1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team 1998-2008
*
* The block allocator and free list manager.
*
* This is the architecture independent part of the block allocator.
* It requires only the following support from the operating system:
*
* void *getMBlock(nat n);
*
* returns the address of an n*MBLOCK_SIZE region of memory, aligned on
* an MBLOCK_SIZE boundary. There are no other restrictions on the
* addresses of memory returned by getMBlock().
*
* ---------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "RtsFlags.h"
#include "RtsUtils.h"
#include "BlockAlloc.h"
#include "MBlock.h"
#include "Storage.h"
#include <string.h>
static void initMBlock(void *mblock);
// The free_list is kept sorted by size, smallest first.
// In THREADED_RTS mode, the free list is protected by sm_mutex.
/* -----------------------------------------------------------------------------
Implementation notes
~~~~~~~~~~~~~~~~~~~~
Terminology:
- bdescr = block descriptor
- bgroup = block group (1 or more adjacent blocks)
- mblock = mega block
- mgroup = mega group (1 or more adjacent mblocks)
Invariants on block descriptors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
bd->start always points to the start of the block.
bd->free is either:
- zero for a non-group-head; bd->link points to the head
- (-1) for the head of a free block group
- or it points within the block
bd->blocks is either:
- zero for a non-group-head; bd->link points to the head
- number of blocks in this group otherwise
bd->link either points to a block descriptor or is NULL
The following fields are not used by the allocator:
bd->flags
bd->gen_no
bd->step
Exceptions: we don't maintain invariants for all the blocks within a
group on the free list, because it is expensive to modify every
bdescr in a group when coalescing. Just the head and last bdescrs
will be correct for a group on the free list.
Free lists
~~~~~~~~~~
Preliminaries:
- most allocations are for small blocks
- sometimes the OS gives us new memory backwards in the address
space, sometimes forwards, so we should not be biased towards
any particular layout in the address space
- We want to avoid fragmentation
- We want allocation and freeing to be O(1) or close.
Coalescing trick: when a bgroup is freed (freeGroup()), we can check
whether it can be coalesced with other free bgroups by checking the
bdescrs for the blocks on either side of it. This means that we can
coalesce in O(1) time. Every free bgroup must have its head and tail
bdescrs initialised, the rest don't matter.
We keep the free list in buckets, using a heap-sort strategy.
Bucket N contains blocks with sizes 2^N - 2^(N+1)-1. The list of
blocks in each bucket is doubly-linked, so that if a block is
coalesced we can easily remove it from its current free list.
To allocate a new block of size S, grab a block from bucket
log2ceiling(S) (i.e. log2() rounded up), in which all blocks are at
least as big as S, and split it if necessary. If there are no
blocks in that bucket, look at bigger buckets until a block is found
Allocation is therefore O(logN) time.
To free a block:
- coalesce it with neighbours.
- remove coalesced neighbour(s) from free list(s)
- add the new (coalesced) block to the front of the appropriate
bucket, given by log2(S) where S is the size of the block.
Free is O(1).
We cannot play this coalescing trick with mblocks, because there is
no requirement that the bdescrs in the second and subsequent mblock
of an mgroup are initialised (the mgroup might be filled with a
large array, overwriting the bdescrs for example).
So there is a separate free list for megablocks, sorted in *address*
order, so that we can coalesce. Allocation in this list is best-fit
by traversing the whole list: we don't expect this list to be long,
and allocation/freeing of large blocks is rare; avoiding
fragmentation is more important than performance here.
freeGroup() might end up moving a block from free_list to
free_mblock_list, if after coalescing we end up with a full mblock.
checkFreeListSanity() checks all the invariants on the free lists.
--------------------------------------------------------------------------- */
#define MAX_FREE_LIST 9
static bdescr *free_list[MAX_FREE_LIST];
static bdescr *free_mblock_list;
// free_list[i] contains blocks that are at least size 2^i, and at
// most size 2^(i+1) - 1.
//
// To find the free list in which to place a block, use log_2(size).
// To find a free block of the right size, use log_2_ceil(size).
lnat n_alloc_blocks; // currently allocated blocks
lnat hw_alloc_blocks; // high-water allocated blocks
/* -----------------------------------------------------------------------------
Initialisation
-------------------------------------------------------------------------- */
void initBlockAllocator(void)
{
nat i;
for (i=0; i < MAX_FREE_LIST; i++) {
free_list[i] = NULL;
}
free_mblock_list = NULL;
n_alloc_blocks = 0;
hw_alloc_blocks = 0;
}
/* -----------------------------------------------------------------------------
Allocation
-------------------------------------------------------------------------- */
STATIC_INLINE void
initGroup(bdescr *head)
{
bdescr *bd;
nat i, n;
n = head->blocks;
head->free = head->start;
head->link = NULL;
for (i=1, bd = head+1; i < n; i++, bd++) {
bd->free = 0;
bd->blocks = 0;
bd->link = head;
}
}
// There are quicker non-loopy ways to do log_2, but we expect n to be
// usually small, and MAX_FREE_LIST is also small, so the loop version
// might well be the best choice here.
STATIC_INLINE nat
log_2_ceil(nat n)
{
nat i, x;
x = 1;
for (i=0; i < MAX_FREE_LIST; i++) {
if (x >= n) return i;
x = x << 1;
}
return MAX_FREE_LIST;
}
STATIC_INLINE nat
log_2(nat n)
{
nat i, x;
x = n;
for (i=0; i < MAX_FREE_LIST; i++) {
x = x >> 1;
if (x == 0) return i;
}
return MAX_FREE_LIST;
}
STATIC_INLINE void
free_list_insert (bdescr *bd)
{
nat ln;
ASSERT(bd->blocks < BLOCKS_PER_MBLOCK);
ln = log_2(bd->blocks);
dbl_link_onto(bd, &free_list[ln]);
}
STATIC_INLINE bdescr *
tail_of (bdescr *bd)
{
return bd + bd->blocks - 1;
}
// After splitting a group, the last block of each group must have a
// tail that points to the head block, to keep our invariants for
// coalescing.
STATIC_INLINE void
setup_tail (bdescr *bd)
{
bdescr *tail;
tail = tail_of(bd);
if (tail != bd) {
tail->blocks = 0;
tail->free = 0;
tail->link = bd;
}
}
// Take a free block group bd, and split off a group of size n from
// it. Adjust the free list as necessary, and return the new group.
static bdescr *
split_free_block (bdescr *bd, nat n, nat ln)
{
bdescr *fg; // free group
ASSERT(bd->blocks > n);
dbl_link_remove(bd, &free_list[ln]);
fg = bd + bd->blocks - n; // take n blocks off the end
fg->blocks = n;
bd->blocks -= n;
setup_tail(bd);
ln = log_2(bd->blocks);
dbl_link_onto(bd, &free_list[ln]);
return fg;
}
static bdescr *
alloc_mega_group (nat mblocks)
{
bdescr *best, *bd, *prev;
nat n;
n = MBLOCK_GROUP_BLOCKS(mblocks);
best = NULL;
prev = NULL;
for (bd = free_mblock_list; bd != NULL; prev = bd, bd = bd->link)
{
if (bd->blocks == n)
{
if (prev) {
prev->link = bd->link;
} else {
free_mblock_list = bd->link;
}
initGroup(bd);
return bd;
}
else if (bd->blocks > n)
{
if (!best || bd->blocks < best->blocks)
{
best = bd;
}
}
}
if (best)
{
// we take our chunk off the end here.
nat best_mblocks = BLOCKS_TO_MBLOCKS(best->blocks);
bd = FIRST_BDESCR(MBLOCK_ROUND_DOWN(best) +
(best_mblocks-mblocks)*MBLOCK_SIZE);
best->blocks = MBLOCK_GROUP_BLOCKS(best_mblocks - mblocks);
initMBlock(MBLOCK_ROUND_DOWN(bd));
}
else
{
void *mblock = getMBlocks(mblocks);
initMBlock(mblock); // only need to init the 1st one
bd = FIRST_BDESCR(mblock);
}
bd->blocks = MBLOCK_GROUP_BLOCKS(mblocks);
return bd;
}
bdescr *
allocGroup (nat n)
{
bdescr *bd, *rem;
nat ln;
if (n == 0) barf("allocGroup: requested zero blocks");
if (n >= BLOCKS_PER_MBLOCK)
{
nat mblocks;
mblocks = BLOCKS_TO_MBLOCKS(n);
// n_alloc_blocks doesn't count the extra blocks we get in a
// megablock group.
n_alloc_blocks += mblocks * BLOCKS_PER_MBLOCK;
if (n_alloc_blocks > hw_alloc_blocks) hw_alloc_blocks = n_alloc_blocks;
bd = alloc_mega_group(mblocks);
// only the bdescrs of the first MB are required to be initialised
initGroup(bd);
IF_DEBUG(sanity, checkFreeListSanity());
return bd;
}
n_alloc_blocks += n;
if (n_alloc_blocks > hw_alloc_blocks) hw_alloc_blocks = n_alloc_blocks;
ln = log_2_ceil(n);
while (ln < MAX_FREE_LIST && free_list[ln] == NULL) {
ln++;
}
if (ln == MAX_FREE_LIST) {
#if 0
if ((mblocks_allocated * MBLOCK_SIZE_W - n_alloc_blocks * BLOCK_SIZE_W) > (1024*1024)/sizeof(W_)) {
debugBelch("Fragmentation, wanted %d blocks:", n);
RtsFlags.DebugFlags.block_alloc = 1;
checkFreeListSanity();
}
#endif
bd = alloc_mega_group(1);
bd->blocks = n;
initGroup(bd); // we know the group will fit
rem = bd + n;
rem->blocks = BLOCKS_PER_MBLOCK-n;
initGroup(rem); // init the slop
n_alloc_blocks += rem->blocks;
freeGroup(rem); // add the slop on to the free list
IF_DEBUG(sanity, checkFreeListSanity());
return bd;
}
bd = free_list[ln];
if (bd->blocks == n) // exactly the right size!
{
dbl_link_remove(bd, &free_list[ln]);
}
else if (bd->blocks > n) // block too big...
{
bd = split_free_block(bd, n, ln);
}
else
{
barf("allocGroup: free list corrupted");
}
initGroup(bd); // initialise it
IF_DEBUG(sanity, checkFreeListSanity());
ASSERT(bd->blocks == n);
return bd;
}
bdescr *
allocGroup_lock(nat n)
{
bdescr *bd;
ACQUIRE_SM_LOCK;
bd = allocGroup(n);
RELEASE_SM_LOCK;
return bd;
}
bdescr *
allocBlock(void)
{
return allocGroup(1);
}
bdescr *
allocBlock_lock(void)
{
bdescr *bd;
ACQUIRE_SM_LOCK;
bd = allocBlock();
RELEASE_SM_LOCK;
return bd;
}
/* -----------------------------------------------------------------------------
De-Allocation
-------------------------------------------------------------------------- */
STATIC_INLINE bdescr *
coalesce_mblocks (bdescr *p)
{
bdescr *q;
q = p->link;
if (q != NULL &&
MBLOCK_ROUND_DOWN(q) ==
MBLOCK_ROUND_DOWN(p) + BLOCKS_TO_MBLOCKS(p->blocks) * MBLOCK_SIZE) {
// can coalesce
p->blocks = MBLOCK_GROUP_BLOCKS(BLOCKS_TO_MBLOCKS(p->blocks) +
BLOCKS_TO_MBLOCKS(q->blocks));
p->link = q->link;
return p;
}
return q;
}
static void
free_mega_group (bdescr *mg)
{
bdescr *bd, *prev;
// Find the right place in the free list. free_mblock_list is
// sorted by *address*, not by size as the free_list is.
prev = NULL;
bd = free_mblock_list;
while (bd && bd->start < mg->start) {
prev = bd;
bd = bd->link;
}
// coalesce backwards
if (prev)
{
mg->link = prev->link;
prev->link = mg;
mg = coalesce_mblocks(prev);
}
else
{
mg->link = free_mblock_list;
free_mblock_list = mg;
}
// coalesce forwards
coalesce_mblocks(mg);
IF_DEBUG(sanity, checkFreeListSanity());
}
void
freeGroup(bdescr *p)
{
nat ln;
// Todo: not true in multithreaded GC
// ASSERT_SM_LOCK();
ASSERT(p->free != (P_)-1);
p->free = (void *)-1; /* indicates that this block is free */
p->step = NULL;
p->gen_no = 0;
/* fill the block group with garbage if sanity checking is on */
IF_DEBUG(sanity,memset(p->start, 0xaa, p->blocks * BLOCK_SIZE));
if (p->blocks == 0) barf("freeGroup: block size is zero");
if (p->blocks >= BLOCKS_PER_MBLOCK)
{
nat mblocks;
mblocks = BLOCKS_TO_MBLOCKS(p->blocks);
// If this is an mgroup, make sure it has the right number of blocks
ASSERT(p->blocks == MBLOCK_GROUP_BLOCKS(mblocks));
n_alloc_blocks -= mblocks * BLOCKS_PER_MBLOCK;
free_mega_group(p);
return;
}
ASSERT(n_alloc_blocks >= p->blocks);
n_alloc_blocks -= p->blocks;
// coalesce forwards
{
bdescr *next;
next = p + p->blocks;
if (next <= LAST_BDESCR(MBLOCK_ROUND_DOWN(p)) && next->free == (P_)-1)
{
p->blocks += next->blocks;
ln = log_2(next->blocks);
dbl_link_remove(next, &free_list[ln]);
if (p->blocks == BLOCKS_PER_MBLOCK)
{
free_mega_group(p);
return;
}
setup_tail(p);
}
}
// coalesce backwards
if (p != FIRST_BDESCR(MBLOCK_ROUND_DOWN(p)))
{
bdescr *prev;
prev = p - 1;
if (prev->blocks == 0) prev = prev->link; // find the head
if (prev->free == (P_)-1)
{
ln = log_2(prev->blocks);
dbl_link_remove(prev, &free_list[ln]);
prev->blocks += p->blocks;
if (prev->blocks >= BLOCKS_PER_MBLOCK)
{
free_mega_group(prev);
return;
}
p = prev;
}
}
setup_tail(p);
free_list_insert(p);
IF_DEBUG(sanity, checkFreeListSanity());
}
void
freeGroup_lock(bdescr *p)
{
ACQUIRE_SM_LOCK;
freeGroup(p);
RELEASE_SM_LOCK;
}
void
freeChain(bdescr *bd)
{
bdescr *next_bd;
while (bd != NULL) {
next_bd = bd->link;
freeGroup(bd);
bd = next_bd;
}
}
void
freeChain_lock(bdescr *bd)
{
ACQUIRE_SM_LOCK;
freeChain(bd);
RELEASE_SM_LOCK;
}
// splitBlockGroup(bd,B) splits bd in two. Afterward, bd will have B
// blocks, and a new block descriptor pointing to the remainder is
// returned.
bdescr *
splitBlockGroup (bdescr *bd, nat blocks)
{
bdescr *new_bd;
if (bd->blocks <= blocks) {
barf("splitLargeBlock: too small");
}
if (bd->blocks > BLOCKS_PER_MBLOCK) {
nat low_mblocks, high_mblocks;
void *new_mblock;
if ((blocks - BLOCKS_PER_MBLOCK) % (MBLOCK_SIZE / BLOCK_SIZE) != 0) {
barf("splitLargeBlock: not a multiple of a megablock");
}
low_mblocks = 1 + (blocks - BLOCKS_PER_MBLOCK) / (MBLOCK_SIZE / BLOCK_SIZE);
high_mblocks = (bd->blocks - blocks) / (MBLOCK_SIZE / BLOCK_SIZE);
new_mblock = (void *) ((P_)MBLOCK_ROUND_DOWN(bd) + low_mblocks * MBLOCK_SIZE_W);
initMBlock(new_mblock);
new_bd = FIRST_BDESCR(new_mblock);
new_bd->blocks = MBLOCK_GROUP_BLOCKS(high_mblocks);
ASSERT(blocks + new_bd->blocks ==
bd->blocks + BLOCKS_PER_MBLOCK - MBLOCK_SIZE/BLOCK_SIZE);
}
else
{
// NB. we're not updating all the bdescrs in the split groups to
// point to the new heads, so this can only be used for large
// objects which do not start in the non-head block.
new_bd = bd + blocks;
new_bd->blocks = bd->blocks - blocks;
}
bd->blocks = blocks;
return new_bd;
}
static void
initMBlock(void *mblock)
{
bdescr *bd;
void *block;
/* the first few Bdescr's in a block are unused, so we don't want to
* put them all on the free list.
*/
block = FIRST_BLOCK(mblock);
bd = FIRST_BDESCR(mblock);
/* Initialise the start field of each block descriptor
*/
for (; block <= LAST_BLOCK(mblock); bd += 1, block += BLOCK_SIZE) {
bd->start = block;
}
}
/* -----------------------------------------------------------------------------
Debugging
-------------------------------------------------------------------------- */
#ifdef DEBUG
static void
check_tail (bdescr *bd)
{
bdescr *tail = tail_of(bd);
if (tail != bd)
{
ASSERT(tail->blocks == 0);
ASSERT(tail->free == 0);
ASSERT(tail->link == bd);
}
}
void
checkFreeListSanity(void)
{
bdescr *bd, *prev;
nat ln, min;
min = 1;
for (ln = 0; ln < MAX_FREE_LIST; ln++) {
IF_DEBUG(block_alloc, debugBelch("free block list [%d]:\n", ln));
prev = NULL;
for (bd = free_list[ln]; bd != NULL; prev = bd, bd = bd->link)
{
IF_DEBUG(block_alloc,
debugBelch("group at %p, length %ld blocks\n",
bd->start, (long)bd->blocks));
ASSERT(bd->free == (P_)-1);
ASSERT(bd->blocks > 0 && bd->blocks < BLOCKS_PER_MBLOCK);
ASSERT(bd->blocks >= min && bd->blocks <= (min*2 - 1));
ASSERT(bd->link != bd); // catch easy loops
check_tail(bd);
if (prev)
ASSERT(bd->u.back == prev);
else
ASSERT(bd->u.back == NULL);
{
bdescr *next;
next = bd + bd->blocks;
if (next <= LAST_BDESCR(MBLOCK_ROUND_DOWN(bd)))
{
ASSERT(next->free != (P_)-1);
}
}
}
min = min << 1;
}
prev = NULL;
for (bd = free_mblock_list; bd != NULL; prev = bd, bd = bd->link)
{
IF_DEBUG(block_alloc,
debugBelch("mega group at %p, length %ld blocks\n",
bd->start, (long)bd->blocks));
ASSERT(bd->link != bd); // catch easy loops
if (bd->link != NULL)
{
// make sure the list is sorted
ASSERT(bd->start < bd->link->start);
}
ASSERT(bd->blocks >= BLOCKS_PER_MBLOCK);
ASSERT(MBLOCK_GROUP_BLOCKS(BLOCKS_TO_MBLOCKS(bd->blocks))
== bd->blocks);
// make sure we're fully coalesced
if (bd->link != NULL)
{
ASSERT (MBLOCK_ROUND_DOWN(bd->link) !=
MBLOCK_ROUND_DOWN(bd) +
BLOCKS_TO_MBLOCKS(bd->blocks) * MBLOCK_SIZE);
}
}
}
nat /* BLOCKS */
countFreeList(void)
{
bdescr *bd;
lnat total_blocks = 0;
nat ln;
for (ln=0; ln < MAX_FREE_LIST; ln++) {
for (bd = free_list[ln]; bd != NULL; bd = bd->link) {
total_blocks += bd->blocks;
}
}
for (bd = free_mblock_list; bd != NULL; bd = bd->link) {
total_blocks += BLOCKS_PER_MBLOCK * BLOCKS_TO_MBLOCKS(bd->blocks);
// The caller of this function, memInventory(), expects to match
// the total number of blocks in the system against mblocks *
// BLOCKS_PER_MBLOCK, so we must subtract the space for the
// block descriptors from *every* mblock.
}
return total_blocks;
}
void
markBlocks (bdescr *bd)
{
for (; bd != NULL; bd = bd->link) {
bd->flags |= BF_KNOWN;
}
}
void
reportUnmarkedBlocks (void)
{
void *mblock;
bdescr *bd;
debugBelch("Unreachable blocks:\n");
for (mblock = getFirstMBlock(); mblock != NULL;
mblock = getNextMBlock(mblock)) {
for (bd = FIRST_BDESCR(mblock); bd <= LAST_BDESCR(mblock); ) {
if (!(bd->flags & BF_KNOWN) && bd->free != (P_)-1) {
debugBelch(" %p\n",bd);
}
if (bd->blocks >= BLOCKS_PER_MBLOCK) {
mblock += (BLOCKS_TO_MBLOCKS(bd->blocks) - 1) * MBLOCK_SIZE;
break;
} else {
bd += bd->blocks;
}
}
}
}
#endif
|