 1);
mpn_decr_u (rp, (mp_limb_t) 1);
#ifdef SQRT_DEBUG
printf ("(adjusted) R = ");
mpn_dump (rp, rsize);
#endif
}
if (rem_ptr != NULL)
{
cy_limb = mpn_sub (rem_ptr, op_ptr, op_size, tp, tsize);
MPN_NORMALIZE (rem_ptr, op_size);
TMP_FREE (marker);
return op_size;
}
else
{
int res;
res = op_size != tsize || mpn_cmp (op_ptr, tp, op_size);
TMP_FREE (marker);
return res;
}
}
|