1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
/* --------------------------------------------------------------------------
* Symbol Extras.
* This is about allocating a small chunk of memory for every symbol in the
* object file. We make sure that the SymboLExtras are always "in range" of
* limited-range PC-relative instructions on various platforms by allocating
* them right next to the object code itself.
*
* This implementation is shared by the MachO and ELF implementations. Windows'
* PEi386 has its own implementation of symbol extras.
*/
#include "LinkerInternals.h"
#if NEED_SYMBOL_EXTRAS
#if !defined(x86_64_HOST_ARCH) || !defined(mingw32_HOST_OS)
#include "RtsUtils.h"
#include "sm/OSMem.h"
#include "linker/SymbolExtras.h"
#include "linker/M32Alloc.h"
#include <string.h>
#if RTS_LINKER_USE_MMAP
#include <sys/mman.h>
#endif /* RTS_LINKER_USE_MMAP */
/*
ocAllocateSymbolExtras
Allocate additional space at the end of the object file image to make room
for jump islands (powerpc, x86_64, arm) and GOT entries (x86_64).
PowerPC relative branch instructions have a 24 bit displacement field.
As PPC code is always 4-byte-aligned, this yields a +-32MB range.
If a particular imported symbol is outside this range, we have to redirect
the jump to a short piece of new code that just loads the 32bit absolute
address and jumps there.
On x86_64, PC-relative jumps and PC-relative accesses to the GOT are limited
to 32 bits (+-2GB).
This function just allocates space for one SymbolExtra for every
undefined symbol in the object file. The code for the jump islands is
filled in by makeSymbolExtra below.
*/
int ocAllocateSymbolExtras( ObjectCode* oc, int count, int first )
{
size_t n;
if (RTS_LINKER_USE_MMAP && USE_CONTIGUOUS_MMAP) {
n = roundUpToPage(oc->fileSize);
/* Keep image and symbol_extras contiguous */
void *new = mmapForLinker(n + (sizeof(SymbolExtra) * count),
MAP_ANONYMOUS, -1, 0);
if (new) {
memcpy(new, oc->image, oc->fileSize);
if (oc->imageMapped) {
munmap(oc->image, n);
}
oc->image = new;
oc->imageMapped = true;
oc->fileSize = n + (sizeof(SymbolExtra) * count);
oc->symbol_extras = (SymbolExtra *) (oc->image + n);
}
else {
oc->symbol_extras = NULL;
return 0;
}
}
else if( count > 0 ) {
if (RTS_LINKER_USE_MMAP) {
n = roundUpToPage(oc->fileSize);
oc->symbol_extras = m32_alloc(sizeof(SymbolExtra) * count, 8);
if (oc->symbol_extras == NULL) return 0;
}
else {
// round up to the nearest 4
int aligned = (oc->fileSize + 3) & ~3;
int misalignment = oc->misalignment;
oc->image -= misalignment;
oc->image = stgReallocBytes( oc->image,
misalignment +
aligned + sizeof (SymbolExtra) * count,
"ocAllocateSymbolExtras" );
oc->image += misalignment;
oc->symbol_extras = (SymbolExtra *) (oc->image + aligned);
}
}
if (oc->symbol_extras != NULL) {
memset( oc->symbol_extras, 0, sizeof (SymbolExtra) * count );
}
oc->first_symbol_extra = first;
oc->n_symbol_extras = count;
return 1;
}
#ifndef arm_HOST_ARCH
SymbolExtra* makeSymbolExtra( ObjectCode* oc,
unsigned long symbolNumber,
unsigned long target )
{
SymbolExtra *extra;
ASSERT( symbolNumber >= oc->first_symbol_extra
&& symbolNumber - oc->first_symbol_extra < oc->n_symbol_extras);
extra = &oc->symbol_extras[symbolNumber - oc->first_symbol_extra];
#ifdef powerpc_HOST_ARCH
// lis r12, hi16(target)
extra->jumpIsland.lis_r12 = 0x3d80;
extra->jumpIsland.hi_addr = target >> 16;
// ori r12, r12, lo16(target)
extra->jumpIsland.ori_r12_r12 = 0x618c;
extra->jumpIsland.lo_addr = target & 0xffff;
// mtctr r12
extra->jumpIsland.mtctr_r12 = 0x7d8903a6;
// bctr
extra->jumpIsland.bctr = 0x4e800420;
#endif /* powerpc_HOST_ARCH */
#ifdef x86_64_HOST_ARCH
// jmp *-14(%rip)
static uint8_t jmp[] = { 0xFF, 0x25, 0xF2, 0xFF, 0xFF, 0xFF };
extra->addr = target;
memcpy(extra->jumpIsland, jmp, 6);
#endif /* x86_64_HOST_ARCH */
return extra;
}
#endif
#ifdef arm_HOST_ARCH
/*
Note [The ARM/Thumb Story]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Support for the ARM architecture is complicated by the fact that ARM has not
one but several instruction encodings. The two relevant ones here are the original
ARM encoding and Thumb, a more dense variant of ARM supporting only a subset
of the instruction set.
How the CPU decodes a particular instruction is determined by a mode bit. This
mode bit is set on jump instructions, the value being determined by the low
bit of the target address: An odd address means the target is a procedure
encoded in the Thumb encoding whereas an even address means it's a traditional
ARM procedure (the actual address jumped to is even regardless of the encoding bit).
Interoperation between Thumb- and ARM-encoded object code (known as "interworking")
is tricky. If the linker needs to link a call by an ARM object into Thumb code
(or vice-versa) it will produce a jump island using makeArmSymbolExtra. This,
however, is incompatible with GHC's tables-next-to-code since pointers
fixed-up in this way will point to a bit of generated code, not a info
table/Haskell closure like TNTC expects. For this reason, it is critical that
GHC emit exclusively ARM or Thumb objects for all Haskell code.
We still do, however, need to worry about calls to foreign code, hence the
need for makeArmSymbolExtra.
*/
/* Produce a jump island for ARM/Thumb interworking */
SymbolExtra* makeArmSymbolExtra( ObjectCode* oc,
unsigned long symbolNumber,
unsigned long target,
int fromThumb,
int toThumb )
{
SymbolExtra *extra;
ASSERT( symbolNumber >= oc->first_symbol_extra
&& symbolNumber - oc->first_symbol_extra < oc->n_symbol_extras);
extra = &oc->symbol_extras[symbolNumber - oc->first_symbol_extra];
// Make sure instruction mode bit is set properly
if (toThumb)
target |= 1;
else
target &= ~1;
if (!fromThumb) {
// In ARM encoding:
// movw r12, #0
// movt r12, #0
// bx r12
uint32_t code[] = { 0xe300c000, 0xe340c000, 0xe12fff1c };
// Patch lower half-word into movw
code[0] |= ((target>>12) & 0xf) << 16;
code[0] |= target & 0xfff;
// Patch upper half-word into movt
target >>= 16;
code[1] |= ((target>>12) & 0xf) << 16;
code[1] |= target & 0xfff;
memcpy(extra->jumpIsland, code, 12);
} else {
// In Thumb encoding:
// movw r12, #0
// movt r12, #0
// bx r12
uint16_t code[] = { 0xf240, 0x0c00,
0xf2c0, 0x0c00,
0x4760 };
// Patch lower half-word into movw
code[0] |= (target>>12) & 0xf;
code[0] |= ((target>>11) & 0x1) << 10;
code[1] |= ((target>>8) & 0x7) << 12;
code[1] |= target & 0xff;
// Patch upper half-word into movt
target >>= 16;
code[2] |= (target>>12) & 0xf;
code[2] |= ((target>>11) & 0x1) << 10;
code[3] |= ((target>>8) & 0x7) << 12;
code[3] |= target & 0xff;
memcpy(extra->jumpIsland, code, 10);
}
return extra;
}
#endif // arm_HOST_ARCH
#endif
#endif // NEED_SYMBOL_EXTRAS
|