summaryrefslogtreecommitdiff
path: root/rts/posix/Signals.c
blob: ba4a8b75eaacae3d908d79033a9ff97c5d11186e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 1998-2005
 *
 * Signal processing / handling.
 *
 * ---------------------------------------------------------------------------*/

#include "PosixSource.h"
#include "Rts.h"

#include "Schedule.h"
#include "RtsSignals.h"
#include "Signals.h"
#include "RtsUtils.h"
#include "Prelude.h"
#include "Stable.h"

#ifdef alpha_HOST_ARCH
# if defined(linux_HOST_OS)
#  include <asm/fpu.h>
# else
#  include <machine/fpu.h>
# endif
#endif

#ifdef HAVE_UNISTD_H
# include <unistd.h>
#endif

#ifdef HAVE_SIGNAL_H
# include <signal.h>
#endif

#ifdef HAVE_ERRNO_H
# include <errno.h>
#endif

#ifdef HAVE_EVENTFD_H
# include <sys/eventfd.h>
#endif

#ifdef HAVE_TERMIOS_H
#include <termios.h>
#endif

#include <stdlib.h>
#include <string.h>

/* This curious flag is provided for the benefit of the Haskell binding
 * to POSIX.1 to control whether or not to include SA_NOCLDSTOP when
 * installing a SIGCHLD handler.
 */
HsInt nocldstop = 0;

/* -----------------------------------------------------------------------------
 * The table of signal handlers
 * -------------------------------------------------------------------------- */

#if defined(RTS_USER_SIGNALS)

/* SUP: The type of handlers is a little bit, well, doubtful... */
StgInt *signal_handlers = NULL; /* Dynamically grown array of signal handlers */
static StgInt nHandlers = 0;    /* Size of handlers array */

static nat n_haskell_handlers = 0;

static sigset_t userSignals;
static sigset_t savedSignals;

#ifdef THREADED_RTS
static Mutex sig_mutex; // protects signal_handlers, nHandlers
#endif

/* -----------------------------------------------------------------------------
 * Initialisation / deinitialisation
 * -------------------------------------------------------------------------- */

void
initUserSignals(void)
{
    sigemptyset(&userSignals);
#ifdef THREADED_RTS
    initMutex(&sig_mutex);
#endif
}

void
freeSignalHandlers(void) {
    if (signal_handlers != NULL) {
        stgFree(signal_handlers);
        signal_handlers = NULL;
        nHandlers = 0;
        n_haskell_handlers = 0;
    }
#ifdef THREADED_RTS
    closeMutex(&sig_mutex);
#endif
}

/* -----------------------------------------------------------------------------
 * Allocate/resize the table of signal handlers.
 * -------------------------------------------------------------------------- */

static void
more_handlers(int sig)
{
    StgInt i;

    if (sig < nHandlers)
        return;

    if (signal_handlers == NULL)
        signal_handlers = (StgInt *)stgMallocBytes((sig + 1) * sizeof(StgInt),
                                                   "more_handlers");
    else
        signal_handlers = (StgInt *)stgReallocBytes(signal_handlers,
                                                    (sig + 1) * sizeof(StgInt),
                                                    "more_handlers");

    for(i = nHandlers; i <= sig; i++)
        // Fill in the new slots with default actions
        signal_handlers[i] = STG_SIG_DFL;

    nHandlers = sig + 1;
}

// Here's the pipe into which we will send our signals
static int io_manager_wakeup_fd = -1;
static int timer_manager_control_wr_fd = -1;

#define IO_MANAGER_WAKEUP 0xff
#define IO_MANAGER_DIE    0xfe
#define IO_MANAGER_SYNC   0xfd

void setTimerManagerControlFd(int fd) {
    timer_manager_control_wr_fd = fd;
}

void
setIOManagerWakeupFd (int fd)
{
    // only called when THREADED_RTS, but unconditionally
    // compiled here because GHC.Event.Control depends on it.
    io_manager_wakeup_fd = fd;
}

/* -----------------------------------------------------------------------------
 * Wake up at least one IO or timer manager HS thread.
 * -------------------------------------------------------------------------- */
void
ioManagerWakeup (void)
{
    int r;
    // Wake up the IO Manager thread by sending a byte down its pipe
    if (io_manager_wakeup_fd >= 0) {
#if defined(HAVE_EVENTFD)
        StgWord64 n = (StgWord64)IO_MANAGER_WAKEUP;
        r = write(io_manager_wakeup_fd, (char *) &n, 8);
#else
        StgWord8 byte = (StgWord8)IO_MANAGER_WAKEUP;
        r = write(io_manager_wakeup_fd, &byte, 1);
#endif
        if (r == -1) { sysErrorBelch("ioManagerWakeup: write"); }
    }
}

#if defined(THREADED_RTS)
void
ioManagerDie (void)
{
    StgWord8 byte = (StgWord8)IO_MANAGER_DIE;
    nat i;
    int fd;
    int r;

    if (0 <= timer_manager_control_wr_fd) {
        r = write(timer_manager_control_wr_fd, &byte, 1);
        if (r == -1) { sysErrorBelch("ioManagerDie: write"); }
        timer_manager_control_wr_fd = -1;
    }

    for (i=0; i < n_capabilities; i++) {
        fd = capabilities[i]->io_manager_control_wr_fd;
        if (0 <= fd) {
            r = write(fd, &byte, 1);
            if (r == -1) { sysErrorBelch("ioManagerDie: write"); }
            capabilities[i]->io_manager_control_wr_fd = -1;
        }
    }
}

void
ioManagerStartCap (Capability **cap)
{
    rts_evalIO(cap,&base_GHCziConcziIO_ensureIOManagerIsRunning_closure,NULL);
}

void
ioManagerStart (void)
{
    // Make sure the IO manager thread is running
    Capability *cap;
    if (timer_manager_control_wr_fd < 0 || io_manager_wakeup_fd < 0) {
        cap = rts_lock();
        ioManagerStartCap(&cap);
        rts_unlock(cap);
    }
}
#endif

#if !defined(THREADED_RTS)

#define N_PENDING_HANDLERS 16

siginfo_t pending_handler_buf[N_PENDING_HANDLERS];
siginfo_t *next_pending_handler = pending_handler_buf;

#endif /* THREADED_RTS */

/* -----------------------------------------------------------------------------
 * Low-level signal handler
 *
 * Places the requested handler on a stack of pending handlers to be
 * started up at the next context switch.
 * -------------------------------------------------------------------------- */

static void
generic_handler(int sig USED_IF_THREADS,
                siginfo_t *info,
                void *p STG_UNUSED)
{
#if defined(THREADED_RTS)

    StgWord8 buf[sizeof(siginfo_t) + 1];
    int r;

    buf[0] = sig;
    if (info == NULL) {
        // info may be NULL on Solaris (see #3790)
        memset(buf+1, 0, sizeof(siginfo_t));
    } else {
        memcpy(buf+1, info, sizeof(siginfo_t));
    }

    if (0 <= timer_manager_control_wr_fd)
    {
        r = write(timer_manager_control_wr_fd, buf, sizeof(siginfo_t)+1);
        if (r == -1 && errno == EAGAIN) {
            errorBelch("lost signal due to full pipe: %d\n", sig);
        }
    }

    nat i;
    int fd;
    for (i=0; i < n_capabilities; i++) {
        fd = capabilities[i]->io_manager_control_wr_fd;
        if (0 <= fd) {
            r = write(fd, buf, sizeof(siginfo_t)+1);
            if (r == -1 && errno == EAGAIN) {
                errorBelch("lost signal due to full pipe: %d\n", sig);
            }
        }
    }

    // If the IO manager hasn't told us what the FD of the write end
    // of its pipe is, there's not much we can do here, so just ignore
    // the signal..

#else /* not THREADED_RTS */

    /* Can't call allocate from here.  Probably can't call malloc
       either.  However, we have to schedule a new thread somehow.

       It's probably ok to request a context switch and allow the
       scheduler to  start the handler thread, but how do we
       communicate this to the scheduler?

       We need some kind of locking, but with low overhead (i.e. no
       blocking signals every time around the scheduler).

       Signal Handlers are atomic (i.e. they can't be interrupted), and
       we can make use of this.  We just need to make sure the
       critical section of the scheduler can't be interrupted - the
       only way to do this is to block signals.  However, we can lower
       the overhead by only blocking signals when there are any
       handlers to run, i.e. the set of pending handlers is
       non-empty.
    */

    /* We use a stack to store the pending signals.  We can't
       dynamically grow this since we can't allocate any memory from
       within a signal handler.

       Hence unfortunately we have to bomb out if the buffer
       overflows.  It might be acceptable to carry on in certain
       circumstances, depending on the signal.
    */

    memcpy(next_pending_handler, info, sizeof(siginfo_t));

    next_pending_handler++;

    // stack full?
    if (next_pending_handler == &pending_handler_buf[N_PENDING_HANDLERS]) {
        errorBelch("too many pending signals");
        stg_exit(EXIT_FAILURE);
    }

    interruptCapability(&MainCapability);

#endif /* THREADED_RTS */
}

/* -----------------------------------------------------------------------------
 * Blocking/Unblocking of the user signals
 * -------------------------------------------------------------------------- */

void
blockUserSignals(void)
{
    sigprocmask(SIG_BLOCK, &userSignals, &savedSignals);
}

void
unblockUserSignals(void)
{
    sigprocmask(SIG_SETMASK, &savedSignals, NULL);
}

rtsBool
anyUserHandlers(void)
{
    return n_haskell_handlers != 0;
}

#if !defined(THREADED_RTS)
void
awaitUserSignals(void)
{
    while (!signals_pending() && sched_state == SCHED_RUNNING) {
        pause();
    }
}
#endif

/* -----------------------------------------------------------------------------
 * Install a Haskell signal handler.
 *
 * We should really do this in Haskell in GHC.Conc, and share the
 * signal_handlers array with the one there.
 *
 * -------------------------------------------------------------------------- */

int
stg_sig_install(int sig, int spi, void *mask)
{
    sigset_t signals, osignals;
    struct sigaction action;
    StgInt previous_spi;

    ACQUIRE_LOCK(&sig_mutex);

    // Block the signal until we figure out what to do
    // Count on this to fail if the signal number is invalid
    if (sig < 0 ||
          sigemptyset(&signals) ||
          sigaddset(&signals, sig) ||
          sigprocmask(SIG_BLOCK, &signals, &osignals)) {
        RELEASE_LOCK(&sig_mutex);
        return STG_SIG_ERR;
    }

    more_handlers(sig);

    previous_spi = signal_handlers[sig];

    action.sa_flags = 0;

    switch(spi) {
    case STG_SIG_IGN:
        action.sa_handler = SIG_IGN;
        break;

    case STG_SIG_DFL:
        action.sa_handler = SIG_DFL;
        break;

    case STG_SIG_RST:
        action.sa_flags |= SA_RESETHAND;
        /* fall through */
    case STG_SIG_HAN:
        action.sa_sigaction = generic_handler;
        action.sa_flags |= SA_SIGINFO;
        break;

    default:
        barf("stg_sig_install: bad spi");
    }

    if (mask != NULL)
        action.sa_mask = *(sigset_t *)mask;
    else
        sigemptyset(&action.sa_mask);

    action.sa_flags |= sig == SIGCHLD && nocldstop ? SA_NOCLDSTOP : 0;

    if (sigaction(sig, &action, NULL))
    {
        errorBelch("sigaction");
        RELEASE_LOCK(&sig_mutex);
        return STG_SIG_ERR;
    }

    signal_handlers[sig] = spi;

    switch(spi) {
    case STG_SIG_RST:
    case STG_SIG_HAN:
        sigaddset(&userSignals, sig);
        if (previous_spi != STG_SIG_HAN && previous_spi != STG_SIG_RST) {
            n_haskell_handlers++;
        }
        break;

    default:
        sigdelset(&userSignals, sig);
        if (previous_spi == STG_SIG_HAN || previous_spi == STG_SIG_RST) {
            n_haskell_handlers--;
        }
        break;
    }

    if (sigprocmask(SIG_SETMASK, &osignals, NULL))
    {
        errorBelch("sigprocmask");
        RELEASE_LOCK(&sig_mutex);
        return STG_SIG_ERR;
    }

    RELEASE_LOCK(&sig_mutex);
    return previous_spi;
}

/* -----------------------------------------------------------------------------
 * Creating new threads for signal handlers.
 * -------------------------------------------------------------------------- */

#if !defined(THREADED_RTS)
void
startSignalHandlers(Capability *cap)
{
  siginfo_t *info;
  int sig;

  blockUserSignals();

  while (next_pending_handler != pending_handler_buf) {

    next_pending_handler--;

    sig = next_pending_handler->si_signo;
    if (signal_handlers[sig] == STG_SIG_DFL) {
        continue; // handler has been changed.
    }

    info = stgMallocBytes(sizeof(siginfo_t), "startSignalHandlers");
           // freed by runHandler
    memcpy(info, next_pending_handler, sizeof(siginfo_t));

    scheduleThread(cap,
        createIOThread(cap,
          RtsFlags.GcFlags.initialStkSize,
              rts_apply(cap,
                  rts_apply(cap,
                      &base_GHCziConcziSignal_runHandlers_closure,
                      rts_mkPtr(cap, info)),
                  rts_mkInt(cap, info->si_signo))));
  }

  unblockUserSignals();
}
#endif

/* ----------------------------------------------------------------------------
 * Mark signal handlers during GC.
 * -------------------------------------------------------------------------- */

void
markSignalHandlers (evac_fn evac STG_UNUSED, void *user STG_UNUSED)
{
    // nothing to do
}

#else /* !RTS_USER_SIGNALS */
StgInt
stg_sig_install(StgInt sig STG_UNUSED,
                StgInt spi STG_UNUSED,
                void* mask STG_UNUSED)
{
  //barf("User signals not supported");
  return STG_SIG_DFL;
}

#endif

#if defined(RTS_USER_SIGNALS)
/* -----------------------------------------------------------------------------
 * SIGINT handler.
 *
 * We like to shutdown nicely after receiving a SIGINT, write out the
 * stats, write profiling info, close open files and flush buffers etc.
 * -------------------------------------------------------------------------- */
static void
shutdown_handler(int sig STG_UNUSED)
{
    // If we're already trying to interrupt the RTS, terminate with
    // extreme prejudice.  So the first ^C tries to exit the program
    // cleanly, and the second one just kills it.
    if (sched_state >= SCHED_INTERRUPTING) {
        stg_exit(EXIT_INTERRUPTED);
    } else {
        interruptStgRts();
    }
}

/* -----------------------------------------------------------------------------
 * An empty signal handler, currently used for SIGPIPE
 * -------------------------------------------------------------------------- */
static void
empty_handler (int sig STG_UNUSED)
{
    // nothing
}

/* -----------------------------------------------------------------------------
   SIGTSTP handling

   When a process is suspeended with ^Z and resumed again, the shell
   makes no attempt to save and restore the terminal settings.  So on
   resume, any terminal setting modificaions we made (e.g. turning off
   ICANON due to hSetBuffering NoBuffering) may well be lost.  Hence,
   we arrange to save and restore the terminal settings ourselves.

   The trick we use is:
     - catch SIGTSTP
     - in the handler,  kill(getpid(),SIGSTOP)
     - when this returns, restore the TTY settings
   This means we don't have to catch SIGCONT too.

   Note we don't re-throw SIGTSTP, we throw SIGSTOP instead.  This is
   for a few reasons:

      - re-throwing SIGTSTP would require temporarily restoring the
        default sigaction.

      - it doesn't work on certain buggy pthread implementations
        (e.g. OpenBSD).

      - throwing SIGTSTP seems slightly dodgy anyway.

   -------------------------------------------------------------------------- */

static void sigtstp_handler(int sig);
static void set_sigtstp_action (rtsBool handle);

static void
sigtstp_handler (int sig STG_UNUSED)
{
    int fd;
    struct termios ts[3];

    // save the current TTY state for TTYs we modified
    for (fd = 0; fd <= 2; fd++) {
        if (__hscore_get_saved_termios(fd) != NULL) {
            tcgetattr(fd,&ts[fd]);
        }
    }

    // really stop the process now
    kill(getpid(), SIGSTOP);

    // on return, restore the TTY state
    for (fd = 0; fd <= 2; fd++) {
        if (__hscore_get_saved_termios(fd) != NULL) {
            tcsetattr(0,TCSANOW,&ts[fd]);
        }
    }
}

static void
set_sigtstp_action (rtsBool handle)
{
    struct sigaction sa;
    if (handle) {
        sa.sa_handler = sigtstp_handler;
    } else {
        sa.sa_handler = SIG_DFL;
    }
    sa.sa_flags = 0;
    sigemptyset(&sa.sa_mask);
    if (sigaction(SIGTSTP, &sa, NULL) != 0) {
        sysErrorBelch("warning: failed to install SIGTSTP handler");
    }
}

/* -----------------------------------------------------------------------------
 * Install default signal handlers.
 *
 * The RTS installs a default signal handler for catching
 * SIGINT, so that we can perform an orderly shutdown.
 *
 * Haskell code may install their own SIGINT handler, which is
 * fine, provided they're so kind as to put back the old one
 * when they de-install.
 *
 * In addition to handling SIGINT, the RTS also handles SIGFPE
 * by ignoring it.  Apparently IEEE requires floating-point
 * exceptions to be ignored by default, but alpha-dec-osf3
 * doesn't seem to do so.
 * -------------------------------------------------------------------------- */
void
initDefaultHandlers(void)
{
    struct sigaction action,oact;

    // install the SIGINT handler
    action.sa_handler = shutdown_handler;
    sigemptyset(&action.sa_mask);
    action.sa_flags = 0;
    if (sigaction(SIGINT, &action, &oact) != 0) {
        sysErrorBelch("warning: failed to install SIGINT handler");
    }

#if defined(HAVE_SIGINTERRUPT)
    siginterrupt(SIGINT, 1);    // isn't this the default? --SDM
#endif

    // install the SIGFPE handler

    // In addition to handling SIGINT, also handle SIGFPE by ignoring it.
    // Apparently IEEE requires floating-point exceptions to be ignored by
    // default, but alpha-dec-osf3 doesn't seem to do so.

    // Commented out by SDM 2/7/2002: this causes an infinite loop on
    // some architectures when an integer division by zero occurs: we
    // don't recover from the floating point exception, and the
    // program just generates another one immediately.
#if 0
    action.sa_handler = SIG_IGN;
    sigemptyset(&action.sa_mask);
    action.sa_flags = 0;
    if (sigaction(SIGFPE, &action, &oact) != 0) {
        sysErrorBelch("warning: failed to install SIGFPE handler");
    }
#endif

#ifdef alpha_HOST_ARCH
    ieee_set_fp_control(0);
#endif

    // ignore SIGPIPE; see #1619
    // actually, we use an empty signal handler rather than SIG_IGN,
    // so that SIGPIPE gets reset to its default behaviour on exec.
    action.sa_handler = empty_handler;
    sigemptyset(&action.sa_mask);
    action.sa_flags = 0;
    if (sigaction(SIGPIPE, &action, &oact) != 0) {
        sysErrorBelch("warning: failed to install SIGPIPE handler");
    }

    set_sigtstp_action(rtsTrue);
}

void
resetDefaultHandlers(void)
{
    struct sigaction action;

    action.sa_handler = SIG_DFL;
    sigemptyset(&action.sa_mask);
    action.sa_flags = 0;

    // restore SIGINT
    if (sigaction(SIGINT, &action, NULL) != 0) {
        sysErrorBelch("warning: failed to uninstall SIGINT handler");
    }
    // restore SIGPIPE
    if (sigaction(SIGPIPE, &action, NULL) != 0) {
        sysErrorBelch("warning: failed to uninstall SIGPIPE handler");
    }

    set_sigtstp_action(rtsFalse);
}

#endif /* RTS_USER_SIGNALS */

// Local Variables:
// mode: C
// fill-column: 80
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: