summaryrefslogtreecommitdiff
path: root/rts/gmp/mpz/fac_ui.c
blob: 85f40f271ca64382c6356cef458a2ad60087e719 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/* mpz_fac_ui(result, n) -- Set RESULT to N!.

Copyright (C) 1991, 1993, 1994, 1995 Free Software Foundation, Inc.

This file is part of the GNU MP Library.

The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.

The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */

#ifdef DBG
#include <stdio.h>
#endif

#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"

void
#if __STDC__
mpz_fac_ui (mpz_ptr result, unsigned long int n)
#else
mpz_fac_ui (result, n)
     mpz_ptr result;
     unsigned long int n;
#endif
{
#if SIMPLE_FAC

  /* Be silly.  Just multiply the numbers in ascending order.  O(n**2).  */

  unsigned long int k;

  mpz_set_ui (result, 1L);

  for (k = 2; k <= n; k++)
    mpz_mul_ui (result, result, k);
#else

  /* Be smarter.  Multiply groups of numbers in ascending order until the
     product doesn't fit in a limb.  Multiply these partial product in a
     balanced binary tree fashion, to make the operand have as equal sizes
     as possible.  When the operands have about the same size, mpn_mul
     becomes faster.  */

  unsigned long int p, k;
  mp_limb_t p1, p0;

  /* Stack of partial products, used to make the computation balanced
     (i.e. make the sizes of the multiplication operands equal).  The
     topmost position of MP_STACK will contain a one-limb partial product,
     the second topmost will contain a two-limb partial product, and so
     on.  MP_STACK[0] will contain a partial product with 2**t limbs.
     To compute n! MP_STACK needs to be less than
     log(n)**2/log(BITS_PER_MP_LIMB), so 30 is surely enough.  */
#define MP_STACK_SIZE 30
  mpz_t mp_stack[MP_STACK_SIZE];

  /* TOP is an index into MP_STACK, giving the topmost element.
     TOP_LIMIT_SO_FAR is the largets value it has taken so far.  */
  int top, top_limit_so_far;

  /* Count of the total number of limbs put on MP_STACK so far.  This
     variable plays an essential role in making the compututation balanced.
     See below.  */
  unsigned int tree_cnt;

  top = top_limit_so_far = -1;
  tree_cnt = 0;
  p = 1;
  for (k = 2; k <= n; k++)
    {
      /* Multiply the partial product in P with K.  */
      umul_ppmm (p1, p0, (mp_limb_t) p, (mp_limb_t) k);

      /* Did we get overflow into the high limb, i.e. is the partial
	 product now more than one limb?  */
      if (p1 != 0)
	{
	  tree_cnt++;

	  if (tree_cnt % 2 == 0)
	    {
	      mp_size_t i;

	      /* TREE_CNT is even (i.e. we have generated an even number of
		 one-limb partial products), which means that we have a
		 single-limb product on the top of MP_STACK.  */

	      mpz_mul_ui (mp_stack[top], mp_stack[top], p);

	      /* If TREE_CNT is divisable by 4, 8,..., we have two
		 similar-sized partial products with 2, 4,... limbs at
		 the topmost two positions of MP_STACK.  Multiply them
		 to form a new partial product with 4, 8,... limbs.  */
	      for (i = 4; (tree_cnt & (i - 1)) == 0; i <<= 1)
		{
		  mpz_mul (mp_stack[top - 1],
			   mp_stack[top], mp_stack[top - 1]);
		  top--;
		}
	    }
	  else
	    {
	      /* Put the single-limb partial product in P on the stack.
		 (The next time we get a single-limb product, we will
		 multiply the two together.)  */
	      top++;
	      if (top > top_limit_so_far)
		{
		  if (top > MP_STACK_SIZE)
		    abort();
		  /* The stack is now bigger than ever, initialize the top
		     element.  */
		  mpz_init_set_ui (mp_stack[top], p);
		  top_limit_so_far++;
		}
	      else
		mpz_set_ui (mp_stack[top], p);
	    }

	  /* We ignored the last result from umul_ppmm.  Put K in P as the
	     first component of the next single-limb partial product.  */
	  p = k;
	}
      else
	/* We didn't get overflow in umul_ppmm.  Put p0 in P and try
	   with one more value of K.  */
	p = p0;			/* bogus if long != mp_limb_t */
    }

  /* We have partial products in mp_stack[0..top], in descending order.
     We also have a small partial product in p.
     Their product is the final result.  */
  if (top < 0)
    mpz_set_ui (result, p);
  else
    mpz_mul_ui (result, mp_stack[top--], p);
  while (top >= 0)
    mpz_mul (result, result, mp_stack[top--]);

  /* Free the storage allocated for MP_STACK.  */
  for (top = top_limit_so_far; top >= 0; top--)
    mpz_clear (mp_stack[top]);
#endif
}