1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
/* mpz_powm(res,base,exp,mod) -- Set RES to (base**exp) mod MOD.
Copyright (C) 1991, 1993, 1994, 1996, 1997, 2000 Free Software Foundation, Inc.
Contributed by Paul Zimmermann.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA. */
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
#ifdef BERKELEY_MP
#include "mp.h"
#endif
/* set c <- (a*b)/R^n mod m c has to have at least (2n) allocated limbs */
static void
#if __STDC__
mpz_redc (mpz_ptr c, mpz_srcptr a, mpz_srcptr b, mpz_srcptr m, mp_limb_t Nprim)
#else
mpz_redc (c, a, b, m, Nprim)
mpz_ptr c;
mpz_srcptr a;
mpz_srcptr b;
mpz_srcptr m;
mp_limb_t Nprim;
#endif
{
mp_ptr cp, mp = PTR (m);
mp_limb_t cy, cout = 0;
mp_limb_t q;
size_t j, n = ABSIZ (m);
ASSERT (ALLOC (c) >= 2 * n);
mpz_mul (c, a, b);
cp = PTR (c);
j = ABSIZ (c);
MPN_ZERO (cp + j, 2 * n - j);
for (j = 0; j < n; j++)
{
q = cp[0] * Nprim;
cy = mpn_addmul_1 (cp, mp, n, q);
cout += mpn_add_1 (cp + n, cp + n, n - j, cy);
cp++;
}
cp -= n;
if (cout)
{
cy = cout - mpn_sub_n (cp, cp + n, mp, n);
while (cy)
cy -= mpn_sub_n (cp, cp, mp, n);
}
else
MPN_COPY (cp, cp + n, n);
MPN_NORMALIZE (cp, n);
SIZ (c) = SIZ (c) < 0 ? -n : n;
}
/* average number of calls to redc for an exponent of n bits
with the sliding window algorithm of base 2^k: the optimal is
obtained for the value of k which minimizes 2^(k-1)+n/(k+1):
n\k 4 5 6 7 8
128 156* 159 171 200 261
256 309 307* 316 343 403
512 617 607* 610 632 688
1024 1231 1204 1195* 1207 1256
2048 2461 2399 2366 2360* 2396
4096 4918 4787 4707 4665* 4670
*/
#ifndef BERKELEY_MP
void
#if __STDC__
mpz_powm (mpz_ptr res, mpz_srcptr base, mpz_srcptr e, mpz_srcptr mod)
#else
mpz_powm (res, base, e, mod)
mpz_ptr res;
mpz_srcptr base;
mpz_srcptr e;
mpz_srcptr mod;
#endif
#else /* BERKELEY_MP */
void
#if __STDC__
pow (mpz_srcptr base, mpz_srcptr e, mpz_srcptr mod, mpz_ptr res)
#else
pow (base, e, mod, res)
mpz_srcptr base;
mpz_srcptr e;
mpz_srcptr mod;
mpz_ptr res;
#endif
#endif /* BERKELEY_MP */
{
mp_limb_t invm, *ep, c, mask;
mpz_t xx, *g;
mp_size_t n, i, K, j, l, k;
int sh;
int use_redc;
#ifdef POWM_DEBUG
mpz_t exp;
mpz_init (exp);
#endif
n = ABSIZ (mod);
if (n == 0)
DIVIDE_BY_ZERO;
if (SIZ (e) == 0)
{
/* Exponent is zero, result is 1 mod MOD, i.e., 1 or 0
depending on if MOD equals 1. */
SIZ(res) = (ABSIZ (mod) == 1 && (PTR(mod))[0] == 1) ? 0 : 1;
PTR(res)[0] = 1;
return;
}
/* Use REDC instead of usual reduction for sizes < POWM_THRESHOLD.
In REDC each modular multiplication costs about 2*n^2 limbs operations,
whereas using usual reduction it costs 3*K(n), where K(n) is the cost of a
multiplication using Karatsuba, and a division is assumed to cost 2*K(n),
for example using Burnikel-Ziegler's algorithm. This gives a theoretical
threshold of a*KARATSUBA_SQR_THRESHOLD, with a=(3/2)^(1/(2-ln(3)/ln(2))) ~
2.66. */
/* For now, also disable REDC when MOD is even, as the inverse can't
handle that. */
#ifndef POWM_THRESHOLD
#define POWM_THRESHOLD ((8 * KARATSUBA_SQR_THRESHOLD) / 3)
#endif
use_redc = (n < POWM_THRESHOLD && PTR(mod)[0] % 2 != 0);
if (use_redc)
{
/* invm = -1/m mod 2^BITS_PER_MP_LIMB, must have m odd */
modlimb_invert (invm, PTR(mod)[0]);
invm = -invm;
}
/* determines optimal value of k */
l = ABSIZ (e) * BITS_PER_MP_LIMB; /* number of bits of exponent */
k = 1;
K = 2;
while (2 * l > K * (2 + k * (3 + k)))
{
k++;
K *= 2;
}
g = (mpz_t *) (*_mp_allocate_func) (K / 2 * sizeof (mpz_t));
/* compute x*R^n where R=2^BITS_PER_MP_LIMB */
mpz_init (g[0]);
if (use_redc)
{
mpz_mul_2exp (g[0], base, n * BITS_PER_MP_LIMB);
mpz_mod (g[0], g[0], mod);
}
else
mpz_mod (g[0], base, mod);
/* compute xx^g for odd g < 2^k */
mpz_init (xx);
if (use_redc)
{
_mpz_realloc (xx, 2 * n);
mpz_redc (xx, g[0], g[0], mod, invm); /* xx = x^2*R^n */
}
else
{
mpz_mul (xx, g[0], g[0]);
mpz_mod (xx, xx, mod);
}
for (i = 1; i < K / 2; i++)
{
mpz_init (g[i]);
if (use_redc)
{
_mpz_realloc (g[i], 2 * n);
mpz_redc (g[i], g[i - 1], xx, mod, invm); /* g[i] = x^(2i+1)*R^n */
}
else
{
mpz_mul (g[i], g[i - 1], xx);
mpz_mod (g[i], g[i], mod);
}
}
/* now starts the real stuff */
mask = (mp_limb_t) ((1<<k) - 1);
ep = PTR (e);
i = ABSIZ (e) - 1; /* current index */
c = ep[i]; /* current limb */
count_leading_zeros (sh, c);
sh = BITS_PER_MP_LIMB - sh; /* significant bits in ep[i] */
sh -= k; /* index of lower bit of ep[i] to take into account */
if (sh < 0)
{ /* k-sh extra bits are needed */
if (i > 0)
{
i--;
c = (c << (-sh)) | (ep[i] >> (BITS_PER_MP_LIMB + sh));
sh += BITS_PER_MP_LIMB;
}
}
else
c = c >> sh;
#ifdef POWM_DEBUG
printf ("-1/m mod 2^%u = %lu\n", BITS_PER_MP_LIMB, invm);
mpz_set_ui (exp, c);
#endif
j=0;
while (c % 2 == 0)
{
j++;
c = (c >> 1);
}
mpz_set (xx, g[c >> 1]);
while (j--)
{
if (use_redc)
mpz_redc (xx, xx, xx, mod, invm);
else
{
mpz_mul (xx, xx, xx);
mpz_mod (xx, xx, mod);
}
}
#ifdef POWM_DEBUG
printf ("x^"); mpz_out_str (0, 10, exp);
printf ("*2^%u mod m = ", n * BITS_PER_MP_LIMB); mpz_out_str (0, 10, xx);
putchar ('\n');
#endif
while (i > 0 || sh > 0)
{
c = ep[i];
sh -= k;
l = k; /* number of bits treated */
if (sh < 0)
{
if (i > 0)
{
i--;
c = (c << (-sh)) | (ep[i] >> (BITS_PER_MP_LIMB + sh));
sh += BITS_PER_MP_LIMB;
}
else
{
l += sh; /* may be less bits than k here */
c = c & ((1<<l) - 1);
}
}
else
c = c >> sh;
c = c & mask;
/* this while loop implements the sliding window improvement */
while ((c & (1 << (k - 1))) == 0 && (i > 0 || sh > 0))
{
if (use_redc) mpz_redc (xx, xx, xx, mod, invm);
else
{
mpz_mul (xx, xx, xx);
mpz_mod (xx, xx, mod);
}
if (sh)
{
sh--;
c = (c<<1) + ((ep[i]>>sh) & 1);
}
else
{
i--;
sh = BITS_PER_MP_LIMB - 1;
c = (c<<1) + (ep[i]>>sh);
}
}
#ifdef POWM_DEBUG
printf ("l=%u c=%lu\n", l, c);
mpz_mul_2exp (exp, exp, k);
mpz_add_ui (exp, exp, c);
#endif
/* now replace xx by xx^(2^k)*x^c */
if (c != 0)
{
j = 0;
while (c % 2 == 0)
{
j++;
c = c >> 1;
}
/* c0 = c * 2^j, i.e. xx^(2^k)*x^c = (A^(2^(k - j))*c)^(2^j) */
l -= j;
while (l--)
if (use_redc) mpz_redc (xx, xx, xx, mod, invm);
else
{
mpz_mul (xx, xx, xx);
mpz_mod (xx, xx, mod);
}
if (use_redc)
mpz_redc (xx, xx, g[c >> 1], mod, invm);
else
{
mpz_mul (xx, xx, g[c >> 1]);
mpz_mod (xx, xx, mod);
}
}
else
j = l; /* case c=0 */
while (j--)
{
if (use_redc)
mpz_redc (xx, xx, xx, mod, invm);
else
{
mpz_mul (xx, xx, xx);
mpz_mod (xx, xx, mod);
}
}
#ifdef POWM_DEBUG
printf ("x^"); mpz_out_str (0, 10, exp);
printf ("*2^%u mod m = ", n * BITS_PER_MP_LIMB); mpz_out_str (0, 10, xx);
putchar ('\n');
#endif
}
/* now convert back xx to xx/R^n */
if (use_redc)
{
mpz_set_ui (g[0], 1);
mpz_redc (xx, xx, g[0], mod, invm);
if (mpz_cmp (xx, mod) >= 0)
mpz_sub (xx, xx, mod);
}
mpz_set (res, xx);
mpz_clear (xx);
for (i = 0; i < K / 2; i++)
mpz_clear (g[i]);
(*_mp_free_func) (g, K / 2 * sizeof (mpz_t));
}
|