summaryrefslogtreecommitdiff
path: root/rts/posix/OSMem.c
blob: 53ea69702d236a7e726b26b6fd6a7ce12290d69f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
/* -----------------------------------------------------------------------------
 *
 * (c) The University of Glasgow 2006-2007
 *
 * OS-specific memory management
 *
 * ---------------------------------------------------------------------------*/

// This is non-posix compliant.
// #include "PosixSource.h"

#include "Rts.h"

#include "RtsUtils.h"
#include "sm/OSMem.h"
#include "sm/HeapAlloc.h"

#if defined(HAVE_UNISTD_H)
#include <unistd.h>
#endif
#if defined(HAVE_SYS_TYPES_H)
#include <sys/types.h>
#endif
#if defined(HAVE_SYS_MMAN_H)
#include <sys/mman.h>
#endif
#if defined(HAVE_STRING_H)
#include <string.h>
#endif
#if defined(HAVE_FCNTL_H)
#include <fcntl.h>
#endif
#if defined(HAVE_NUMA_H)
#include <numa.h>
#endif
#if defined(HAVE_NUMAIF_H)
#include <numaif.h>
#endif
#if defined(HAVE_SYS_RESOURCE_H) && defined(HAVE_SYS_TIME_H)
#include <sys/time.h>
#include <sys/resource.h>
#include <pthread.h>
#endif

#include <errno.h>

#if defined(darwin_HOST_OS) || defined(ios_HOST_OS)
#include <mach/mach.h>
#include <mach/vm_map.h>
#include <sys/sysctl.h>
#endif

#if !defined(MAP_FAILED)
# define MAP_FAILED ((void *)-1)
#endif

#if defined(hpux_HOST_OS)
# if !defined(MAP_ANON)
#  define MAP_ANON MAP_ANONYMOUS
# endif
#endif

#define HUGEPAGE_SIZE (2*1024*1024)
// This constant is from linux/mman.h
#define MAP_HUGE_2MB (21 << MAP_HUGE_SHIFT)
#define HUGEPAGE_FLAGS MAP_HUGETLB

#if !defined(darwin_HOST_OS)
# undef RESERVE_FLAGS
# if defined(MAP_GUARD)
#  define RESERVE_FLAGS  MAP_GUARD /* FreeBSD */
# elif defined(MAP_NORESERVE)
#  define RESERVE_FLAGS  MAP_NORESERVE | MAP_ANON | MAP_PRIVATE;
# else
#  if defined(USE_LARGE_ADDRESS_SPACE)
#   error USE_LARGE_ADDRESS_SPACE needs MAP_NORESERVE or MAP_GUARD
#  endif
# endif
#endif

int huge_tried = 0;
int huge_failed = 0;

static void *next_request = 0;

void osMemInit(void)
{
    next_request = (void *)RtsFlags.GcFlags.heapBase;
}

/* -----------------------------------------------------------------------------
   The mmap() method

   On Unix-like systems, we use mmap() to allocate our memory.  We
   want memory in chunks of MBLOCK_SIZE, and aligned on an MBLOCK_SIZE
   boundary.  The mmap() interface doesn't give us this level of
   control, so we have to use some heuristics.

   In the general case, if we want a block of n megablocks, then we
   allocate n+1 and trim off the slop from either side (using
   munmap()) to get an aligned chunk of size n.  However, the next
   time we'll try to allocate directly after the previously allocated
   chunk, on the grounds that this is aligned and likely to be free.
   If it turns out that we were wrong, we have to munmap() and try
   again using the general method.

   Note on posix_memalign(): this interface is available on recent
   systems and appears to provide exactly what we want.  However, it
   turns out not to be as good as our mmap() implementation, because
   it wastes extra space (using double the address space, in a test on
   x86_64/Linux).  The problem seems to be that posix_memalign()
   returns memory that can be free()'d, so the library must store
   extra information along with the allocated block, thus messing up
   the alignment.  Hence, we don't use posix_memalign() for now.

   -------------------------------------------------------------------------- */

/*
 A wrapper around mmap(), to abstract away from OS differences in
 the mmap() interface.

 It supports the following operations:
 - reserve: find a new chunk of available address space, and make it so
            that we own it (no other library will get it), but don't actually
            allocate memory for it
            the addr is a hint for where to place the memory (and most
            of the time the OS happily ignores!)
 - commit: given a chunk of address space that we know we own, make sure
           there is some memory backing it
           the addr is not a hint, it must point into previously reserved
           address space, or bad things happen
 - reserve&commit: do both at the same time

 The naming is chosen from the Win32 API (VirtualAlloc) which does the
 same thing and has done so forever, while support for this in Unix systems
 has only been added recently and is hidden in the posix portability mess.
 The Linux manpage suggests that mmap must be passed MAP_NORESERVE in order
 to get reservation-only behavior. It is confusing because to get the reserve
 behavior we need MAP_NORESERVE (which tells the kernel not to allocate backing
 space), but heh...
*/
enum
{
    MEM_RESERVE = 1,
    MEM_COMMIT = 2,
    MEM_RESERVE_AND_COMMIT = MEM_RESERVE | MEM_COMMIT
};

#if defined(linux_HOST_OS)
static void *
linux_retry_mmap(int operation, W_ size, void *ret, void *addr, int prot, int flags)
{
    if (addr != 0 && (operation & MEM_RESERVE)) {
        // Try again with no hint address.
        // It's not clear that this can ever actually help,
        // but since our alternative is to abort, we may as well try.
        ret = mmap(0, size, prot, flags, -1, 0);
    }
    if (ret == MAP_FAILED && errno == EPERM) {
        // Linux is not willing to give us any mapping,
        // so treat this as an out-of-memory condition
        // (really out of virtual address space).
        errno = ENOMEM;
    }
    return ret;
}
#endif /* defined(linux_HOST_OS) */

static void
post_mmap_madvise(int operation, W_ size, void *ret)
{
#if defined(MADV_WILLNEED)
    if (operation & MEM_COMMIT) {
        madvise(ret, size, MADV_WILLNEED);
# if defined(MADV_DODUMP)
        madvise(ret, size, MADV_DODUMP);
# endif
    } else {
        madvise(ret, size, MADV_DONTNEED);
# if defined(MADV_DONTDUMP)
        madvise(ret, size, MADV_DONTDUMP);
# endif
    }
#endif
}

/* Returns NULL on failure; errno set */
static void *
my_mmap (void *addr, W_ size, int operation)
{
    void *ret;

#if defined(darwin_HOST_OS)
    // Without MAP_FIXED, Apple's mmap ignores addr.
    // With MAP_FIXED, it overwrites already mapped regions, which
    // mmap(0, ... MAP_FIXED ...) is worst of all: It unmaps the program text
    // and replaces it with zeroes, causing instant death.
    // This behaviour seems to be conformant with IEEE Std 1003.1-2001.
    // Let's just use the underlying Mach Microkernel calls directly,
    // they're much nicer.

    kern_return_t err = 0;
    ret = addr;

    if(operation & MEM_RESERVE)
    {
        if(addr)    // try to allocate at address
            err = vm_allocate(mach_task_self(),(vm_address_t*) &ret,
                              size, false);
        if(!addr || err)    // try to allocate anywhere
            err = vm_allocate(mach_task_self(),(vm_address_t*) &ret,
                              size, true);
    }

    if(err) {
        // don't know what the error codes mean exactly, assume it's
        // not our problem though.
        errorBelch("memory allocation failed (requested %" FMT_Word " bytes)",
                   size);
        stg_exit(EXIT_FAILURE);
    }

    if(operation & MEM_COMMIT) {
        vm_protect(mach_task_self(), (vm_address_t)ret, size, false,
                   VM_PROT_READ|VM_PROT_WRITE);
    }

#else /* defined(darwin_HOST_OS) */

    int prot, flags;
    if (operation & MEM_COMMIT) {
        prot = PROT_READ | PROT_WRITE;
    } else {
        prot = PROT_NONE;
    }

    if (operation == MEM_RESERVE) {
# if defined(RESERVE_FLAGS)
        flags = RESERVE_FLAGS;
# else
        errorBelch("my_mmap(,,MEM_RESERVE) not supported on this platform");
# endif
    } else if (operation == MEM_COMMIT) {
        flags = MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE;
        if ( RtsFlags.GcFlags.hugepages &&
            (size & (HUGEPAGE_SIZE - 1)) == 0) {
          huge_tried += 1;
          flags |= HUGEPAGE_FLAGS;
        }
    } else {
        flags = MAP_ANON | MAP_PRIVATE;
    }

    ret = mmap(addr, size, prot, flags, -1, 0);
    // If the mmap failed, and we tried with HUGEPAGE_FLAGS
    // then retry without.
    if (ret == MAP_FAILED && flags & HUGEPAGE_FLAGS){
      huge_failed += 1;
      flags &= ~HUGEPAGE_FLAGS;
      ret = mmap(addr, size, prot, flags, -1, 0);
    }
# if defined(linux_HOST_OS)
    if (ret == MAP_FAILED && errno == EPERM) {
        // Linux may return EPERM if it tried to give us
        // a chunk of address space below mmap_min_addr,
        // See #7500.
        ret = linux_retry_mmap(operation, size, ret, addr, prot, flags);
    }
# endif
    if (ret == MAP_FAILED) {
        return NULL;
    }
#endif /* defined(darwin_HOST_OS) */

    // Map in committed pages rather than take a fault for each chunk.
    // Also arrange to include them in core-dump files.
    post_mmap_madvise(operation, size, ret);

    return ret;
}

/* Variant of my_mmap which aborts in the case of an error */
static void *
my_mmap_or_barf (void *addr, W_ size, int operation)
{
    void *ret = my_mmap(addr, size, operation);

    if (ret == NULL) {
        if (errno == ENOMEM ||
            (errno == EINVAL && sizeof(void*)==4 && size >= 0xc0000000)) {
            // If we request more than 3Gig, then we get EINVAL
            // instead of ENOMEM (at least on Linux).
            errorBelch("out of memory (requested %" FMT_Word " bytes)", size);
            stg_exit(EXIT_HEAPOVERFLOW);
        } else {
            barf("getMBlock: mmap: %s", strerror(errno));
        }
    }

    return ret;
}

// Implements the general case: allocate a chunk of memory of 'size'
// mblocks.

static void *
gen_map_mblocks (W_ size)
{
    int slop;
    StgWord8 *ret;

    // Try to map a larger block, and take the aligned portion from
    // it (unmap the rest).
    size += MBLOCK_SIZE;
    ret = my_mmap_or_barf(0, size, MEM_RESERVE_AND_COMMIT);

    // unmap the slop bits around the chunk we allocated
    slop = (W_)ret & MBLOCK_MASK;

    if (munmap((void*)ret, MBLOCK_SIZE - slop) == -1) {
      barf("gen_map_mblocks: munmap failed");
    }
    if (slop > 0 && munmap((void*)(ret+size-slop), slop) == -1) {
      barf("gen_map_mblocks: munmap failed");
    }

    // ToDo: if we happened to get an aligned block, then don't
    // unmap the excess, just use it. For this to work, you
    // need to keep in mind the following:
    //     * Calling my_mmap() with an 'addr' arg pointing to
    //       already my_mmap()ed space is OK and won't fail.
    //     * If my_mmap() can't satisfy the request at the
    //       given 'next_request' address in getMBlocks(), that
    //       you unmap the extra mblock mmap()ed here (or simply
    //       satisfy yourself that the slop introduced isn't worth
    //       salvaging.)
    //

    // next time, try after the block we just got.
    ret += MBLOCK_SIZE - slop;
    return ret;
}

void *
osGetMBlocks(uint32_t n)
{
  void *ret;
  W_ size = MBLOCK_SIZE * (W_)n;

  if (next_request == 0) {
      // use gen_map_mblocks the first time.
      ret = gen_map_mblocks(size);
  } else {
      ret = my_mmap_or_barf(next_request, size, MEM_RESERVE_AND_COMMIT);

      if (((W_)ret & MBLOCK_MASK) != 0) {
          // misaligned block!
#if 0 // defined(DEBUG)
          errorBelch("warning: getMBlock: misaligned block %p returned "
                     "when allocating %d megablock(s) at %p",
                     ret, n, next_request);
#endif

          // unmap this block...
          if (munmap(ret, size) == -1) {
              barf("getMBlock: munmap failed");
          }
          // and do it the hard way
          ret = gen_map_mblocks(size);
      }
  }

  // Next time, we'll try to allocate right after the block we just got.
  // ToDo: check that we haven't already grabbed the memory at next_request
  next_request = (char *)ret + size;

  return ret;
}

void osBindMBlocksToNode(
    void *addr STG_UNUSED,
    StgWord size STG_UNUSED,
    uint32_t node STG_UNUSED)
{
#if HAVE_LIBNUMA
    int ret;
    unsigned long mask = 0;
    mask |= 1 << node;
    if (RtsFlags.GcFlags.numa) {
        ret = mbind(addr, (unsigned long)size,
                    MPOL_BIND, &mask, sizeof(StgWord)*8, MPOL_MF_STRICT);
        // paranoia: MPOL_BIND guarantees memory on the correct node;
        // MPOL_MF_STRICT will tell us if it didn't work.  We might want to
        // relax these in due course, but I want to be sure it's doing what we
        // want first.
        if (ret != 0) {
            sysErrorBelch("mbind");
            stg_exit(EXIT_FAILURE);
        }
    }
#endif
}


void osFreeMBlocks(void *addr, uint32_t n)
{
    munmap(addr, n * MBLOCK_SIZE);
}

void osReleaseFreeMemory(void) {
    /* Nothing to do on POSIX */
}

void osFreeAllMBlocks(void)
{
    void *mblock;
    void *state;

    for (mblock = getFirstMBlock(&state);
         mblock != NULL;
         mblock = getNextMBlock(&state, mblock)) {
        munmap(mblock, MBLOCK_SIZE);
    }
}

size_t getPageSize (void)
{
    static size_t pageSize = 0;

    if (pageSize == 0) {
        long ret;
        ret = sysconf(_SC_PAGESIZE);
        if (ret == -1) {
           barf("getPageSize: cannot get page size");
        }
        pageSize = ret;
    }

    return pageSize;
}

/* Returns 0 if physical memory size cannot be identified */
StgWord64 getPhysicalMemorySize (void)
{
    static StgWord64 physMemSize = 0;
    if (!physMemSize) {
#if defined(darwin_HOST_OS) || defined(ios_HOST_OS)
        /* So, darwin doesn't support _SC_PHYS_PAGES, but it does
           support getting the raw memory size in bytes through
           sysctlbyname(hw.memsize); */
        size_t len = sizeof(physMemSize);
        int ret = -1;

        /* Note hw.memsize is in bytes, so no need to multiply by page size. */
        ret = sysctlbyname("hw.memsize", &physMemSize, &len, NULL, 0);
        if (ret == -1) {
            physMemSize = 0;
            return 0;
        }
#else
        /* We'll politely assume we have a system supporting _SC_PHYS_PAGES
         * otherwise.  */
        W_ pageSize = getPageSize();
        long ret = sysconf(_SC_PHYS_PAGES);
        if (ret == -1) {
#if defined(DEBUG)
            errorBelch("warning: getPhysicalMemorySize: cannot get "
                       "physical memory size");
#endif
            return 0;
        }
        physMemSize = ret * pageSize;
#endif /* darwin_HOST_OS */
    }
    return physMemSize;
}

void setExecutable (void *p, W_ len, bool exec)
{
    StgWord pageSize = getPageSize();

    /* malloced memory isn't executable by default on OpenBSD */
    StgWord mask             = ~(pageSize - 1);
    StgWord startOfFirstPage = ((StgWord)p          ) & mask;
    StgWord startOfLastPage  = ((StgWord)p + len - 1) & mask;
    StgWord size             = startOfLastPage - startOfFirstPage + pageSize;
    if (mprotect((void*)startOfFirstPage, (size_t)size,
                 (exec ? PROT_EXEC : 0) | PROT_READ | PROT_WRITE) != 0) {
        barf("setExecutable: failed to protect 0x%p\n", p);
    }
}

#if defined(USE_LARGE_ADDRESS_SPACE)


static void *
osTryReserveHeapMemory (W_ len, void *hint)
{
    void *base, *top;
    void *start, *end;

    ASSERT((len & ~MBLOCK_MASK) == len);

    /* We try to allocate len + MBLOCK_SIZE,
       because we need memory which is MBLOCK_SIZE aligned,
       and then we discard what we don't need */

    base = my_mmap(hint, len + MBLOCK_SIZE, MEM_RESERVE);

    if (base == NULL)
        return NULL;

    top = (void*)((W_)base + len + MBLOCK_SIZE);

    if (((W_)base & MBLOCK_MASK) != 0) {
        start = MBLOCK_ROUND_UP(base);
        end = MBLOCK_ROUND_DOWN(top);
        ASSERT(((W_)end - (W_)start) == len);

        if (munmap(base, (W_)start-(W_)base) < 0) {
            sysErrorBelch("unable to release slop before heap");
        }
        if (munmap(end, (W_)top-(W_)end) < 0) {
            sysErrorBelch("unable to release slop after heap");
        }
    } else {
        start = base;
    }

    return start;
}

void *osReserveHeapMemory(void *startAddressPtr, W_ *len)
{
    int attempt;
    void *at;

    /* We want to ensure the heap starts at least 8 GB inside the address space,
       since we want to reserve the address space below that address for code.
       Specifically, we need to make sure that any dynamically loaded code will
       be close enough to the original code so that short relocations will work.
       This is in particular important on Darwin/Mach-O, because object files
       not compiled as shared libraries are position independent but cannot be
       loaded above 4GB.

       We do so with a hint to the mmap, and we verify the OS satisfied our
       hint. We loop, shifting our hint by 1 BLOCK_SIZE every time, in case
       there is already something allocated there.

       Some systems impose resource limits restricting the amount of memory we
       can request (see, e.g. #10877). If mmap fails we halve our allocation
       request and try again. If our request size gets absurdly small we simply
       give up.

    */

    W_ minimumAddress = (W_)8 * (1 << 30);
    // We don't use minimumAddress (0x200000000) as default because we know
    // it can clash with third-party libraries. See ticket #12573.
    W_ startAddress = 0x4200000000;
    if (startAddressPtr) {
        startAddress = (W_)startAddressPtr;
    }
    if (startAddress < minimumAddress) {
        errorBelch(
            "Provided heap start address %p is lower than minimum address %p",
            (void*)startAddress, (void*)minimumAddress);
    }

#if defined(HAVE_SYS_RESOURCE_H) && defined(HAVE_SYS_TIME_H)
    struct rlimit asLimit;
    /* rlim_t is signed on some platforms, including FreeBSD;
     * explicitly cast to avoid sign compare error */
    if (!getrlimit(RLIMIT_AS, &asLimit)
        && asLimit.rlim_cur > 0
        && *len > (W_) asLimit.rlim_cur) {

        /* In case address space/virtual memory was limited by rlimit (ulimit),
           we try to reserver 2/3 of that limit. If we take all, there'll be
           nothing left for spawning system threads etc. and we'll crash
           (See #18623)
        */

        pthread_attr_t threadAttr;
        if (pthread_attr_init(&threadAttr)) {
            // Never fails on Linux
            sysErrorBelch("failed to initialize thread attributes");
            stg_exit(EXIT_FAILURE);
        }

        size_t stacksz = 0;
        if (pthread_attr_getstacksize(&threadAttr, &stacksz)) {
            // Should never fail
            sysErrorBelch("failed to read default thread stack size");
            stg_exit(EXIT_FAILURE);
        }

        // Cleanup
        if (pthread_attr_destroy(&threadAttr)) {
            // Should never fail
            sysErrorBelch("failed to destroy thread attributes");
            stg_exit(EXIT_FAILURE);
        }

        size_t pageSize = getPageSize();
        // 2/3rds of limit, round down to multiple of PAGE_SIZE
        *len = (W_) (asLimit.rlim_cur * 0.666) & ~(pageSize - 1);

        // debugBelch("New len: %zu, pageSize: %zu\n", *len, pageSize);

        /* Make sure we leave enough vmem for at least three threads.
           This number was found through trial and error. We're at least launching
           that many threads (e.g., itimer). We can't know for sure how much we need,
           but at least we can fail early and give a useful error message in this case. */
        if (((W_) (asLimit.rlim_cur - *len )) < ((W_) (stacksz * 3))) {
            // Three stacks is 1/3 of needed, then convert to Megabyte
            size_t needed = (stacksz * 3 * 3) / (1024 * 1024);
            errorBelch("the current resource limit for virtual memory ('ulimit -v' or RLIMIT_AS) is too low.\n"
                "Please make sure that at least %zuMiB of virtual memory are available.", needed);
            stg_exit(EXIT_FAILURE);
        }
    }
#endif

    attempt = 0;
    while (1) {
        *len &= ~MBLOCK_MASK;

        if (*len < MBLOCK_SIZE) {
            // Give up if the system won't even give us 16 blocks worth of heap
            barf("osReserveHeapMemory: Failed to allocate heap storage");
        }

        void *hint = (void*)(startAddress + attempt * BLOCK_SIZE);
        at = osTryReserveHeapMemory(*len, hint);
        if (at == NULL) {
            // This means that mmap failed which we take to mean that we asked
            // for too much memory. This can happen due to POSIX resource
            // limits. In this case we reduce our allocation request by a
            // fraction of the current size and try again.
            //
            // Note that the previously would instead decrease the request size
            // by a factor of two; however, this meant that significant amounts
            // of memory will be wasted (e.g. imagine a machine with 512GB of
            // physical memory but a 511GB ulimit). See #14492.
            *len -= *len / 8;
            // debugBelch("Limit hit, reduced len: %zu\n", *len);
        } else if ((W_)at >= minimumAddress) {
            // Success! We were given a block of memory starting above the 8 GB
            // mark, which is what we were looking for.

            break;
        } else {
            // We got addressing space but it wasn't above the 8GB mark.
            // Try again.
            if (munmap(at, *len) < 0) {
                sysErrorBelch("unable to release reserved heap");
            }
        }
        attempt++;
    }

    return at;
}

void osCommitMemory(void *at, W_ size)
{
    void *r = my_mmap(at, size, MEM_COMMIT);
    if (r == NULL) {
        barf("Unable to commit %" FMT_Word " bytes of memory", size);
    }
}

/* Note [MADV_FREE and MADV_DONTNEED]
 *
 * madvise() provides flags with which one can release no longer needed pages
 * back to the kernel without having to munmap() (which is expensive).
 *
 * On Linux, MADV_FREE is newer and faster because it can avoid zeroing
 * pages if they are re-used by the process later (see `man 2 madvise`),
 * but for the trade-off that memory inspection tools like `top` will
 * not immediately reflect the freeing in their display of resident memory
 * (RSS column): Only under memory pressure will Linux actually remove
 * the freed pages from the process and update its RSS statistics.
 * Until then, the pages show up as `LazyFree` in `/proc/PID/smaps`
 * (see `man 5 proc`).
 * The delayed RSS update can confuse programmers debugging memory issues,
 * production memory monitoring tools, and end users who may complain about
 * undue memory usage shown in reporting tools, so with
 * `disableDelayedOsMemoryReturn` we provide an RTS flag that allows forcing
 * usage of MADV_DONTNEED instead of MADV_FREE.
 */

void osDecommitMemory(void *at, W_ size)
{
    int r;

    // First make the memory unaccessible (so that we get a segfault
    // at the next attempt to touch it)
    // We only do this in DEBUG because it forces the OS to remove
    // all MMU entries for this page range, and there is no reason
    // to do so unless there is memory pressure
#if defined(DEBUG)
    r = mprotect(at, size, PROT_NONE);
    if(r < 0)
        sysErrorBelch("unable to make released memory unaccessible");
#endif

#if defined(MADV_FREE)
    // See Note [MADV_FREE and MADV_DONTNEED].
    // If MADV_FREE is disabled, fall-through to MADV_DONTNEED.
    if (!RtsFlags.MiscFlags.disableDelayedOsMemoryReturn) {
        // Try MADV_FREE first, FreeBSD has both and MADV_DONTNEED
        // just swaps memory out. Linux >= 4.5 has both DONTNEED and FREE; either
        // will work as they both allow the system to free anonymous pages.
        // It is important that we try both methods as the kernel which we were
        // built on may differ from the kernel we are now running on.
        r = madvise(at, size, MADV_FREE);
        if(r < 0) {
            if (errno == EINVAL) {
                // Perhaps the system doesn't support MADV_FREE; fall-through and
                // try MADV_DONTNEED.
            } else {
                sysErrorBelch("unable to decommit memory");
            }
        } else {
            return;
        }
    }
#endif

    r = madvise(at, size, MADV_DONTNEED);
    if(r < 0)
        sysErrorBelch("unable to decommit memory");
}

void osReleaseHeapMemory(void)
{
    int r;

    r = munmap((void*)mblock_address_space.begin,
               mblock_address_space.end - mblock_address_space.begin);
    if(r < 0)
        sysErrorBelch("unable to release address space");
}

#endif

bool osBuiltWithNumaSupport(void)
{
#if HAVE_LIBNUMA
    return true;
#else
    return false;
#endif
}

bool osNumaAvailable(void)
{
#if HAVE_LIBNUMA
    return (numa_available() != -1);
#else
    return false;
#endif
}

uint32_t osNumaNodes(void)
{
#if HAVE_LIBNUMA
    return numa_num_configured_nodes();
#else
    return 1;
#endif
}

uint64_t osNumaMask(void)
{
#if HAVE_LIBNUMA
    struct bitmask *mask;
    mask = numa_get_mems_allowed();
    if (osNumaNodes() > sizeof(StgWord)*8) {
        barf("osNumaMask: too many NUMA nodes (%d)", osNumaNodes());
    }
    uint64_t r = mask->maskp[0];
    numa_bitmask_free(mask);
    return r;
#else
    return 1;
#endif
}