1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
/* ---------------------------------------------------------------------------
*
* (c) The GHC Team, 2001-2005
*
* Accessing OS threads functionality in a (mostly) OS-independent
* manner.
*
* --------------------------------------------------------------------------*/
#if defined(__linux__)
/* We want GNU extensions in DEBUG mode for mutex error checking */
/* We also want the affinity API, which requires _GNU_SOURCE */
#define _GNU_SOURCE
#endif
#include "Rts.h"
#if defined(THREADED_RTS)
#include "OSThreads.h"
#include "RtsUtils.h"
#include "Task.h"
#if HAVE_STRING_H
#include <string.h>
#endif
#if !defined(HAVE_PTHREAD_H)
#error pthreads.h is required for the threaded RTS on Posix platforms
#endif
#if defined(HAVE_SCHED_H)
#include <sched.h>
#endif
/*
* This (allegedly) OS threads independent layer was initially
* abstracted away from code that used Pthreads, so the functions
* provided here are mostly just wrappers to the Pthreads API.
*
*/
void
initCondition( Condition* pCond )
{
pthread_cond_init(pCond, NULL);
return;
}
void
closeCondition( Condition* pCond )
{
pthread_cond_destroy(pCond);
return;
}
rtsBool
broadcastCondition ( Condition* pCond )
{
return (pthread_cond_broadcast(pCond) == 0);
}
rtsBool
signalCondition ( Condition* pCond )
{
return (pthread_cond_signal(pCond) == 0);
}
rtsBool
waitCondition ( Condition* pCond, Mutex* pMut )
{
return (pthread_cond_wait(pCond,pMut) == 0);
}
void
yieldThread()
{
sched_yield();
return;
}
void
shutdownThread()
{
pthread_exit(NULL);
}
int
createOSThread (OSThreadId* pId, OSThreadProc *startProc, void *param)
{
int result = pthread_create(pId, NULL, (void *(*)(void *))startProc, param);
if(!result)
pthread_detach(*pId);
return result;
}
OSThreadId
osThreadId()
{
return pthread_self();
}
rtsBool
osThreadIsAlive(OSThreadId id STG_UNUSED)
{
// no good way to implement this on POSIX, AFAICT. Returning true
// is safe.
return rtsTrue;
}
void
initMutex(Mutex* pMut)
{
#if defined(DEBUG)
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr,PTHREAD_MUTEX_ERRORCHECK);
pthread_mutex_init(pMut,&attr);
#else
pthread_mutex_init(pMut,NULL);
#endif
return;
}
void
closeMutex(Mutex* pMut)
{
pthread_mutex_destroy(pMut);
}
void
newThreadLocalKey (ThreadLocalKey *key)
{
int r;
if ((r = pthread_key_create(key, NULL)) != 0) {
barf("newThreadLocalKey: %s", strerror(r));
}
}
void *
getThreadLocalVar (ThreadLocalKey *key)
{
return pthread_getspecific(*key);
// Note: a return value of NULL can indicate that either the key
// is not valid, or the key is valid and the data value has not
// yet been set. We need to use the latter case, so we cannot
// detect errors here.
}
void
setThreadLocalVar (ThreadLocalKey *key, void *value)
{
int r;
if ((r = pthread_setspecific(*key,value)) != 0) {
barf("setThreadLocalVar: %s", strerror(r));
}
}
void
freeThreadLocalKey (ThreadLocalKey *key)
{
int r;
if ((r = pthread_key_delete(*key)) != 0) {
barf("freeThreadLocalKey: %s", strerror(r));
}
}
static void *
forkOS_createThreadWrapper ( void * entry )
{
Capability *cap;
cap = rts_lock();
cap = rts_evalStableIO(cap, (HsStablePtr) entry, NULL);
taskTimeStamp(myTask());
rts_unlock(cap);
return NULL;
}
int
forkOS_createThread ( HsStablePtr entry )
{
pthread_t tid;
int result = pthread_create(&tid, NULL,
forkOS_createThreadWrapper, (void*)entry);
if(!result)
pthread_detach(tid);
return result;
}
nat
getNumberOfProcessors (void)
{
static nat nproc = 0;
if (nproc == 0) {
#if defined(HAVE_SYSCONF) && defined(_SC_NPROCESSORS_ONLN)
nproc = sysconf(_SC_NPROCESSORS_ONLN);
#elif defined(HAVE_SYSCONF) && defined(_SC_NPROCESSORS_CONF)
nproc = sysconf(_SC_NPROCESSORS_CONF);
#else
nproc = 1;
#endif
}
return nproc;
}
// Schedules the thread to run on CPU n of m. m may be less than the
// number of physical CPUs, in which case, the thread will be allowed
// to run on CPU n, n+m, n+2m etc.
void
setThreadAffinity (nat n, nat m)
{
#if defined(HAVE_SCHED_H) && defined(HAVE_SCHED_SETAFFINITY)
nat nproc;
cpu_set_t cs;
nat i;
nproc = getNumberOfProcessors();
CPU_ZERO(&cs);
for (i = n; i < nproc; i+=m) {
CPU_SET(n, &cs);
}
sched_setaffinity(0, sizeof(cpu_set_t), &cs);
#endif
}
#else /* !defined(THREADED_RTS) */
int
forkOS_createThread ( HsStablePtr entry STG_UNUSED )
{
return -1;
}
#endif /* !defined(THREADED_RTS) */
|