summaryrefslogtreecommitdiff
path: root/rts/linker/MMap.c
blob: 2d6c2aa148f9ffc596d27ee6ddf162ab8d314036 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
#include "Rts.h"

#include "sm/OSMem.h"
#include "linker/MMap.h"
#include "Trace.h"
#include "ReportMemoryMap.h"

#if RTS_LINKER_USE_MMAP
#include <sys/mman.h>
#endif

/* Link objects into the lower 2Gb on x86_64 and AArch64.  GHC assumes the
 * small memory model on this architecture (see gcc docs,
 * -mcmodel=small).
 *
 * MAP_32BIT not available on OpenBSD/amd64
 */
#if defined(MAP_32BIT) && (defined(x86_64_HOST_ARCH) || (defined(aarch64_TARGET_ARCH) || defined(aarch64_HOST_ARCH)))
#define MAP_LOW_MEM
#define TRY_MAP_32BIT MAP_32BIT
#else
#define TRY_MAP_32BIT 0
#endif

/* MAP_ANONYMOUS is MAP_ANON on some systems,
   e.g. OS X (before Sierra), OpenBSD etc */
#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
#define MAP_ANONYMOUS MAP_ANON
#endif

/* In order to simplify control flow a bit, some references to mmap-related
   definitions are blocked off by a C-level if statement rather than a CPP-level
   #if statement. Since those are dead branches when !RTS_LINKER_USE_MMAP, we
   just stub out the relevant symbols here
*/
#if !RTS_LINKER_USE_MMAP
#define munmap(x,y) /* nothing */
#define MAP_ANONYMOUS 0
#endif

void *mmap_32bit_base = LINKER_LOAD_BASE;

static const char *memoryAccessDescription(MemoryAccess mode)
{
  switch (mode) {
  case MEM_NO_ACCESS:    return "no-access";
  case MEM_READ_ONLY:    return "read-only";
  case MEM_READ_WRITE:   return "read-write";
  case MEM_READ_EXECUTE: return "read-execute";
  case MEM_READ_WRITE_EXECUTE:
                         return "read-write-execute";
  default: barf("invalid MemoryAccess");
  }
}

/* A region of memory that we might map into. */
struct MemoryRegion {
    void *start;
    void *end;
    void *last;
      /* the end of the last mapping which we made into this region.
       * this is where we will start searching next time we need to allocate.
       */
};

#define LOW_ADDR 0x01000000
static struct MemoryRegion allMemory = {
    .start = (void *) LOW_ADDR,
    .end = (void *) -1,
    .last = (void *) LOW_ADDR
};

#if defined(mingw32_HOST_OS)

/* A wrapper for VirtualQuery() providing useful debug output */
static int virtualQuery(void *baseAddr, PMEMORY_BASIC_INFORMATION info)
{
    int res = VirtualQuery (baseAddr, info, sizeof (*info));
    IF_DEBUG(linker_verbose,
        debugBelch("Probing region 0x%p (0x%p) - 0x%p (%" FMT_SizeT ") [%ld] with base 0x%p\n",
                   baseAddr,
                   info->BaseAddress,
                   (uint8_t *) info->BaseAddress + info->RegionSize,
                   info->RegionSize, info->State,
                   info->AllocationBase));
    if (!res) {
        IF_DEBUG(linker_verbose, debugBelch("Querying 0x%p failed. Aborting..\n", baseAddr));
        return 1;
    }
    return 0;
}

static inline uintptr_t round_up(uintptr_t num, uint64_t factor)
{
    return num + factor - 1 - (num + factor - 1) % factor;
}

/*
 * Try and find a location in the VMMAP to allocate SZ bytes starting at
 * BASEADDR.  If successful then location to use is returned and the amount of
 * bytes you *must* allocate is returned in REQ.  You are free to use less but
 * you must allocate the amount given in REQ.  If not successful NULL.
 */
static void *allocateBytes(void* baseAddr, void *endAddr, size_t sz, size_t *req)
{
    SYSTEM_INFO sys;
    GetSystemInfo(&sys);

    IF_DEBUG(linker_verbose, debugBelch("Requesting mapping of %" FMT_SizeT " bytes between %p and %p\n",
                                sz, baseAddr, endAddr));

    MEMORY_BASIC_INFORMATION info;
    uint8_t *initialAddr = baseAddr;
    uint8_t *region = NULL;
    while (!region
           && initialAddr <= (uint8_t *) endAddr
           && (void *) initialAddr < sys.lpMaximumApplicationAddress)
    {
        int res = virtualQuery(initialAddr, &info);
        if (res) {
            return NULL;
        }

        if ((info.State & MEM_FREE) == MEM_FREE) {
            IF_DEBUG(linker_verbose, debugBelch("Free range at 0x%p of %zu bytes\n",
                                        info.BaseAddress, info.RegionSize));

            if (info.RegionSize >= sz) {
                if (info.AllocationBase == 0) {
                    size_t needed_sz = round_up (sz, sys.dwAllocationGranularity);
                    if (info.RegionSize >= needed_sz) {
                        IF_DEBUG(linker_verbose, debugBelch("Range is unmapped, Allocation "
                                                    "required by granule...\n"));
                        *req = needed_sz;
                        region
                        = (void*)(uintptr_t)round_up ((uintptr_t)initialAddr,
                                                        sys.dwAllocationGranularity);
                        IF_DEBUG(linker_verbose, debugBelch("Requested %" PRId64 ", rounded: %"
                                                    PRId64 ".\n", sz, *req));
                        IF_DEBUG(linker_verbose, debugBelch("Aligned region claimed 0x%p -> "
                                                    "0x%p.\n", initialAddr, region));
                    }
                } else {
                    IF_DEBUG(linker_verbose, debugBelch("Range is usable for us, claiming...\n"));
                    *req = sz;
                    region = initialAddr;
                }
            }
        }
        initialAddr = (uint8_t *) info.BaseAddress + info.RegionSize;
    }

    return region;
}

/* Find free address space for mapping anonymous memory. */
static void *allocateLocalBytes(size_t sz, size_t *req)
{
    // We currently don't attempt to take address space from the region below
    // the image as malloc() tends to like to use this space, but we could do if
    // necessary.
    size_t max_range = 0x7fffffff - sz;

    static void *base_addr = NULL;
    if (base_addr == NULL) {
        base_addr = GetModuleHandleW(NULL);
    }
    uint8_t *end_addr = (uint8_t *) base_addr + max_range;

    // We track the location of the last allocation to avoid having to
    // do a linear search of address space looking for space on every allocation
    // as this can easily devolve into quadratic complexity.
    static void *last_alloca = NULL;
    if (last_alloca == NULL) {
        // Start the search at the image base
        last_alloca = base_addr;
    }

    void *result = NULL;
    result = allocateBytes (last_alloca, end_addr, sz, req);
    if (result == NULL) {
        // We failed to find suitable address space; restart the search at base_addr.
        result = allocateBytes (base_addr, end_addr, sz, req);
    }

    if (result != NULL) {
        last_alloca = (uint8_t *) result + *req;
    }
    return result;
}

static DWORD
memoryAccessToProt(MemoryAccess access)
{
  switch (access) {
  case MEM_NO_ACCESS:    return PAGE_NOACCESS;
  case MEM_READ_ONLY:    return PAGE_READONLY;
  case MEM_READ_WRITE:   return PAGE_READWRITE;
  case MEM_READ_EXECUTE: return PAGE_EXECUTE_READ;
  case MEM_READ_WRITE_EXECUTE:
                         return PAGE_EXECUTE_READWRITE;
  default: barf("invalid MemoryAccess");
  }
}

//
// Returns NULL on failure.
//
void *
mmapAnonForLinker (size_t bytes)
{
  size_t size = 0;
  /* For linking purposes we want to load code within a 4GB range from the
     load address of the application.  As such we need to find a location to
     allocate at.   */
  void* region = allocateLocalBytes (bytes, &size);
  if (region == NULL) {
      return NULL;
  }
  return VirtualAlloc(region, size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
}

void
munmapForLinker (void *addr, size_t bytes, const char *caller)
{
  if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
    sysErrorBelch("munmapForLinker: %s: Failed to unmap %zd bytes at %p",
                  caller, bytes, addr);
  }
}

/**
 * Change the allowed access modes of a region of memory previously allocated
 * with mmapAnonForLinker.
 */
void
mprotectForLinker(void *start, size_t len, MemoryAccess mode)
{
  DWORD old;
  if (len == 0) {
    return;
  }
  DWORD prot = memoryAccessToProt(mode);

  if (VirtualProtect(start, len, prot, &old) == 0) {
    sysErrorBelch("mprotectForLinker: failed to protect %zd bytes at %p as %s",
                  len, start, memoryAccessDescription(mode));
    ASSERT(false);
  }
}

#elif RTS_LINKER_USE_MMAP

static int
memoryAccessToProt(MemoryAccess access)
{
    switch (access) {
    case MEM_NO_ACCESS:    return 0;
    case MEM_READ_ONLY:    return PROT_READ;
    case MEM_READ_WRITE:   return PROT_READ | PROT_WRITE;
    case MEM_READ_EXECUTE: return PROT_READ | PROT_EXEC;
    case MEM_READ_WRITE_EXECUTE:
                           return PROT_READ | PROT_WRITE | PROT_EXEC;
    default: barf("invalid MemoryAccess");
    }
}

static void *
doMmap(void *map_addr, size_t bytes, int prot, uint32_t flags, int fd, int offset)
{
    flags |= MAP_PRIVATE;

    IF_DEBUG(linker_verbose,
             debugBelch("mmapForLinker: \tprotection %#0x\n", prot));
    IF_DEBUG(linker_verbose,
             debugBelch("mmapForLinker: \tflags      %#0x\n", flags));
    IF_DEBUG(linker_verbose,
             debugBelch("mmapForLinker: \tsize       %#0zx\n", bytes));
    IF_DEBUG(linker_verbose,
             debugBelch("mmapForLinker: \tmap_addr   %p\n", map_addr));

    void * result = mmap(map_addr, bytes, prot, flags, fd, offset);
    if (result == MAP_FAILED) {
        sysErrorBelch("mmap %zx bytes at %p", bytes, map_addr);
        reportMemoryMap();
        errorBelch("Try specifying an address with +RTS -xm<addr> -RTS");
        return NULL;
    }
    return result;
}


static struct MemoryRegion *
nearImage(void) {
    static struct MemoryRegion region = { NULL, NULL, NULL };
    if (region.end == NULL) {
        region.start = mmap_32bit_base;
        region.end = (uint8_t *) region.start + 0x80000000;
        region.last = region.start;
    }
    return &region;
}

static void *
mmapInRegion (
        struct MemoryRegion *region,
        size_t bytes,
        MemoryAccess access,
        uint32_t flags,
        int fd,
        int offset)
{
    bool wrapped = false;
    int prot = memoryAccessToProt(access);
    void *p = region->last;
    while (1) {
        void *result = doMmap(p, bytes, prot, flags, fd, offset);
        if (result == NULL) {
            // The mapping failed
            return NULL;
        } else if (result < region->start) {
            // Uh oh, we assume that mmap() will only give us a
            // an address at or after the requested address.
            // Try again.
            p = (uint8_t *) result + bytes;
        } else if (result < region->end) {
            // Success!
            region->last = (uint8_t *) result + bytes;
            return result;
        } else if (wrapped) {
            // We failed to find a suitable mapping
            munmap(result, bytes);
            reportMemoryMap();
            errorBelch("mmapForLinker: failed to mmap() memory below 2Gb; "
                       "asked for %zu bytes at %p. "
                       "Try specifying an address with +RTS -xm<addr> -RTS",
                       bytes, p);
            return NULL;
        }

        // mmap() gave us too high an address; wrap around and try again
        munmap(result, bytes);
        wrapped = true;
        p = region->start;
    }
}

/*
 * Map memory for code.
 * Returns NULL on failure.
 */
void *
mmapForLinker (size_t bytes, MemoryAccess access, uint32_t flags, int fd, int offset)
{
    bytes = roundUpToPage(bytes);
    struct MemoryRegion *region;

    IF_DEBUG(linker_verbose, debugBelch("mmapForLinker: start\n"));
    if (RtsFlags.MiscFlags.linkerAlwaysPic) {
        /* make no attempt at mapping low memory if we are assuming PIC */
        region = &allMemory;
    } else {
        region = nearImage();
    }

    /* Use MAP_32BIT if appropriate */
    if (region->end <= (void *) 0xffffffff) {
        flags |= TRY_MAP_32BIT;
    }

    void *result = mmapInRegion(region, bytes, access, flags, fd, offset);
    IF_DEBUG(linker_verbose,
             debugBelch("mmapForLinker: mapped %zd bytes starting at %p\n",
                        bytes, result));
    IF_DEBUG(linker_verbose,
             debugBelch("mmapForLinker: done\n"));
    return result;
}

/*
 * Map read/write pages in low memory. Returns NULL on failure.
 */
void *
mmapAnonForLinker (size_t bytes)
{
    return mmapForLinker (bytes, MEM_READ_WRITE, MAP_ANONYMOUS, -1, 0);
}

void munmapForLinker (void *addr, size_t bytes, const char *caller)
{
    int r = munmap(addr, bytes);
    if (r == -1) {
        // Should we abort here?
        sysErrorBelch("munmap: %s", caller);
    }
}

/* Note [Memory protection in the linker]
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * For many years the linker would simply map all of its memory
 * with PROT_READ|PROT_WRITE|PROT_EXEC. However operating systems have been
 * becoming increasingly reluctant to accept this practice (e.g. #17353,
 * #12657) and for good reason: writable code is ripe for exploitation.
 *
 * Consequently mmapForLinker now maps its memory with PROT_READ|PROT_WRITE.
 * After the linker has finished filling/relocating the mapping it must then
 * call mprotectForLinker on the sections of the mapping which
 * contain executable code.
 *
 * Note that the m32 allocator handles protection of its allocations. For this
 * reason the caller to m32_alloc() must tell the allocator whether the
 * allocation needs to be executable. The caller must then ensure that they
 * call m32_allocator_flush() after they are finished filling the region, which
 * will cause the allocator to change the protection bits to
 * PROT_READ|PROT_EXEC.
 *
 */

/*
 * Mark an portion of a mapping previously reserved by mmapForLinker
 * as executable (but not writable).
 */
void mprotectForLinker(void *start, size_t len, MemoryAccess mode)
{
    if (len == 0) {
        return;
    }
    IF_DEBUG(linker_verbose,
             debugBelch("mprotectForLinker: protecting %" FMT_Word
                        " bytes starting at %p as %s\n",
                        (W_)len, start, memoryAccessDescription(mode)));

    int prot = memoryAccessToProt(mode);

    if (mprotect(start, len, prot) == -1) {
        sysErrorBelch("mprotectForLinker: failed to protect %zd bytes at %p as %s",
                      len, start, memoryAccessDescription(mode));
    }
}
#endif