1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
|
/* --------------------------------------------------------------------------
* PEi386(+) specifics (Win32 targets)
* ------------------------------------------------------------------------*/
/* The information for this linker comes from
Microsoft Portable Executable
and Common Object File Format Specification
revision 8.3 February 2013
It can be found online at:
https://msdn.microsoft.com/en-us/windows/hardware/gg463119.aspx
Things move, so if that fails, try searching for it via
http://www.google.com/search?q=PE+COFF+specification
The ultimate reference for the PE format is the Winnt.h
header file that comes with the Platform SDKs; as always,
implementations will drift wrt their documentation.
A good background article on the PE format is Matt Pietrek's
March 1994 article in Microsoft System Journal (MSJ)
(Vol.9, No. 3): "Peering Inside the PE: A Tour of the
Win32 Portable Executable File Format." The info in there
has recently been updated in a two part article in
MSDN magazine, issues Feb and March 2002,
"Inside Windows: An In-Depth Look into the Win32 Portable
Executable File Format"
John Levine's book "Linkers and Loaders" contains useful
info on PE too.
The PE specification doesn't specify how to do the actual
relocations. For this reason, and because both PE and ELF are
based on COFF, the relocations for the PEi386+ code is based on
the ELF relocations for the equivalent relocation type.
The ELF ABI can be found at
http://www.x86-64.org/documentation/abi.pdf
The current code is based on version 0.99.6 - October 2013
The current GHCi linker supports the following four object file formats:
* PE/PE+ obj - The normal COFF_ANON_OBJ format which is generated by default
from Windows compilers
* PE/PE+ big-obj - The big object format COFF_ANON_BIG_OBJ which extends the
number of sections to 2^31 and the number of symbols in each section. This
requires a flag but all Windows compilers can produce it.
* PE Import format - The import library format defined in the PE standard
COFF_IMPORT_LIB and commonly has the file extension .lib
* GNU BFD import format - The import library format defined and used by GNU
tools and commonly has the file extension .dll.a . See note below.
Note [The need for import libraries]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In its original incarnation, PE had no native support for dynamic linking.
Let's examine how dynamic linking is now implemented. Consider a simple
program with a reference to function and data symbols provided by a DLL:
// myprogram.c
#include <libfoo.h>
int do_something() {
libfoo_function();
return libfoo_data;
}
The header file shipped with libfoo will look like the following:
// libfoo.h
__declspec(dllimport) int libfoo_function();
__declspec(dllimport) int libfoo_data;
When the C compiler is compiling myprogram.c, it will see these dllimport
declarations and use them to produce a module definition (.def) file which
summarizes the symbols that we expect the DLL to export. This will look like:
EXPORTS
libfoo_function
libfoo_data DATA
The C compiler will pass this file to the `dlltool` utility, which will
generate an *import library*. The import library will contain
placeholder symbols (with names starting with `__imp_`), along with
instructions for the dynamic linker to fix-up these references to point to
the "real" symbol definition.
For historical reasons involving lack of documentation, NDAs, and (probably)
Steve Balmer, there are two flavours of import flavours:
* Native Windows-style import libraries. These typically bear the .lib file
extension and encode their relocation information in the `.idata` section.
Documentation for this format is not available
[here](https://docs.microsoft.com/en-us/windows/win32/debug/pe-format#import-library-format).
These are handled in `checkAndLoadImportLibrary()`
* GNU BFD-style import libraries. These typically have the .dll.a
extension and encode the relocation information in a set of sections
named `.idata$<N>` where `<N>` is an integer which encodes the section's
meaning. Somewhat ironically, despite being devised in response to the
native Windows format having no public documentation, there is no official
documentation for this format but Note [BFD import library] attempts to
summarize what we know. These are handled in `ocGetNames_PEi386()`.
Note [BFD import library]
~~~~~~~~~~~~~~~~~~~~~~~~~
On Windows, compilers don't link directly to dynamic libraries.
The reason for this is that the exports are not always by symbol, the
Import Address Table (IAT) also allows exports by ordinal number
or raw addresses.
So to solve the linking issue, import libraries were added. Import libraries
can be seen as a specification of how to link implicitly against a dynamic
library. As a side note, import libraries are also the mechanism which
can be used to break mutual dependencies between shared libraries and to
implement delay loading or override the location of a shared library at
startup.
Linkers use these import libraries to populate the IAT of the resulting
binary. At startup the system dynamic loader processes the IAT entries
and populates the symbols with the correct addresses.
Anyway, the Windows PE format specifies a simple and efficient format for
this: It's essentially a list, saying these X symbols can be found in DLL y.
Commonly, y is a versioned name. e.g. `liby_43.dll`. This is an artifact of
the days when Windows did not support side-by-side assemblies. So the
solution was to version the DLLs by renaming them to include explicit
version numbers, and to then use the import libraries to point to the right
version, having the linker do the leg work.
The format in the PE specification is commonly named using the suffix .lib.
Unfortunately, GCC/binutils decided not to implement this format, and instead
have created their own format. This format is either named using the suffix
.dll.a or .a depending on the tool that makes them. This format is
undocumented. However the source of dlltool.c in binutils is pretty handy to
understand it (see binutils/dlltool.c; grep for ".idata section description").
To understand the implementation in GHC, this is what is important:
The import library is generally an archive containing one object file for
each imported symbol. In addition, there is a "head" object, which contains
the name of the DLL which the symbols are imported from, among other things.
The `.idata$` section group is used to hold this information. An import library
object file will always have these section groups, but the specific
configuration depends on what the purpose of the file is. They will also
never have a CODE or DATA section, though depending on the tool that creates
them they may have the section headers, which will mostly be empty.
The import data sections consist of the following:
* `.idata$2` contains the Import Directory Table (IDT), which contains an entry
for each imported DLL. Each entry contains: a reference to the DLL's name
(in `.idata$7`) and references to its entries in the ILT and IAT sections.
This is contained in the head object.
* `.idata$6` contains the Hint Name Table (HNT). This is a table of
of (symbol ordinal, symbol name) pairs, which are referred to be the ILT
and IAT as described below.
* `.idata$5` contains the Import Address Table (IAT). This consists of an
array of pointers (one array for each imported DLL) which the loader will
update to point to the target symbol identified by the hint referenced by
the corresponding ILT entry. Moreover, the IAT pointers' initial values
also point to the corresponding HNT entry.
* `.idata$4` contains the Import Lookup Table (ILT). This contains an array
of references to HNT entries for each imported DLL.
* `.idata$7` contains the names of the imported DLLs. This is contained
in the head object.
You have two different possible configurations:
1) Those that define a redirection. In this case the `.idata$7` section will
contain the name of the actual dll to load. This will be the only content
of the section. In the symbol table, the last symbol will be the name
used to refer to the dll in the relocation tables. This name will always
be in the format `symbol_name_iname`, however when referred to, the format
`_head_symbol_name` is used.
We record this symbol early on during `ocGetNames` and load the dll and use
the module handle as the symbol address.
2) Symbol definitions. In this case the HNT (`.idata$6`) will contain the
symbol to load. This is stored in the fixed format of 2-byte ordinals
followed by (null-terminated) symbol name. The ordinal is
to be used when the DLL does not export symbols by name. (note: We don't
currently support this in the runtime linker, but it's easy to add should
it be needed). The last symbol in the symbol table of the section will
contain the name symbol which contains the dll name to use to resolve the
reference.
As a technicality, this also means that the GCC format will allow us to use
one library to store references to multiple dlls. This can't be produced by
dlltool, but it can be combined using ar. This is an important feature
required for dynamic linking support for GHC. So the runtime linker now
supports this too.
Example: Dynamic code references
--------------------------------
To see what such an import library looks like, let's first start with the case
of a function (e.g. `libfoo_function` above) with bind-now semantics (lazy-loading
will look much different). The import library will contain the following:
.section .text
# This stub (which Windows calls a thunk) is what calls to
# libfoo_function will hit if the symbol isn't declared with
# __declspec(dllimport)
libfoo_function:
jmp *0x0(%rip)
.quad __imp_libfoo_function
.section .idata$5 # IAT
# This is the location which the loader will
# update to point to the definition
# of libfoo_function
__imp_libfoo_function:
.quad hint1 - __image_base__
.section .idata$4 # ILT
# This (and hint1 below) is what tells the
# loader where __imp_libfoo_function should point
ilt1:
.quad hint1 - __image_base__
.section .idata$6 # HNT
hint1:
.short ORDINAL_OF_libfoo_function
.asciiz "libfoo_function"
To handle a reference to an IAT entry like `__imp_libfoo_function`, the GHC
linker will (in `lookupSymbolInDLLs`) first strip off the `__imp_` prefix to
find the name of the referenced dynamic symbol. It then resolves the
symbol's address and allocates an `IndirectAddr` where it can place the
address, which it will return as the resolution of the `___libfoo_function`.
Example: Dynamic data references
--------------------------------
Let's now consider the import library for a data symbol. This is essentially
equivalent to the code case, but without the need to emit a thunk:
.section .idata$5 # IAT
__imp_libfoo_data:
.quad hint2 - __image_base__
.section .idata$4 # ILT
ilt2:
.quad hint2 - __image_base__
.section .idata$6 # ILT
hint2:
.short ORDINAL_OF_libfoo_data
.asciiz "libfoo_data"
Note [Memory allocation]
~~~~~~~~~~~~~~~~~~~~~~~~
The loading of an object begins in `preloadObjectFile`, which allocates a buffer,
`oc->image`, into which the object file is read. It then calls `ocVerifyImage`,
where we traverse the object file's header and populate `ObjectCode.sections`.
Specifically, we create a Section for each of the object's sections such
that:
* the `.start` field points to its data in the mapped image
* the `.size` field reflects its intended size
* the .`info` field contains a `SectionFormatField` with other information
from its section header entry (namely `VirtualSize`, `VirtualAddress`, and
`Characteristics`)
We then proceed to `ocGetNames`, where we again walk the section table header
and determine which sections need to be mapped and how (e.g. as readable-writable or
readable-executable). We then allocate memory for each section using the
appropriate m32 allocator and, where necessary, copy the data from
`section.start` (which points to the section in `oc->image`)
into the new allocation. Finally, `addSection()` updates the `section.start` field
to reflect the section's new home. In addition, we also allocate space for
the global BSS section.
At this point we have no further need for the preloaded image buffer,
`oc->image` and therefore free it.
Having populated the sections, we can proceed to add the object's symbols to
the symbol table. This is a matter of walking the object file's symbol table,
computing the symbol's address, and calling `ghciInsertSymbolTable`.
Finally, we enter `ocResolve`, where we resolve relocations and and allocate
jump islands (using the m32 allocator for backing storage) as necessary.
*/
#include "Rts.h"
#if defined(x86_64_HOST_ARCH)
#define USED_IF_x86_64_HOST_ARCH /* Nothing */
#else
#define USED_IF_x86_64_HOST_ARCH STG_UNUSED
#endif
#if defined(mingw32_HOST_OS)
#include "RtsUtils.h"
#include "RtsSymbolInfo.h"
#include "CheckUnload.h"
#include "LinkerInternals.h"
#include "linker/PEi386.h"
#include "linker/PEi386Types.h"
#include "linker/SymbolExtras.h"
#include <windows.h>
#include <shfolder.h> /* SHGetFolderPathW */
#include <math.h>
#include <wchar.h>
#include <stdbool.h>
#include <stdint.h>
#include <inttypes.h>
#include <dbghelp.h>
#include <stdlib.h>
#include <psapi.h>
#if defined(x86_64_HOST_ARCH)
static size_t makeSymbolExtra_PEi386(
ObjectCode* oc,
uint64_t index,
size_t s,
SymbolName* symbol,
SymType sym_type);
#endif
static void addDLLHandle(
pathchar* dll_name,
HINSTANCE instance);
static bool verifyCOFFHeader(
uint16_t machine,
IMAGE_FILE_HEADER *hdr,
pathchar *fileName);
static bool checkIfDllLoaded(
HINSTANCE instance);
static uint32_t getSectionAlignment(
Section section);
static size_t getAlignedValue(
size_t value,
Section section);
static void releaseOcInfo(
ObjectCode* oc);
static SymbolAddr *lookupSymbolInDLLs ( const SymbolName* lbl, ObjectCode *dependent );
const Alignments pe_alignments[] = {
{ IMAGE_SCN_ALIGN_1BYTES , 1 },
{ IMAGE_SCN_ALIGN_2BYTES , 2 },
{ IMAGE_SCN_ALIGN_4BYTES , 4 },
{ IMAGE_SCN_ALIGN_8BYTES , 8 },
{ IMAGE_SCN_ALIGN_16BYTES , 16 },
{ IMAGE_SCN_ALIGN_32BYTES , 32 },
{ IMAGE_SCN_ALIGN_64BYTES , 64 },
{ IMAGE_SCN_ALIGN_128BYTES , 128 },
{ IMAGE_SCN_ALIGN_256BYTES , 256 },
{ IMAGE_SCN_ALIGN_512BYTES , 512 },
{ IMAGE_SCN_ALIGN_1024BYTES, 1024},
{ IMAGE_SCN_ALIGN_2048BYTES, 2048},
{ IMAGE_SCN_ALIGN_4096BYTES, 4096},
{ IMAGE_SCN_ALIGN_8192BYTES, 8192},
};
const int pe_alignments_cnt = sizeof (pe_alignments) / sizeof (Alignments);
const int default_alignment = 8;
/* See Note [_iob_func symbol]
In order to emulate __iob_func the memory location needs to point the
location of the I/O structures in memory. As such we need RODATA to contain
the pointer as a redirect. Essentially it's a DATA DLL reference. */
const void* __rts_iob_func = (void*)&__acrt_iob_func;
void initLinker_PEi386()
{
if (!ghciInsertSymbolTable(WSTR("(GHCi/Ld special symbols)"),
symhash, "__image_base__",
GetModuleHandleW (NULL), HS_BOOL_TRUE,
SYM_TYPE_CODE, NULL)) {
barf("ghciInsertSymbolTable failed");
}
#if defined(mingw32_HOST_OS)
addDLLHandle(WSTR("*.exe"), GetModuleHandle(NULL));
#endif
/* Register the cleanup routine as an exit handler, this gives other exit handlers
a chance to run which may need linker information. Exit handlers are ran in
reverse registration order so this needs to be before the linker loads anything. */
atexit (exitLinker_PEi386);
}
void exitLinker_PEi386()
{
}
/* A list thereof. */
static OpenedDLL* opened_dlls = NULL;
/* Adds a DLL instance to the list of DLLs in which to search for symbols. */
static void addDLLHandle(pathchar* dll_name, HINSTANCE instance) {
/* At this point, we actually know what was loaded.
So bail out if it's already been loaded. */
if (checkIfDllLoaded(instance))
{
return;
}
OpenedDLL* o_dll;
o_dll = stgMallocBytes( sizeof(OpenedDLL), "addDLLHandle" );
o_dll->name = dll_name ? pathdup(dll_name) : NULL;
o_dll->instance = instance;
o_dll->next = opened_dlls;
opened_dlls = o_dll;
/* Now discover the dependencies of dll_name that were
just loaded in our process space. The reason is we have access to them
without the user having to explicitly specify them. */
PIMAGE_NT_HEADERS header =
(PIMAGE_NT_HEADERS)((BYTE *)instance +
((PIMAGE_DOS_HEADER)instance)->e_lfanew);
PIMAGE_IMPORT_DESCRIPTOR imports =
(PIMAGE_IMPORT_DESCRIPTOR)((BYTE *)instance + header->
OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress);
bool importTableMissing =
header->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].Size == 0;
if (importTableMissing) {
return;
}
/* Ignore these compatibility shims. */
const pathchar* ms_dll = WSTR("api-ms-win-");
const int len = wcslen(ms_dll);
do {
pathchar* module = mkPath((char*)(BYTE *)instance + imports->Name);
HINSTANCE module_instance = GetModuleHandleW(module);
if (0 != wcsncmp(module, ms_dll, len)
&& module_instance
&& !checkIfDllLoaded(module_instance))
{
IF_DEBUG(linker, debugBelch("Loading dependency %" PATH_FMT " -> %" PATH_FMT ".\n", dll_name, module));
/* Now recursively load dependencies too. */
addDLLHandle(module, module_instance);
}
stgFree(module);
imports++;
} while (imports->Name);
}
static OpenedDLL* findLoadedDll(HINSTANCE instance)
{
for (OpenedDLL* o_dll = opened_dlls; o_dll != NULL; o_dll = o_dll->next) {
if (o_dll->instance == instance)
{
return o_dll;
}
}
return NULL;
}
static bool checkIfDllLoaded(HINSTANCE instance)
{
return findLoadedDll (instance) != NULL;
}
void freePreloadObjectFile_PEi386(ObjectCode *oc)
{
if (oc->image) {
stgFree (oc->image);
oc->image = NULL;
}
if (oc->info) {
/* Release the unwinder information.
See Note [Exception Unwinding]. */
if (oc->info->pdata) {
if (!RtlDeleteFunctionTable (oc->info->pdata->start))
debugBelch ("Unable to remove Exception handlers for %" PATH_FMT "\n",
oc->fileName);
oc->info->xdata = NULL;
oc->info->pdata = NULL;
}
if (oc->info->ch_info) {
stgFree (oc->info->ch_info);
}
stgFree (oc->info);
oc->info = NULL;
}
}
// Free oc->info and oc->sections[i]->info.
static void releaseOcInfo(ObjectCode* oc) {
if (!oc) return;
if (oc->info) {
freeInitFiniList(oc->info->init);
freeInitFiniList(oc->info->fini);
stgFree (oc->info->ch_info);
stgFree (oc->info->symbols);
stgFree (oc->info->str_tab);
stgFree (oc->info);
oc->info = NULL;
}
for (int i = 0; i < oc->n_sections; i++){
Section *section = &oc->sections[i];
if (section->info) {
stgFree (section->info->name);
if (section->info->relocs) {
stgFree (section->info->relocs);
section->info->relocs = NULL;
}
stgFree (section->info);
section->info = NULL;
}
}
}
/*************
* This function determines what kind of COFF image we are dealing with.
* This is needed in order to correctly load and verify objects and their
* sections.
*************/
COFF_OBJ_TYPE getObjectType ( char* image, pathchar* fileName )
{
/* {D1BAA1C7-BAEE-4ba9-AF20-FAF66AA4DCB8} */
static const char header_bigobj_classid[16] =
{
0xC7, 0xA1, 0xBA, 0xD1,
0xEE, 0xBA,
0xa9, 0x4b,
0xAF, 0x20,
0xFA, 0xF6, 0x6A, 0xA4, 0xDC, 0xB8
};
WORD machine;
COFF_OBJ_TYPE ret = COFF_UNKNOWN;
/* First check if we have an ANON_OBJECT_HEADER signature. */
ANON_OBJECT_HEADER* anon = (ANON_OBJECT_HEADER*)image;
if ( anon->Sig1 == IMAGE_FILE_MACHINE_UNKNOWN
&& anon->Sig2 == IMPORT_OBJECT_HDR_SIG2)
{
machine = anon->Machine;
if (verifyCOFFHeader (machine, NULL, fileName))
{
switch (anon->Version)
{
case 0:
ret = COFF_IMPORT_LIB;
break;
case 1:
ret = COFF_ANON_OBJ;
break;
case 2:
if (memcmp (&anon->ClassID, header_bigobj_classid, 16) == 0)
ret = COFF_ANON_BIG_OBJ;
break;
default:
break;
}
}
} else {
/* If it's not an ANON_OBJECT then try an image file. */
IMAGE_FILE_HEADER* img = (IMAGE_FILE_HEADER*)image;
machine = img->Machine;
if (verifyCOFFHeader (machine, img, fileName))
ret = COFF_IMAGE;
}
return ret;
}
/*************
* Retrieve common header information
*************/
COFF_HEADER_INFO* getHeaderInfo ( ObjectCode* oc )
{
COFF_OBJ_TYPE coff_type = getObjectType (oc->image, OC_INFORMATIVE_FILENAME(oc));
COFF_HEADER_INFO* info
= stgMallocBytes (sizeof(COFF_HEADER_INFO), "getHeaderInfo");
memset (info, 0, sizeof(COFF_HEADER_INFO));
info->type = coff_type;
switch (coff_type)
{
case COFF_IMAGE:
{
IMAGE_FILE_HEADER* hdr = (IMAGE_FILE_HEADER*)oc->image;
info->sizeOfHeader = sizeof(IMAGE_FILE_HEADER);
info->sizeOfOptionalHeader = hdr->SizeOfOptionalHeader;
info->pointerToSymbolTable = hdr->PointerToSymbolTable;
info->numberOfSymbols = hdr->NumberOfSymbols;
info->numberOfSections = hdr->NumberOfSections;
}
break;
case COFF_ANON_BIG_OBJ:
{
ANON_OBJECT_HEADER_BIGOBJ* hdr = (ANON_OBJECT_HEADER_BIGOBJ*)oc->image;
info->sizeOfHeader = sizeof(ANON_OBJECT_HEADER_BIGOBJ);
info->sizeOfOptionalHeader = 0;
info->pointerToSymbolTable = hdr->PointerToSymbolTable;
info->numberOfSymbols = hdr->NumberOfSymbols;
info->numberOfSections = hdr->NumberOfSections;
}
break;
default:
{
stgFree (info);
info = NULL;
errorBelch ("Unknown COFF %d type in getHeaderInfo.", coff_type);
}
break;
}
return info;
}
/*************
* Symbol utility functions
*************/
__attribute__ ((always_inline)) inline
size_t getSymbolSize ( COFF_HEADER_INFO *info )
{
ASSERT(info);
switch (info->type)
{
case COFF_ANON_BIG_OBJ:
return sizeof_COFF_symbol_ex;
default:
return sizeof_COFF_symbol_og;
}
}
__attribute__ ((always_inline)) inline
int32_t getSymSectionNumber ( COFF_HEADER_INFO *info, COFF_symbol* sym )
{
ASSERT(info);
ASSERT(sym);
switch (info->type)
{
case COFF_ANON_BIG_OBJ:
return sym->ex.SectionNumber;
default:
return sym->og.SectionNumber;
}
}
__attribute__ ((always_inline)) inline
uint32_t getSymValue ( COFF_HEADER_INFO *info, COFF_symbol* sym )
{
ASSERT(info);
ASSERT(sym);
switch (info->type)
{
case COFF_ANON_BIG_OBJ:
return sym->ex.Value;
default:
return sym->og.Value;
}
}
__attribute__ ((always_inline)) inline
uint8_t getSymStorageClass ( COFF_HEADER_INFO *info, COFF_symbol* sym )
{
ASSERT(info);
ASSERT(sym);
switch (info->type)
{
case COFF_ANON_BIG_OBJ:
return sym->ex.StorageClass;
default:
return sym->og.StorageClass;
}
}
__attribute__ ((always_inline)) inline
uint8_t getSymNumberOfAuxSymbols ( COFF_HEADER_INFO *info, COFF_symbol* sym )
{
ASSERT(info);
ASSERT(sym);
switch (info->type)
{
case COFF_ANON_BIG_OBJ:
return sym->ex.NumberOfAuxSymbols;
default:
return sym->og.NumberOfAuxSymbols;
}
}
__attribute__ ((always_inline)) inline
uint16_t getSymType ( COFF_HEADER_INFO *info, COFF_symbol* sym )
{
ASSERT(info);
ASSERT(sym);
switch (info->type)
{
case COFF_ANON_BIG_OBJ:
return sym->ex.Type;
default:
return sym->og.Type;
}
}
__attribute__ ((always_inline)) inline
uint8_t* getSymShortName ( COFF_HEADER_INFO *info, COFF_symbol* sym )
{
ASSERT(info);
ASSERT(sym);
switch (info->type)
{
case COFF_ANON_BIG_OBJ:
return sym->ex.N.ShortName;
default:
return sym->og.N.ShortName;
}
}
const char *
addDLL_PEi386( pathchar *dll_name, HINSTANCE *loaded )
{
/* ------------------- Win32 DLL loader ------------------- */
pathchar* buf;
HINSTANCE instance;
IF_DEBUG(linker, debugBelch("addDLL; dll_name = `%" PATH_FMT "'\n", dll_name));
/* The file name has no suffix (yet) so that we can try
both foo.dll and foo.drv
The documentation for LoadLibrary says:
If no file name extension is specified in the lpFileName
parameter, the default library extension .dll is
appended. However, the file name string can include a trailing
point character (.) to indicate that the module name has no
extension. */
size_t bufsize = pathlen(dll_name) + 10;
buf = stgMallocBytes(bufsize * sizeof(wchar_t), "addDLL");
/* These are ordered by probability of success and order we'd like them. */
const wchar_t *formats[] = { L"%ls.DLL", L"%ls.DRV", L"lib%ls.DLL", L"%ls" };
const DWORD flags[] = { LOAD_LIBRARY_SEARCH_USER_DIRS | LOAD_LIBRARY_SEARCH_DEFAULT_DIRS, 0 };
int cFormat, cFlag;
int flags_start = 1; /* Assume we don't support the new API. */
/* Detect if newer API are available, if not, skip the first flags entry. */
if (GetProcAddress((HMODULE)LoadLibraryW(L"Kernel32.DLL"), "AddDllDirectory")) {
flags_start = 0;
}
/* Iterate through the possible flags and formats. */
for (cFlag = flags_start; cFlag < 2; cFlag++)
{
for (cFormat = 0; cFormat < 4; cFormat++)
{
snwprintf(buf, bufsize, formats[cFormat], dll_name);
instance = LoadLibraryExW(buf, NULL, flags[cFlag]);
if (instance == NULL) {
if (GetLastError() != ERROR_MOD_NOT_FOUND)
{
goto error;
}
}
else
{
break; /* We're done. DLL has been loaded. */
}
}
}
/* Check if we managed to load the DLL. */
if (instance == NULL) {
goto error;
}
addDLLHandle(buf, instance);
if (loaded) {
*loaded = instance;
}
stgFree(buf);
return NULL;
error:
stgFree(buf);
char* errormsg = stgMallocBytes(sizeof(char) * 80, "addDLL_PEi386");
snprintf(errormsg, 80, "addDLL: %" PATH_FMT " or dependencies not loaded. (Win32 error %lu)", dll_name, GetLastError());
/* LoadLibrary failed; return a ptr to the error msg. */
return errormsg;
}
pathchar* findSystemLibrary_PEi386( pathchar* dll_name )
{
const unsigned int init_buf_size = 1024;
unsigned int bufsize = init_buf_size;
wchar_t* result = stgMallocBytes(sizeof(wchar_t) * bufsize, "findSystemLibrary_PEi386");
DWORD wResult = SearchPathW(NULL, dll_name, NULL, bufsize, result, NULL);
if (wResult > bufsize) {
result = realloc(result, sizeof(wchar_t) * wResult);
wResult = SearchPathW(NULL, dll_name, NULL, wResult, result, NULL);
}
if (!wResult) {
stgFree(result);
return NULL;
}
return result;
}
HsPtr addLibrarySearchPath_PEi386(pathchar* dll_path)
{
// Make sure the path is an absolute path in UNC-style to ensure that we
// aren't subject to the MAX_PATH restriction. See #21059.
wchar_t *abs_path = __rts_create_device_name(dll_path);
HsPtr result = AddDllDirectory(abs_path);
if (!result) {
sysErrorBelch("addLibrarySearchPath: %" PATH_FMT " (Win32 error %lu)", abs_path, GetLastError());
stgFree(abs_path);
return NULL;
}
stgFree(abs_path);
return result;
}
bool removeLibrarySearchPath_PEi386(HsPtr dll_path_index)
{
bool result = false;
if (dll_path_index != NULL) {
result = RemoveDllDirectory(dll_path_index);
// dll_path_index is now invalid, do not use it after this point.
if (!result) {
sysErrorBelch("removeLibrarySearchPath: (Win32 error %lu)", GetLastError());
return false;
}
}
return !result;
}
/* We assume file pointer is right at the
beginning of COFF object.
*/
static uint32_t getSectionAlignment(
Section section) {
uint32_t c = section.info->props;
for(int i = 0; i < pe_alignments_cnt; i++)
{
if ((c & 0xF00000) == pe_alignments[i].mask)
return pe_alignments[i].value;
}
/* No alignment flag found, assume 8-byte aligned. */
return default_alignment;
}
/* ----------------------
* return a value aligned to the section requirements
*/
static size_t getAlignedValue(
size_t value, Section section) {
uint32_t alignment = getSectionAlignment(section);
uint32_t mask = (uint32_t)alignment - 1;
return (size_t)((value + mask) & ~mask);
}
/* -----------------------
* This loads import libraries following Microsoft's official standard in the PE
* documentation. This is a smaller more efficient format which is just a list
* of symbol name => dll.
*
* This function must fail gracefully and if it does, the filestream needs to
* be reset to what it was when the function was called.
*/
bool checkAndLoadImportLibrary( pathchar* arch_name, char* member_name, FILE* f )
{
char* image;
static bool load_dll_warn = false;
if (load_dll_warn) { return 0; }
/* Based on Import Library specification. PE Spec section 7.1 */
COFF_import_header hdr;
size_t n;
n = fread(&hdr, 1, sizeof_COFF_import_Header, f);
if (n != sizeof_COFF_import_Header) {
errorBelch("loadImportLibrary: error whilst reading `%s' header "
"in `%" PATH_FMT "'\n",
member_name, arch_name);
fseek(f, -(long int)sizeof_COFF_import_Header, SEEK_CUR);
return false;
}
if ( hdr.Sig1 != IMAGE_FILE_MACHINE_UNKNOWN
|| hdr.Sig2 != IMPORT_OBJECT_HDR_SIG2
|| getObjectType ((char*)&hdr, arch_name) != COFF_IMPORT_LIB) {
fseek(f, -(long int)sizeof_COFF_import_Header, SEEK_CUR);
IF_DEBUG(linker, debugBelch("loadArchive: Object `%s` is not an import lib. Skipping...\n", member_name));
return false;
}
IF_DEBUG(linker, debugBelch("loadArchive: reading %lu bytes at %ld\n", hdr.SizeOfData, ftell(f)));
image = stgMallocBytes(hdr.SizeOfData, "checkAndLoadImportLibrary(image)");
n = fread(image, 1, hdr.SizeOfData, f);
if (n != hdr.SizeOfData) {
errorBelch("loadArchive: error whilst reading `%s' header in `%" PATH_FMT "'. Did not read enough bytes.\n",
member_name, arch_name);
fseek(f, -(n + sizeof_COFF_import_Header), SEEK_CUR);
return false;
}
char* symbol = strtok(image, "\0");
int symLen = strlen(symbol) + 1;
int nameLen = n - symLen;
char* dllName = stgMallocBytes(sizeof(char) * nameLen,
"checkAndLoadImportLibrary(dllname)");
dllName = strncpy(dllName, image + symLen, nameLen);
pathchar* dll = stgMallocBytes(sizeof(wchar_t) * nameLen,
"checkAndLoadImportLibrary(dll)");
mbstowcs(dll, dllName, nameLen);
stgFree(dllName);
IF_DEBUG(linker, debugBelch("loadArchive: read symbol %s from lib `%" PATH_FMT "'\n", symbol, dll));
const char* result = addDLL(dll);
stgFree(image);
if (result != NULL) {
errorBelch("Could not load `%" PATH_FMT "'. Reason: %s\n", dll, result);
load_dll_warn = true;
stgFree(dll);
fseek(f, -(n + sizeof_COFF_import_Header), SEEK_CUR);
return false;
}
stgFree(dll);
return true;
}
static void
printName ( uint8_t* name, ObjectCode* oc )
{
if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
uint32_t strtab_offset = * (uint32_t*)(name + 4);
debugBelch("%s",
oc->info->str_tab + strtab_offset - PEi386_STRTAB_OFFSET);
} else {
int i;
for (i = 0; i < 8; i++) {
if (name[i] == 0) break;
debugBelch("%c", name[i] );
}
}
}
static void
copyName ( uint8_t* name, ObjectCode* oc, uint8_t* dst, int dstSize )
{
if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
uint32_t strtab_offset = * (uint32_t*)(name + 4);
strncpy ((char*)dst,
oc->info->str_tab + strtab_offset - PEi386_STRTAB_OFFSET,
dstSize);
dst[dstSize-1] = 0;
} else {
int i = 0;
while (1) {
if (i >= 8) break;
if (name[i] == 0) break;
dst[i] = name[i];
i++;
}
dst[i] = 0;
}
}
char*
get_sym_name ( uint8_t* name, ObjectCode* oc )
{
char* newstr;
/* If the string is longer than 8 bytes, look in the
string table for it -- this will be correctly zero terminated.
*/
if (name[0]==0 && name[1]==0 && name[2]==0 && name[3]==0) {
uint32_t strtab_offset = * (uint32_t*)(name + 4);
return oc->info->str_tab + strtab_offset - PEi386_STRTAB_OFFSET;
}
/* Otherwise, if shorter than 8 bytes, return the original,
which by defn is correctly terminated.
*/
if (name[7]==0) return (char*)name;
/* The annoying case: 8 bytes. Copy into a temporary
(XXX which is never freed ...)
*/
newstr = stgMallocBytes(9, "get_sym_name");
ASSERT(newstr);
strncpy (newstr, (char*)name,8);
newstr[8] = 0;
return newstr;
}
/* Getting the name of a section is mildly tricky, so we make a
function for it. Sadly, in one case we have to copy the string
(when it is exactly 8 bytes long there's no trailing '\0'), so for
consistency we *always* copy the string; the caller must free it
*/
char *
get_name_string (uint8_t* name, ObjectCode* oc)
{
char *newstr;
if (name[0]=='/') {
int strtab_offset = strtol((char*)name+1,NULL,10)-PEi386_STRTAB_OFFSET;
char* str = oc->info->str_tab + strtab_offset;
int len = strlen(str);
newstr = stgMallocBytes(len + 1, "cstring_from_section_symbol_name");
strncpy(newstr, str, len + 1);
return newstr;
}
else
{
newstr = stgMallocBytes(9, "cstring_from_section_symbol_name");
ASSERT(newstr);
strncpy(newstr,(char*)name,8);
newstr[8] = 0;
return newstr;
}
}
/* See Note [mingw-w64 name decoration scheme] */
#if !defined(x86_64_HOST_ARCH)
static void
zapTrailingAtSign ( SymbolName* sym )
{
char* lst = strrchr (sym, '@');
if (lst) lst[0]='\0';
}
#endif
SymbolAddr*
lookupSymbolInDLLs ( const SymbolName* lbl, ObjectCode *dependent )
{
OpenedDLL* o_dll;
SymbolAddr* sym;
for (o_dll = opened_dlls; o_dll != NULL; o_dll = o_dll->next) {
/* debugBelch("look in %ls for %s\n", o_dll->name, lbl); */
sym = GetProcAddress(o_dll->instance, lbl+STRIP_LEADING_UNDERSCORE);
if (sym != NULL) {
/*debugBelch("found %s in %s\n", lbl+1,o_dll->name);*/
return sym;
}
// TODO: Drop this
/* Ticket #2283.
Long description: http://support.microsoft.com/kb/132044
tl;dr:
If C/C++ compiler sees __declspec(dllimport) ... foo ...
it generates call *__imp_foo, and __imp_foo here has exactly
the same semantics as in __imp_foo = GetProcAddress(..., "foo")
*/
if (sym == NULL && strncmp (lbl, "__imp_", 6) == 0) {
sym = GetProcAddress(o_dll->instance,
lbl + 6 + STRIP_LEADING_UNDERSCORE);
if (sym != NULL) {
SymbolAddr** indirect = m32_alloc(dependent->rw_m32, sizeof(SymbolAddr*), 8);
if (indirect == NULL) {
barf("lookupSymbolInDLLs: Failed to allocation indirection");
}
*indirect = sym;
IF_DEBUG(linker,
debugBelch("warning: %s from %S is linked instead of %s\n",
lbl+6+STRIP_LEADING_UNDERSCORE, o_dll->name, lbl));
return (void*) indirect;
}
}
sym = GetProcAddress(o_dll->instance, lbl);
if (sym != NULL) {
/*debugBelch("found %s in %s\n", lbl,o_dll->name);*/
return sym;
}
}
return NULL;
}
static bool
verifyCOFFHeader ( uint16_t machine, IMAGE_FILE_HEADER *hdr,
pathchar *fileName )
{
#if defined(i386_HOST_ARCH)
if (machine != IMAGE_FILE_MACHINE_I386) {
errorBelch("%" PATH_FMT ": Not a x86 PE file.", fileName);
return false;
}
#elif defined(x86_64_HOST_ARCH)
if (machine != IMAGE_FILE_MACHINE_AMD64) {
errorBelch("%" PATH_FMT ": Not a x86_64 PE+ file.", fileName);
return false;
}
#else
errorBelch("PE/PE+ not supported on this arch.");
#endif
if (!hdr)
return true;
if (hdr->SizeOfOptionalHeader != 0) {
errorBelch("%" PATH_FMT ": PE/PE+ with nonempty optional header",
fileName);
return 0;
}
if ( (hdr->Characteristics & IMAGE_FILE_EXECUTABLE_IMAGE) ||
(hdr->Characteristics & IMAGE_FILE_DLL ) ||
(hdr->Characteristics & IMAGE_FILE_SYSTEM ) ) {
errorBelch("%" PATH_FMT ": Not a PE/PE+ object file", fileName);
return false;
}
if ( (hdr->Characteristics & IMAGE_FILE_BYTES_REVERSED_HI)) {
errorBelch("%" PATH_FMT ": Invalid PE/PE+ word size or endianness: %d",
fileName,
(int)(hdr->Characteristics));
return false;
}
return true;
}
bool
ocVerifyImage_PEi386 ( ObjectCode* oc )
{
COFF_HEADER_INFO *info = getHeaderInfo (oc);
/* If the header could not be read, then don't process the ObjectCode.
This the case when the ObjectCode has been partially freed. */
if (!info)
return false;
uint32_t i, noRelocs;
COFF_section* sectab;
COFF_symbol* symtab;
uint8_t* strtab;
sectab = (COFF_section*) (
((uint8_t*)(oc->image))
+ info->sizeOfHeader + info->sizeOfOptionalHeader
);
symtab = (COFF_symbol*) (
((uint8_t*)(oc->image))
+ info->pointerToSymbolTable
);
strtab = ((uint8_t*)symtab)
+ info->numberOfSymbols * getSymbolSize (info);
/* .BSS Section is initialized in ocGetNames_PEi386
but we need the Sections array initialized here already. */
Section *sections;
sections = (Section*)stgCallocBytes(
sizeof(Section),
info->numberOfSections + 1, /* +1 for the global BSS section see ocGetNames_PEi386 */
"ocVerifyImage_PEi386(sections)");
oc->sections = sections;
oc->n_sections = info->numberOfSections + 1;
oc->info = stgCallocBytes (sizeof(struct ObjectCodeFormatInfo), 1,
"ocVerifyImage_PEi386(info)");
oc->info->init = NULL;
oc->info->fini = NULL;
oc->info->ch_info = info;
/* Copy the tables over from object-file. Copying these allows us to
simplify the indexing and to release the object file immediately after
this step as all information we need would be in available. After
loading we can also release everything in the info structure as it won't
be needed again further freeing up memory.
COFF_symbol is a union type, so we have to "adjust" the array to be able
to access it using normal subscript notation. This eliminates the complex
indexing later on. */
uint32_t s_symbols = info->numberOfSymbols * sizeof(COFF_symbol);
uint32_t sym_size = getSymbolSize (info);
oc->info->symbols
= stgMallocBytes (s_symbols, "ocVerifyImage_PEi386(oc->info->symbols)");
for (i = 0; i < info->numberOfSymbols; i++)
memcpy (oc->info->symbols+i, (char*)symtab + sym_size * i, sym_size);
uint32_t n_strtab = (*(uint32_t*)strtab) - PEi386_STRTAB_OFFSET;
oc->info->str_tab
= stgMallocBytes (n_strtab, "ocVerifyImage_PEi386(oc->info->str_tab)");
memcpy (oc->info->str_tab, strtab + PEi386_STRTAB_OFFSET, n_strtab);
/* Initialize the Sections */
for (i = 0; i < info->numberOfSections; i++) {
uint32_t relocs_offset;
COFF_section* sectab_i
= (COFF_section*)
myindex(sizeof_COFF_section, sectab, i);
Section *section = §ions[i];
/* Calculate the start of the section data. */
section->start = oc->image + sectab_i->PointerToRawData;
section->size = sectab_i->SizeOfRawData;
section->info = stgCallocBytes (sizeof(struct SectionFormatInfo), 1,
"ocVerifyImage_PEi386(section.info)");
section->info->name = get_name_string (sectab_i->Name, oc);
section->info->alignment = getSectionAlignment (*section);
section->info->props = sectab_i->Characteristics;
section->info->virtualSize = sectab_i->Misc.VirtualSize;
section->info->virtualAddr = sectab_i->VirtualAddress;
COFF_reloc* reltab
= (COFF_reloc*) (oc->image + sectab_i->PointerToRelocations);
if (section->info->props & IMAGE_SCN_LNK_NRELOC_OVFL ) {
/* If the relocation field (a short) has overflowed, the
* real count can be found in the first reloc entry.
*
* See Section 4.1 (last para) of the PE spec (rev6.0).
*/
COFF_reloc* rel = (COFF_reloc*)
myindex ( sizeof_COFF_reloc, reltab, 0 );
noRelocs = rel->VirtualAddress - 1;
relocs_offset = 1;
} else {
noRelocs = sectab_i->NumberOfRelocations;
relocs_offset = 0;
}
section->info->noRelocs = noRelocs;
section->info->relocs = NULL;
if (noRelocs > 0) {
section->info->relocs
= stgMallocBytes (noRelocs * sizeof (COFF_reloc),
"ocVerifyImage_PEi386(section->info->relocs)");
memcpy (section->info->relocs, reltab + relocs_offset,
noRelocs * sizeof (COFF_reloc));
}
}
/* Initialize the last section's info field which contains the .bss
section, the .info of which will be initialized by ocGetNames. Discard the
.info that we computed above. */
stgFree(sections[info->numberOfSections].info);
sections[info->numberOfSections].info = NULL;
/* No further verification after this point; only debug printing. */
i = 0;
IF_DEBUG(linker, i=1);
if (i == 0) return true;
debugBelch("sectab offset = %" FMT_SizeT "\n",
((uint8_t*)sectab) - ((uint8_t*)oc->image) );
debugBelch("symtab offset = %" FMT_SizeT "\n",
((uint8_t*)symtab) - ((uint8_t*)oc->image) );
debugBelch("strtab offset = %" FMT_SizeT "\n",
((uint8_t*)strtab) - ((uint8_t*)oc->image) );
debugBelch("\n" );
if (info->type == COFF_IMAGE)
{
IMAGE_FILE_HEADER* hdr = (IMAGE_FILE_HEADER*)oc->image;
debugBelch( "COFF Type: IMAGE_FILE_HEADER\n");
debugBelch( "Machine: 0x%x\n",
(uint32_t)(hdr->Machine) );
debugBelch( "# sections: %d\n",
(uint32_t)(hdr->NumberOfSections) );
debugBelch( "time/date: 0x%x\n",
(uint32_t)(hdr->TimeDateStamp) );
debugBelch( "symtab offset: %d\n",
(uint32_t)(hdr->PointerToSymbolTable) );
debugBelch( "# symbols: %d\n",
(uint32_t)(hdr->NumberOfSymbols) );
debugBelch( "sz of opt hdr: %d\n",
(uint32_t)(hdr->SizeOfOptionalHeader) );
debugBelch( "characteristics: 0x%x\n",
(uint32_t)(hdr->Characteristics) );
}
else if (info->type == COFF_ANON_BIG_OBJ)
{
ANON_OBJECT_HEADER_BIGOBJ* hdr = (ANON_OBJECT_HEADER_BIGOBJ*)oc->image;
debugBelch( "COFF Type: ANON_OBJECT_HEADER_BIGOBJ\n");
debugBelch( "Machine: 0x%x\n",
(uint32_t)(hdr->Machine) );
debugBelch( "# sections: %d\n",
(uint32_t)(hdr->NumberOfSections) );
debugBelch( "time/date: 0x%x\n",
(uint32_t)(hdr->TimeDateStamp) );
debugBelch( "symtab offset: %d\n",
(uint32_t)(hdr->PointerToSymbolTable) );
debugBelch( "# symbols: %d\n",
(uint32_t)(hdr->NumberOfSymbols) );
}
else
{
debugBelch( "COFF Type: UNKNOWN\n");
return false;
}
i = 0;
IF_DEBUG(linker_verbose, i=1);
if (i == 0) return true;
/* Print the section table. */
debugBelch("\n" );
for (i = 0; i < info->numberOfSections; i++) {
COFF_section* sectab_i
= (COFF_section*)
myindex ( sizeof_COFF_section, sectab, i );
Section section = sections[i];
debugBelch(
"\n"
"section %d\n"
" name `",
i
);
printName (sectab_i->Name, oc);
debugBelch(
"'\n"
" vsize %lu\n"
" vaddr %lu\n"
" data sz %lu\n"
" data off 0x%p\n"
" num rel %hu\n"
" off rel %lu\n"
" ptr raw 0x%lx\n"
" align %u\n"
" data adj %zu\n",
sectab_i->Misc.VirtualSize,
sectab_i->VirtualAddress,
sectab_i->SizeOfRawData,
section.start,
sectab_i->NumberOfRelocations,
sectab_i->PointerToRelocations,
sectab_i->PointerToRawData,
getSectionAlignment (section),
getAlignedValue (section.size, section)
);
noRelocs = section.info->noRelocs;
for (uint32_t j = 0; j < noRelocs; j++) {
COFF_reloc rel = section.info->relocs[j];
debugBelch(
" type 0x%-4x vaddr 0x%-8lx name `",
rel.Type,
rel.VirtualAddress );
COFF_symbol sym = oc->info->symbols[rel.SymbolTableIndex];
printName (getSymShortName (info, &sym), oc);
debugBelch("'\n" );
}
debugBelch("\n" );
}
debugBelch("\n" );
debugBelch("string table has size 0x%x\n", n_strtab + PEi386_STRTAB_OFFSET);
debugBelch("---START of string table---\n");
for (i = 4; i < n_strtab; i++) {
if (strtab[i] == 0)
debugBelch("\n"); else
debugBelch("%c", strtab[i] );
}
debugBelch("--- END of string table---\n");
debugBelch("\n" );
for (i = 0; i < info->numberOfSymbols; i++) {
COFF_symbol* symtab_i = &oc->info->symbols[i];
debugBelch(
"symbol %d\n"
" name `",
i
);
printName (getSymShortName (info, symtab_i), oc);
debugBelch(
"'\n"
" value 0x%x\n"
" 1+sec# %d\n"
" type 0x%x\n"
" sclass 0x%x\n"
" nAux %d\n",
getSymValue (info, symtab_i),
getSymSectionNumber (info, symtab_i),
getSymType (info, symtab_i),
getSymStorageClass (info, symtab_i),
getSymNumberOfAuxSymbols (info, symtab_i)
);
i += getSymNumberOfAuxSymbols (info, symtab_i);
}
debugBelch("\n" );
return true;
}
bool
ocGetNames_PEi386 ( ObjectCode* oc )
{
bool has_code_section = false;
COFF_HEADER_INFO *info = oc->info->ch_info;
/* Copy section information into the ObjectCode. */
for (unsigned int i = 0; i < info->numberOfSections; i++) {
/* By default consider all section as CODE or DATA,
which means we want to load them. */
SectionKind kind = SECTIONKIND_CODE_OR_RODATA;
Section *section = &oc->sections[i];
uint32_t alignment = getSectionAlignment(*section);
// These will be computed below and determine how we will handle the
// section
size_t sz = section->size;
bool do_copy = true;
bool do_zero = false;
IF_DEBUG(linker, debugBelch("section name = %s (%x)\n", section->info->name, section->info->props ));
/* The PE file section flag indicates whether the section
contains code or data. */
if (section->info->props & IMAGE_SCN_CNT_CODE) {
has_code_section = has_code_section || section->size > 0;
kind = SECTIONKIND_CODE_OR_RODATA;
}
if (section->info->props & IMAGE_SCN_MEM_WRITE) {
kind = SECTIONKIND_RWDATA;
}
/* Check next if it contains any uninitialized data */
if (section->info->props & IMAGE_SCN_CNT_UNINITIALIZED_DATA) {
kind = SECTIONKIND_RWDATA;
do_copy = false;
}
/* Finally check if it can be discarded.
This will also ignore .debug sections */
if ( section->info->props & IMAGE_SCN_MEM_DISCARDABLE
|| section->info->props & IMAGE_SCN_LNK_REMOVE) {
kind = SECTIONKIND_OTHER;
}
if (0==strncmp(".ctors", section->info->name, 6)) {
/* N.B. a compilation unit may have more than one .ctor section; we
* must run them all. See #21618 for a case where this happened */
uint32_t prio;
if (sscanf(section->info->name, ".ctors.%d", &prio) != 1) {
// Sections without an explicit priority are run last
prio = 0;
}
// .ctors/.dtors are executed in reverse order: higher numbers are
// executed first
prio = 0xffff - prio;
addInitFini(&oc->info->init, &oc->sections[i], INITFINI_CTORS, prio);
kind = SECTIONKIND_INIT_ARRAY;
}
if (0==strncmp(".dtors", section->info->name, 6)) {
uint32_t prio;
if (sscanf(section->info->name, ".dtors.%d", &prio) != 1) {
// Sections without an explicit priority are run last
prio = 0;
}
// .ctors/.dtors are executed in reverse order: higher numbers are
// executed first
prio = 0xffff - prio;
addInitFini(&oc->info->fini, &oc->sections[i], INITFINI_DTORS, prio);
kind = SECTIONKIND_FINI_ARRAY;
}
if ( 0 == strncmp(".stab" , section->info->name, 5 )
|| 0 == strncmp(".stabstr" , section->info->name, 8 )
|| 0 == strncmp(".debug" , section->info->name, 6 )
|| 0 == strncmp(".rdata$zzz", section->info->name, 10))
kind = SECTIONKIND_DEBUG;
/* Exception Unwind information. See Note [Exception Unwinding]. */
if (0 == strncmp(".xdata" , section->info->name, 6 )) {
kind = SECTIONKIND_EXCEPTION_UNWIND;
}
/* Exception handler tables, See Note [Exception Unwinding]. */
if (0 == strncmp(".pdata" , section->info->name, 6 )) {
kind = SECTIONKIND_EXCEPTION_TABLE;
}
if (0==strncmp(".idata", section->info->name, 6)) {
kind = SECTIONKIND_IMPORT;
}
/* See Note [BFD import library]. */
if (0==strncmp(".idata$7", section->info->name, 8)) {
kind = SECTIONKIND_BFD_IMPORT_LIBRARY_HEAD;
}
if (0==strncmp(".idata$6", section->info->name, 8)) {
kind = SECTIONKIND_BFD_IMPORT_LIBRARY;
}
/* Allocate space for any (local, anonymous) .bss sections. */
if (0==strncmp(".bss", section->info->name, 4)) {
/* sof 10/05: the PE spec text isn't too clear regarding what
* the SizeOfRawData field is supposed to hold for object
* file sections containing just uninitialized data -- for executables,
* it is supposed to be zero; unclear what it's supposed to be
* for object files. However, VirtualSize is guaranteed to be
* zero for object files, which definitely suggests that SizeOfRawData
* will be non-zero (where else would the size of this .bss section be
* stored?) Looking at the COFF_section info for incoming object files,
* this certainly appears to be the case.
*
* => I suspect we've been incorrectly handling .bss sections in
* (relocatable) object files up until now. This turned out to bite us
* with ghc-6.4.1's use of gcc-3.4.x, which has started to emit
* initially-zeroed-out local 'static' variable decls into the .bss
* section. (The specific function in Q which triggered this is
* libraries/base/cbits/dirUtils.c:__hscore_getFolderPath())
*
* TODO: check if this comment is still relevant.
*/
if (section->info->virtualSize == 0 && section->size == 0) {
IF_DEBUG(linker_verbose, debugBelch("skipping empty .bss section\n"));
continue;
}
/* This is a non-empty .bss section.
Allocate zeroed space for it */
kind = SECTIONKIND_RWDATA;
do_zero = true;
do_copy = false;
IF_DEBUG(linker_verbose, debugBelch("BSS anon section\n"));
}
CHECK(section->size == 0 || section->info->virtualSize == 0);
if (sz < section->info->virtualSize) {
sz = section->info->virtualSize;
}
// Ignore these section types
if (kind == SECTIONKIND_OTHER || sz == 0) {
continue;
}
// Allocate memory for the section.
uint8_t *start;
if (section->info->props & IMAGE_SCN_MEM_WRITE) {
start = m32_alloc(oc->rw_m32, sz, alignment);
} else {
start = m32_alloc(oc->rx_m32, sz, alignment);
}
if (!start) {
barf("Could not allocate any heap memory from private heap (requested %" FMT_SizeT " bytes).",
sz);
}
if (do_copy) {
memcpy(start, section->start, sz);
} else if (do_zero) {
memset(start, 0, sz);
}
addSection(section, kind, SECTION_NOMEM, start, sz, 0, 0, 0);
addProddableBlock(oc, oc->sections[i].start, sz);
}
/* Copy exported symbols into the ObjectCode. */
oc->n_symbols = info->numberOfSymbols;
oc->symbols = stgCallocBytes(sizeof(Symbol_t), oc->n_symbols,
"ocGetNames_PEi386(oc->symbols)");
/* Work out the size of the global BSS section */
StgWord globalBssSize = 0;
for (unsigned int i=0; i < info->numberOfSymbols; i++) {
COFF_symbol* sym = &oc->info->symbols[i];
if (getSymSectionNumber (info, sym) == IMAGE_SYM_UNDEFINED
&& getSymValue (info, sym) > 0
&& getSymStorageClass (info, sym) != IMAGE_SYM_CLASS_SECTION) {
globalBssSize += getSymValue (info, sym);
}
i += getSymNumberOfAuxSymbols (info, sym);
}
/* Allocate BSS space */
SymbolAddr* bss = NULL;
if (globalBssSize > 0) {
bss = m32_alloc(oc->rw_m32, globalBssSize, 16);
if (bss == NULL) {
barf("ocGetNames_PEi386: Failed to allocate global bss section");
}
addSection(&oc->sections[oc->n_sections-1],
SECTIONKIND_RWDATA, SECTION_MALLOC,
bss, globalBssSize, 0, 0, 0);
IF_DEBUG(linker_verbose, debugBelch("bss @ %p %" FMT_Word "\n", bss, globalBssSize));
addProddableBlock(oc, bss, globalBssSize);
} else {
addSection(&oc->sections[oc->n_sections-1],
SECTIONKIND_OTHER, SECTION_NOMEM, NULL, 0, 0, 0, 0);
}
/* At this point we're done with oc->image and all relevant memory have
been copied. Release it to free up the memory. */
stgFree (oc->image);
oc->image = NULL;
for (unsigned int i = 0; i < (uint32_t)oc->n_symbols; i++) {
COFF_symbol* sym = &oc->info->symbols[i];
int32_t secNumber = getSymSectionNumber (info, sym);
uint32_t symValue = getSymValue (info, sym);
uint8_t symStorageClass = getSymStorageClass (info, sym);
SymbolAddr *addr = NULL;
bool isWeak = false;
SymbolName *sname = get_sym_name (getSymShortName (info, sym), oc);
Section *section = secNumber > 0 ? &oc->sections[secNumber-1] : NULL;
SymType type;
switch (getSymType(oc->info->ch_info, sym)) {
case 0x00: type = SYM_TYPE_DATA; break;
case 0x20: type = SYM_TYPE_CODE; break;
default:
debugBelch("Invalid symbol type: 0x%x\n", getSymType(oc->info->ch_info, sym));
return 1;
}
if ( secNumber != IMAGE_SYM_UNDEFINED
&& secNumber > 0
&& section
&& section->kind != SECTIONKIND_BFD_IMPORT_LIBRARY) {
/* This symbol is global and defined, viz, exported */
/* for IMAGE_SYMCLASS_EXTERNAL
&& !IMAGE_SYM_UNDEFINED,
the address of the symbol is:
address of relevant section + offset in section
*/
if (symStorageClass == IMAGE_SYM_CLASS_EXTERNAL
|| ( symStorageClass == IMAGE_SYM_CLASS_STATIC
&& section->info->props & IMAGE_SCN_LNK_COMDAT)
) {
addr = (SymbolAddr*)((size_t)section->start + symValue);
isWeak = section->info->props & IMAGE_SCN_LNK_COMDAT;
}
}
else if (symStorageClass == IMAGE_SYM_CLASS_WEAK_EXTERNAL) {
isWeak = true;
CHECK(getSymNumberOfAuxSymbols (info, sym) == 1);
CHECK(symValue == 0);
COFF_symbol_aux_weak_external *aux = (COFF_symbol_aux_weak_external *) (sym+1);
COFF_symbol* targetSym = &oc->info->symbols[aux->TagIndex];
int32_t targetSecNumber = getSymSectionNumber (info, targetSym);
Section *targetSection = targetSecNumber > 0 ? &oc->sections[targetSecNumber-1] : NULL;
addr = (SymbolAddr*) ((size_t) targetSection->start + getSymValue(info, targetSym));
}
else if ( secNumber == IMAGE_SYM_UNDEFINED && symValue > 0) {
/* This symbol isn't in any section at all, ie, global bss.
Allocate zeroed space for it from the BSS section */
addr = bss;
bss = (SymbolAddr*)((StgWord)bss + (StgWord)symValue);
IF_DEBUG(linker_verbose, debugBelch("bss symbol @ %p %u\n", addr, symValue));
}
else if (section && section->kind == SECTIONKIND_BFD_IMPORT_LIBRARY) {
setImportSymbol(oc, sname);
// There is nothing that we need to resolve in this object since we
// will never call the import stubs in its text section
oc->status = OBJECT_DONT_RESOLVE;
IF_DEBUG(linker_verbose, debugBelch("import symbol %s\n", sname));
}
else if (secNumber > 0
&& section
&& section->kind == SECTIONKIND_BFD_IMPORT_LIBRARY_HEAD) {
/* This is an Gnu BFD import section. We should load the dll and lookup
the symbols.
See Note [BFD import library]. */
char* dllName = section->start;
if (strlen(dllName) == 0 || dllName[0] == 0 || has_code_section)
continue;
pathchar* dirName = pathdir(oc->fileName);
HsPtr token = addLibrarySearchPath(dirName);
stgFree(dirName);
sym = &oc->info->symbols[oc->n_symbols-1];
sname = get_sym_name (getSymShortName (info, sym), oc);
IF_DEBUG(linker_verbose,
debugBelch("loading symbol `%s' from dll: '%ls' => `%s'\n",
sname, oc->fileName, dllName));
pathchar* dll = mkPath(dllName);
HINSTANCE dllInstance = 0;
const char* result = addDLL_PEi386(dll, &dllInstance);
removeLibrarySearchPath(token);
stgFree(dll);
if (result != NULL || dllInstance == 0) {
errorBelch("Could not load `%s'. Reason: %s\n",
(char*)dllName, result);
return false;
}
/* Set the _dll_iname symbol to the dll's handle. */
addr = (SymbolAddr*)dllInstance;
/* the symbols are named <name>_iname when defined, but are named
_head_<name> when looked up. (Ugh. thanks GCC.) So correct it when
stored so we don't have to correct it each time when retrieved. */
int size = strlen(sname)+1;
char *tmp = stgMallocBytes(size * sizeof(char),
"ocGetNames_PEi386");
strncpy (tmp, sname, size);
char *pos = strstr(tmp, "_iname");
/* drop anything after the name. There are some inconsistencies with
whitespaces trailing the name. */
if (pos) pos[0] = '\0';
int start = 0;
/* msys2 project's import lib builder has some inconsistent name
mangling. Their names start with _ or __ yet they drop this when
making the _head_ symbol. So do the same. */
while (tmp[start]=='_')
start++;
snprintf (sname, size, "_head_%s", tmp+start);
sname[size-start]='\0';
stgFree(tmp);
sname = strdup (sname);
if (!ghciInsertSymbolTable(oc->fileName, symhash, sname,
addr, false, type, oc))
return false;
break;
}
if ((addr != NULL || isWeak)
&& (!section || (section && section->kind != SECTIONKIND_IMPORT))) {
/* debugBelch("addSymbol %p `%s' Weak:%lld \n", addr, sname, isWeak); */
sname = strdup (sname);
IF_DEBUG(linker_verbose, debugBelch("addSymbol %p `%s'\n", addr, sname));
ASSERT(i < (uint32_t)oc->n_symbols);
oc->symbols[i].name = sname;
oc->symbols[i].addr = addr;
oc->symbols[i].type = type;
if (isWeak) {
setWeakSymbol(oc, sname);
}
if (! ghciInsertSymbolTable(oc->fileName, symhash, sname, addr,
isWeak, type, oc))
return false;
} else {
/* We're skipping the symbol, but if we ever load this
object file we'll want to skip it then too. */
oc->symbols[i].name = NULL;
oc->symbols[i].addr = NULL;
}
i += getSymNumberOfAuxSymbols (info, sym);
}
return true;
}
#if defined(x86_64_HOST_ARCH)
static size_t
makeSymbolExtra_PEi386( ObjectCode* oc, uint64_t index STG_UNUSED, size_t s, char* symbol STG_UNUSED, SymType type )
{
SymbolExtra *extra;
if (type == SYM_TYPE_CODE) {
// jmp *-14(%rip)
extra = m32_alloc(oc->rx_m32, sizeof(SymbolExtra), 8);
CHECK(extra);
extra->addr = (uint64_t)s;
static uint8_t jmp[] = { 0xFF, 0x25, 0xF2, 0xFF, 0xFF, 0xFF };
memcpy(extra->jumpIsland, jmp, 6);
IF_DEBUG(linker_verbose, debugBelch("makeSymbolExtra(code): %s -> %p\n", symbol, &extra->jumpIsland));
return (size_t)&extra->jumpIsland;
} else if (type == SYM_TYPE_INDIRECT_DATA) {
extra = m32_alloc(oc->rw_m32, sizeof(SymbolExtra), 8);
CHECK(extra);
void *v = *(void**) s;
extra->addr = (uint64_t)v;
IF_DEBUG(linker_verbose, debugBelch("makeSymbolExtra(data): %s -> %p\n", symbol, &extra->addr));
return (size_t)&extra->addr;
} else {
extra = m32_alloc(oc->rw_m32, sizeof(SymbolExtra), 8);
CHECK(extra);
extra->addr = (uint64_t)s;
IF_DEBUG(linker_verbose, debugBelch("makeSymbolExtra(indirect-data): %s -> %p\n", symbol, &extra->addr));
return (size_t)&extra->addr;
}
}
void ocProtectExtras(ObjectCode* oc STG_UNUSED) { }
#endif /* x86_64_HOST_ARCH */
bool
ocResolve_PEi386 ( ObjectCode* oc )
{
uint64_t A;
size_t S;
SymbolAddr* pP;
unsigned int i;
uint32_t j, noRelocs;
/* ToDo: should be variable-sized? But is at least safe in the
sense of buffer-overrun-proof. */
uint8_t symbol[1000];
/* debugBelch("resolving for %"PATH_FMT "\n", oc->fileName); */
/* Such libraries have been partially freed and can't be resolved. */
if (oc->status == OBJECT_DONT_RESOLVE)
return 1;
COFF_HEADER_INFO *info = oc->info->ch_info;
uint32_t numberOfSections = info->numberOfSections;
for (i = 0; i < numberOfSections; i++) {
Section section = oc->sections[i];
/* Ignore sections called which contain stabs debugging information. */
if (section.kind == SECTIONKIND_DEBUG)
continue;
noRelocs = section.info->noRelocs;
for (j = 0; j < noRelocs; j++) {
COFF_symbol* sym;
COFF_reloc* reloc = §ion.info->relocs[j];
/* the location to patch */
pP = (SymbolAddr*)(
(uintptr_t)section.start
+ (uintptr_t)reloc->VirtualAddress
- (uintptr_t)section.info->virtualAddr
);
/* the existing contents of pP */
A = *(uint32_t*)pP;
/* the symbol to connect to */
uint64_t symIndex = reloc->SymbolTableIndex;
sym = &oc->info->symbols[symIndex];
SymType sym_type;
IF_DEBUG(linker_verbose,
debugBelch(
"reloc sec %2d num %3d: P=%p, type 0x%-4x "
"vaddr 0x%-8lx name `",
i, j, pP,
reloc->Type,
reloc->VirtualAddress );
printName (getSymShortName (info, sym), oc);
debugBelch("'\n" ));
if (getSymStorageClass (info, sym) == IMAGE_SYM_CLASS_STATIC) {
Section section = oc->sections[getSymSectionNumber (info, sym)-1];
S = ((size_t)(section.start))
+ ((size_t)(getSymValue (info, sym)));
} else {
copyName ( getSymShortName (info, sym), oc, symbol,
sizeof(symbol)-1 );
S = (size_t) lookupDependentSymbol( (char*)symbol, oc, &sym_type );
if ((void*)S == NULL) {
errorBelch(" | %" PATH_FMT ": unknown symbol `%s'", oc->fileName, symbol);
releaseOcInfo (oc);
return false;
}
}
IF_DEBUG(linker_verbose, debugBelch("S=%zx\n", S));
/* All supported relocations write at least 4 bytes */
checkProddableBlock(oc, pP, 4);
switch (reloc->Type) {
#if defined(i386_HOST_ARCH)
case IMAGE_REL_I386_DIR32:
case IMAGE_REL_I386_DIR32NB:
*(uint32_t *)pP = S + A;
break;
case IMAGE_REL_I386_REL32:
/* Tricky. We have to insert a displacement at
pP which, when added to the PC for the _next_
insn, gives the address of the target (S).
Problem is to know the address of the next insn
when we only know pP. We assume that this
literal field is always the last in the insn,
so that the address of the next insn is pP+4
-- hence the constant 4.
Also I don't know if A should be added, but so
far it has always been zero.
SOF 05/2005: 'A' (old contents of *pP) have been observed
to contain values other than zero (the 'wx' object file
that came with wxhaskell-0.9.4; dunno how it was compiled..).
So, add displacement to old value instead of asserting
A to be zero. Fixes wxhaskell-related crashes, and no other
ill effects have been observed.
Update: the reason why we're seeing these more elaborate
relocations is due to a switch in how the NCG compiles SRTs
and offsets to them from info tables. SRTs live in .(ro)data,
while info tables live in .text, causing GAS to emit REL32/DISP32
relocations with non-zero values. Adding the displacement is
the right thing to do.
*/
*(uint32_t *)pP = ((uint32_t)S) + A - ((uint32_t)(size_t)pP) - 4;
break;
#elif defined(x86_64_HOST_ARCH)
case 1: /* R_X86_64_64 (ELF constant 1) - IMAGE_REL_AMD64_ADDR64 (PE constant 1) */
{
uint64_t A;
checkProddableBlock(oc, pP, 8);
A = *(uint64_t*)pP;
*(uint64_t *)pP = S + A;
break;
}
case 2: /* R_X86_64_32 (ELF constant 10) - IMAGE_REL_AMD64_ADDR32 (PE constant 2) */
case 3: /* IMAGE_REL_AMD64_ADDR32NB (PE constant 3) */
case 17: /* R_X86_64_32S ELF constant, no PE mapping. See note [ELF constant in PE file] */
{
uint64_t v;
v = S + A;
/* If IMAGE_REL_AMD64_ADDR32NB then subtract the image base. */
if (reloc->Type == 3)
v -= (uint64_t) GetModuleHandleW(NULL);
// N.B. in the case of the sign-extended relocations we must ensure that v
// fits in a signed 32-bit value. See #15808.
if (((int64_t) v > (int64_t) INT32_MAX) || ((int64_t) v < (int64_t) INT32_MIN)) {
copyName (getSymShortName (info, sym), oc,
symbol, sizeof(symbol)-1);
S = makeSymbolExtra_PEi386(oc, symIndex, S, (char *)symbol, sym_type);
/* And retry */
v = S + A;
/* If IMAGE_REL_AMD64_ADDR32NB then subtract the image base. */
if (reloc->Type == 3)
v -= (uint64_t) GetModuleHandleW(NULL);
if (((int64_t) v > (int64_t) INT32_MAX) || ((int64_t) v < (int64_t) INT32_MIN)) {
barf("IMAGE_REL_AMD64_ADDR32[NB]: High bits are set in 0x%zx for %s",
v, (char *)symbol);
}
}
*(uint32_t *)pP = (uint32_t)v;
break;
}
case 4: /* R_X86_64_PC32 (ELF constant 2) - IMAGE_REL_AMD64_REL32 (PE constant 4) */
{
intptr_t v;
v = S + (int32_t)A - ((intptr_t)pP) - 4;
if ((v > (int64_t) INT32_MAX) || (v < (int64_t) INT32_MIN)) {
/* Make the trampoline then */
copyName (getSymShortName (info, sym),
oc, symbol, sizeof(symbol)-1);
S = makeSymbolExtra_PEi386(oc, symIndex, S, (char *)symbol, sym_type);
/* And retry */
v = S + (int32_t)A - ((intptr_t)pP) - 4;
if ((v > (int64_t) INT32_MAX) || (v < (int64_t) INT32_MIN)) {
barf("IMAGE_REL_AMD64_REL32: High bits are set in 0x%zx for %s",
v, (char *)symbol);
}
}
*(uint32_t *)pP = (uint32_t)v;
break;
}
#endif
default:
debugBelch("%" PATH_FMT ": unhandled PEi386 relocation type %d\n",
oc->fileName, reloc->Type);
releaseOcInfo (oc);
return false;
}
}
/* Register the exceptions inside this OC.
See Note [Exception Unwinding]. */
if (section.kind == SECTIONKIND_EXCEPTION_TABLE) {
oc->info->pdata = &oc->sections[i];
#if defined(x86_64_HOST_ARCH)
unsigned numEntries = section.size / sizeof(RUNTIME_FUNCTION);
if (numEntries == 0)
continue;
/* Now register the exception handler for the range and point it
to the unwind data. */
if (!RtlAddFunctionTable (section.start, numEntries, (uintptr_t) GetModuleHandleW(NULL))) {
sysErrorBelch("Unable to register Exception handler for %p for "
"section %s in %" PATH_FMT " (Win32 error %lu)",
section.start, section.info->name, oc->fileName,
GetLastError());
releaseOcInfo (oc);
return false;
}
#endif /* x86_64_HOST_ARCH. */
} else if (section.kind == SECTIONKIND_EXCEPTION_UNWIND) {
oc->info->xdata = &oc->sections[i];
}
}
// We now have no more need of info->ch_info and info->symbols.
stgFree(oc->info->ch_info);
oc->info->ch_info = NULL;
stgFree(oc->info->symbols);
oc->info->symbols = NULL;
IF_DEBUG(linker, debugBelch("completed %" PATH_FMT "\n", oc->fileName));
return true;
}
/*
Note [ELF constant in PE file]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For some reason, the PE files produced by GHC contain a linux
relocation constant 17 (0x11) in the object files. As far as I (Phyx-) can tell
this constant doesn't seem like it's coming from GHC, or at least I could not find
anything in the .s output that GHC produces which specifies the relocation type.
This leads me to believe that this is a bug in GAS. However because this constant is
there we must deal with it. This is done by mapping it to the equivalent in behaviour PE
relocation constant 0x03.
See #9907
*/
/*
Note [Exception Unwinding]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Exception Unwinding on Windows is handled using two named sections.
.pdata: Exception registration tables.
The .pdata section contains an array of function table entries (of type
RUNTIME_FUNCTION) that are used for exception handling. The entries must be
sorted according to the function addresses (the first field in each
structure) before being emitted into the final image. It is pointed to by
the exception table entry in the image data directory. For x64 each entry
contains:
Offset Size Field Description
0 4 Begin Address The RVA of the corresponding function.
4 4 End Address The RVA of the end of the function.
8 4 Unwind Information The RVA of the unwind information.
Note that these are RVAs even after being resolved by the linker, they are
however ImageBase relative rather than PC relative. These are typically
filled in by an ADDR32NB relocation. On disk the section looks like:
Function Table #6 (4)
Begin End Info
00000000 00000000 000001A1 00000000
0000000C 000001A1 000001BF 00000034
00000018 000001BF 00000201 00000040
00000024 00000201 0000021F 0000004C
RELOCATIONS #6
Symbol Symbol
Offset Type Applied To Index Name
-------- ---------------- ----------------- -------- ------
00000000 ADDR32NB 00000000 E .text
00000004 ADDR32NB 000001A1 E .text
00000008 ADDR32NB 00000000 16 .xdata
0000000C ADDR32NB 000001A1 E .text
00000010 ADDR32NB 000001BF E .text
00000014 ADDR32NB 00000034 16 .xdata
00000018 ADDR32NB 000001BF E .text
0000001C ADDR32NB 00000201 E .text
00000020 ADDR32NB 00000040 16 .xdata
00000024 ADDR32NB 00000201 E .text
00000028 ADDR32NB 0000021F E .text
0000002C ADDR32NB 0000004C 16 .xdata
This means that if we leave it up to the relocation processing to
do the work we don't need to do anything special here. Note that
every single function will have an entry in this table regardless
whether they have an unwind code or not. The reason for this is
that unwind handlers can be chained, and such another function
may have registered an overlapping region.
.xdata: Exception unwind codes.
This section contains an array of entries telling the unwinder how
to do unwinding. They are pointed to by the .pdata table enteries
from the Info field. Each entry is very complicated but for now
what is important is that the addresses are resolved by the relocs
for us.
Once we have resolved .pdata and .xdata we can simply pass the
content of .pdata on to RtlAddFunctionTable and the OS will do
the rest. When we're unloading the object we have to unregister
them using RtlDeleteFunctionTable.
*/
bool
ocRunInit_PEi386 ( ObjectCode *oc )
{
if (oc && oc->info && oc->info->init) {
return runInit(&oc->info->init);
}
return true;
}
bool ocRunFini_PEi386( ObjectCode *oc )
{
if (oc && oc->info && oc->info->fini) {
return runFini(&oc->info->fini);
}
return true;
}
SymbolAddr *lookupSymbol_PEi386(SymbolName *lbl, ObjectCode *dependent, SymType *type)
{
RtsSymbolInfo *pinfo;
if (!ghciLookupSymbolInfo(symhash, lbl, &pinfo)) {
IF_DEBUG(linker, debugBelch("lookupSymbol: symbol '%s' not found\n", lbl));
SymbolAddr* sym;
/* See Note [mingw-w64 name decoration scheme] */
#if !defined(x86_64_HOST_ARCH)
zapTrailingAtSign ( lbl );
#endif
if (type) {
// Unfortunately we can only assume that this is the case. Ideally
// the user would have given us an import library, which would allow
// us to determine the symbol type precisely.
*type = SYM_TYPE_CODE;
}
sym = lookupSymbolInDLLs(lbl, dependent);
return sym; // might be NULL if not found
} else {
if (type) *type = pinfo->type;
if (pinfo && pinfo->owner && isSymbolImport (pinfo->owner, lbl))
{
/* See Note [BFD import library]. */
HINSTANCE dllInstance = (HINSTANCE)lookupDependentSymbol(pinfo->value, dependent, type);
if (!dllInstance && pinfo->value)
return pinfo->value;
if (!dllInstance)
{
errorBelch("Unable to load import dll symbol `%s'. "
"No _iname symbol.", lbl);
return NULL;
}
IF_DEBUG(linker,
debugBelch("indexing import %s => %s using dll instance %p\n",
lbl, (char*)pinfo->value, dllInstance));
pinfo->value = GetProcAddress((HMODULE)dllInstance, lbl);
clearImportSymbol (pinfo->owner, lbl);
return pinfo->value;
} else {
if (dependent) {
// Add dependent as symbol's owner's dependency
ObjectCode *owner = pinfo->owner;
if (owner) {
// TODO: what does it mean for a symbol to not have an owner?
insertHashSet(dependent->dependencies, (W_)owner);
}
}
return loadSymbol(lbl, pinfo);
}
}
}
/* -----------------------------------------------------------------------------
* Debugging operations.
*/
typedef struct _SymX { SymbolName* name; uintptr_t loc; } SymX;
static int comp (const void * elem1, const void * elem2)
{
SymX f = *((SymX*)elem1);
SymX s = *((SymX*)elem2);
if (f.loc > s.loc) return 1;
if (f.loc < s.loc) return -1;
return 0;
}
pathchar*
resolveSymbolAddr_PEi386 (pathchar* buffer, int size,
SymbolAddr* symbol, uintptr_t* top ){
SYMBOL_INFO sym;
ZeroMemory (&sym, sizeof(SYMBOL_INFO));
sym.MaxNameLen = sizeof(char) * 1024;
DWORD64 uDisplacement = 0;
HANDLE hProcess = GetCurrentProcess();
ObjectCode* obj = NULL;
uintptr_t start, end;
*top = 0;
pathprintf (buffer, size, WSTR("0x%" PRIxPTR), symbol);
if (SymFromAddr (hProcess, (uintptr_t)symbol, &uDisplacement, &sym))
{
/* Try using Windows symbols. */
wcscat (buffer, WSTR(" "));
pathchar* name = mkPath (sym.Name);
wcscat (buffer, name);
stgFree (name);
if (uDisplacement != 0)
{
int64_t displacement = (int64_t)uDisplacement;
pathchar s_disp[50];
if (displacement < 0)
pathprintf ((pathchar*)s_disp, 50, WSTR("-%ld"), -displacement);
else
pathprintf ((pathchar*)s_disp, 50, WSTR("+%ld"), displacement);
wcscat (buffer, s_disp);
}
}
else
{
/* Try to calculate from information inside the rts. */
uintptr_t loc = (uintptr_t)symbol;
for (ObjectCode* oc = objects; oc; oc = oc->next) {
for (int i = 0; i < oc->n_sections; i++) {
Section section = oc->sections[i];
start = (uintptr_t)section.start;
end = start + section.size;
if (loc > start && loc <= end)
{
wcscat (buffer, WSTR(" "));
if (oc->archiveMemberName)
{
wcscat (buffer, oc->archiveMemberName);
}
else
{
wcscat (buffer, oc->fileName);
}
pathchar s_disp[50];
pathprintf (s_disp, 50, WSTR("+0x%" PRIxPTR), loc - start);
wcscat (buffer, s_disp);
obj = oc;
goto exit_loop;
}
}
}
/* If we managed to make it here, we must not have any symbols nor be
dealing with code we've linked. The only thing left is an internal
segfault or one in a dynamic library. So let's enumerate the module
address space. */
HMODULE *hMods = NULL;
DWORD cbNeeded;
EnumProcessModules (hProcess, hMods, 0, &cbNeeded);
hMods = stgMallocBytes (cbNeeded, "resolveSymbolAddr_PEi386");
if (EnumProcessModules (hProcess, hMods, cbNeeded, &cbNeeded))
{
uintptr_t loc = (uintptr_t)symbol;
MODULEINFO info;
for (uint32_t i = 0; i < cbNeeded / sizeof(HMODULE); i++) {
ZeroMemory (&info, sizeof (MODULEINFO));
if (GetModuleInformation (hProcess, hMods[i], &info,
sizeof(MODULEINFO)))
{
uintptr_t start = (uintptr_t)info.lpBaseOfDll;
uintptr_t end = start + info.SizeOfImage;
if (loc >= start && loc < end)
{
/* Hoera, finally found some information. */
pathchar tmp[MAX_PATH];
if (GetModuleFileNameExW (hProcess, hMods[i], tmp, MAX_PATH))
{
wcscat (buffer, WSTR(" "));
wcscat (buffer, tmp);
pathprintf (tmp, MAX_PATH, WSTR("+0x%" PRIxPTR), loc - start);
wcscat (buffer, tmp);
}
break;
}
}
}
}
stgFree(hMods);
}
/* Finally any file/line number. */
IMAGEHLP_LINE64 lineInfo = {0};
DWORD dwDisplacement = 0;
exit_loop:
if (SymGetLineFromAddr64(hProcess, (uintptr_t)symbol, &dwDisplacement,
&lineInfo))
{
/* Try using Windows symbols. */
pathchar s_line[512];
pathprintf ((pathchar*) s_line, 512, WSTR(" %ls (%lu)"),
lineInfo.FileName, lineInfo.LineNumber);
wcscat (buffer, s_line);
if (dwDisplacement != 0)
{
pathprintf ((pathchar*) s_line, 512, WSTR(" +%lu byte%s"),
dwDisplacement,
(dwDisplacement == 1 ? WSTR("") : WSTR("s")));
}
wcscat (buffer, s_line);
}
else if (obj)
{
/* Try to calculate from information inside the rts. */
SymX* locs = stgCallocBytes (sizeof(SymX), obj->n_symbols,
"resolveSymbolAddr");
int blanks = 0;
for (int i = 0; i < obj->n_symbols; i++) {
SymbolName* sym = obj->symbols[i].name;
if (sym == NULL)
{
blanks++;
continue;
}
RtsSymbolInfo* a = NULL;
ghciLookupSymbolInfo(symhash, sym, &a);
if (a) {
SymX sx = {0};
sx.name = sym;
sx.loc = (uintptr_t)a->value;
locs[i] = sx;
}
}
qsort (locs, obj->n_symbols, sizeof (SymX), comp);
uintptr_t key = (uintptr_t)symbol;
SymX* res = NULL;
for (int x = blanks; x < obj->n_symbols; x++) {
if (x < (obj->n_symbols -1)) {
if (locs[x].loc >= key && key < locs[x+1].loc) {
res = &locs[x];
break;
}
}
else
{
if (locs[x].loc >= key) {
res = &locs[x];
break;
}
}
}
if (res) {
pathchar s_disp[512];
*top = (uintptr_t)res->loc;
pathprintf ((pathchar*)s_disp, 512,
WSTR("\n\t\t (%s+0x%" PRIxPTR ")"),
res->name, res->loc - key);
wcscat (buffer, s_disp);
}
stgFree (locs);
}
return buffer;
}
#endif /* mingw32_HOST_OS */
|