1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1995-2007
*
* Interval timer for profiling and pre-emptive scheduling.
*
* ---------------------------------------------------------------------------*/
/*
* We use a realtime timer by default. I found this much more
* reliable than a CPU timer:
*
* Experiments with different frequencies: using
* CLOCK_REALTIME/CLOCK_MONOTONIC on Linux 2.6.32,
* 1000us has <1% impact on runtime
* 100us has ~2% impact on runtime
* 10us has ~40% impact on runtime
*
* using CLOCK_PROCESS_CPUTIME_ID on Linux 2.6.32,
* I cannot get it to tick faster than 10ms (10000us)
* which isn't great for profiling.
*
* In the threaded RTS, we can't tick in CPU time because the thread
* which has the virtual timer might be idle, so the tick would never
* fire. Therefore we used to tick in realtime in the threaded RTS and
* in CPU time otherwise, but now we always tick in realtime, for
* several reasons:
*
* - resolution (see above)
* - consistency (-threaded is the same as normal)
* - more consistency: Windows only has a realtime timer
*
* Note we want to use CLOCK_MONOTONIC rather than CLOCK_REALTIME,
* because the latter may jump around (NTP adjustments, leap seconds
* etc.).
*/
#include "PosixSource.h"
#include "Rts.h"
#include "Ticker.h"
#include "RtsUtils.h"
#include "Proftimer.h"
#include "Schedule.h"
#include "posix/Clock.h"
/* As recommended in the autoconf manual */
# if defined(TIME_WITH_SYS_TIME)
# include <sys/time.h>
# include <time.h>
# else
# if defined(HAVE_SYS_TIME_H)
# include <sys/time.h>
# else
# include <time.h>
# endif
# endif
#if defined(HAVE_SIGNAL_H)
# include <signal.h>
#endif
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <fcntl.h>
#if defined(HAVE_SYS_TIMERFD_H)
#include <sys/timerfd.h>
#define USE_TIMERFD_FOR_ITIMER 1
#else
#define USE_TIMERFD_FOR_ITIMER 0
#endif
/*
* TFD_CLOEXEC has been added in Linux 2.6.26.
* If it is not available, we use fcntl(F_SETFD).
*/
#if !defined(TFD_CLOEXEC)
#define TFD_CLOEXEC 0
#endif
static Time itimer_interval = DEFAULT_TICK_INTERVAL;
// Should we be firing ticks?
// Writers to this must hold the mutex below.
static volatile bool stopped = false;
// should the ticker thread exit?
// This can be set without holding the mutex.
static volatile bool exited = true;
// Signaled when we want to (re)start the timer
static Condition start_cond;
static Mutex mutex;
static OSThreadId thread;
static void *itimer_thread_func(void *_handle_tick)
{
TickProc handle_tick = _handle_tick;
uint64_t nticks;
int timerfd = -1;
#if defined(USE_TIMERFD_FOR_ITIMER) && USE_TIMERFD_FOR_ITIMER
struct itimerspec it;
it.it_value.tv_sec = TimeToSeconds(itimer_interval);
it.it_value.tv_nsec = TimeToNS(itimer_interval) % 1000000000;
it.it_interval = it.it_value;
timerfd = timerfd_create(CLOCK_MONOTONIC, TFD_CLOEXEC);
if (timerfd == -1) {
barf("timerfd_create: %s", strerror(errno));
}
if (!TFD_CLOEXEC) {
fcntl(timerfd, F_SETFD, FD_CLOEXEC);
}
if (timerfd_settime(timerfd, 0, &it, NULL)) {
barf("timerfd_settime: %s", strerror(errno));
}
#endif
while (!exited) {
if (USE_TIMERFD_FOR_ITIMER) {
if (read(timerfd, &nticks, sizeof(nticks)) != sizeof(nticks)) {
if (errno != EINTR) {
barf("Itimer: read(timerfd) failed: %s", strerror(errno));
}
}
} else {
if (rtsSleep(itimer_interval) != 0) {
sysErrorBelch("ITimer: sleep failed: %s", strerror(errno));
}
}
// first try a cheap test
if (stopped) {
OS_ACQUIRE_LOCK(&mutex);
// should we really stop?
if (stopped) {
waitCondition(&start_cond, &mutex);
}
OS_RELEASE_LOCK(&mutex);
} else {
handle_tick(0);
}
}
if (USE_TIMERFD_FOR_ITIMER)
close(timerfd);
return NULL;
}
void
initTicker (Time interval, TickProc handle_tick)
{
itimer_interval = interval;
stopped = false;
exited = false;
initCondition(&start_cond);
initMutex(&mutex);
/*
* We can't use the RTS's createOSThread here as we need to remain attached
* to the thread we create so we can later join to it if requested
*/
if (! pthread_create(&thread, NULL, itimer_thread_func, (void*)handle_tick)) {
#if defined(HAVE_PTHREAD_SETNAME_NP)
pthread_setname_np(thread, "ghc_ticker");
#endif
} else {
barf("Itimer: Failed to spawn thread: %s", strerror(errno));
}
}
void
startTicker(void)
{
OS_ACQUIRE_LOCK(&mutex);
stopped = 0;
signalCondition(&start_cond);
OS_RELEASE_LOCK(&mutex);
}
/* There may be at most one additional tick fired after a call to this */
void
stopTicker(void)
{
OS_ACQUIRE_LOCK(&mutex);
stopped = 1;
OS_RELEASE_LOCK(&mutex);
}
/* There may be at most one additional tick fired after a call to this */
void
exitTicker (bool wait)
{
ASSERT(!exited);
exited = true;
// ensure that ticker wakes up if stopped
startTicker();
// wait for ticker to terminate if necessary
if (wait) {
if (pthread_join(thread, NULL)) {
sysErrorBelch("Itimer: Failed to join: %s", strerror(errno));
}
closeMutex(&mutex);
closeCondition(&start_cond);
} else {
pthread_detach(thread);
}
}
int
rtsTimerSignal(void)
{
return SIGALRM;
}
|