summaryrefslogtreecommitdiff
path: root/rts/sm/CNF.c
blob: 0432505cd2f23221e12c017d01b334c2db867154 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team 1998-2014
 *
 * GC support for immutable non-GCed structures, also known as Compact
 * Normal Forms (CNF for short). This provides the RTS support for
 * the 'compact' package and the GHC.Compact module.
 *
 * ---------------------------------------------------------------------------*/

#define _GNU_SOURCE

#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"

#include "Capability.h"
#include "GC.h"
#include "Storage.h"
#include "CNF.h"
#include "Hash.h"
#include "HeapAlloc.h"
#include "BlockAlloc.h"
#include "Trace.h"
#include "sm/ShouldCompact.h"

#include <string.h>

#if defined(HAVE_UNISTD_H)
#include <unistd.h>
#endif
#if defined(HAVE_LIMITS_H)
#include <limits.h>
#endif

/*
  Note [Compact Normal Forms]
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~

  A compact normal form (CNF) is a region of memory containing one or more
  Haskell data structures.  The goals are:

  * The CNF lives or dies as a single unit as far as the GC is concerned.  The
    GC does not traverse the data inside the CNF.

  * A CNF can be "serialized" (stored on disk or transmitted over a network).
    To "deserialize", all we need to do is adjust the addresses of the pointers
    within the CNF ("fixup"),  Deserializing can only be done in the context of
    the same Haskell binary that produced the CNF.

  Structure
  ~~~~~~~~~

  * In GHC.Compact we have
    data Compact a = Compact Compact# a

  * The Compact# primitive object is operated on by the primitives.

  * A single CNF looks like this:

  .---------,       .-------------------------------.        ,-------------
  | Compact |    ,--+-> StgCompactNFDataBlock       |   ,--->| StgCompac...
  +---------+    `--+--- self                       |   |    |   self
  |    .----+-.  ,--+--- owner                      |   |    |   wner
  +---------+ |  |  |    next ----------------------+---'    |   next -------->
  |    .    | |  |  |-------------------------------+        +-------------
  `----+----' `--+--+-> StgCompactNFData (Compact#) |        | more data...
       |            |    totalW                     |        |
       |            |    autoblockW                 |        |
       |            |    nursery                    |        |
       |            |    hash                       |        |
       |            |    last                       |        |
       |            |-------------------------------|        |
       `------------+--> data ...                   |        |
                    |                               |        |
                    |                               |        |
                    `-------------------------------'        `-------------

  * Each block in a CNF starts with a StgCompactNFDataBlock header

  * The blocks in a CNF are chained through the next field

  * Multiple CNFs are chained together using the bdescr->link and bdescr->u.prev
    fields of the bdescr.

  * The first block of a CNF (only) contains the StgCompactNFData (aka
    Compact#), right after the StgCompactNFDataBlock header.

  * The data inside a CNF block is ordinary closures

  * During compaction (with sharing enabled) the hash field points to
    a HashTable mapping heap addresses outside the compact to
    addresses within it.  If a GC strikes during compaction, this
    HashTable must be scanned by the GC.

  Invariants
  ~~~~~~~~~~

  (1) A CNF is self-contained.  The data within it does not have any external
      pointers.  EXCEPT: pointers to static constructors that are guaranteed to
      never refer (directly or indirectly) to CAFs are allowed, because the
      garbage collector does not have to track or follow these.

  (2) A CNF contains only immutable data: no THUNKS, FUNs, or mutable
      objects.  This helps maintain invariant (1).

  Details
  ~~~~~~~

  Blocks are appended to the chain automatically as needed, or manually with a
  compactResize() call, which also adjust the size of automatically appended
  blocks.

  Objects can be appended to the block currently marked to the nursery, or any
  of the later blocks if the nursery block is too full to fit the entire
  object. For each block in the chain (which can be multiple block allocator
  blocks), we use the bdescr of its beginning to store how full it is.
  After an object is appended, it is scavenged for any outgoing pointers,
  and all pointed to objects are appended, recursively, in a manner similar
  to copying GC (further discussion in the note [Appending to a Compact])

  We also flag each bdescr in each block allocator block of a compact
  (including those there were obtained as second or later from a single
  allocGroup(n) call) with the BF_COMPACT. This allows the GC to quickly
  realize that a given pointer is in a compact region, and trigger the
  CNF path.

  These two facts combined mean that in any compact block where some object
  begins bdescrs must be valid. For this simplicity this is achieved by
  restricting the maximum size of a compact block to 252 block allocator
  blocks (so that the total with the bdescr is one megablock).

  Compacts as a whole live in special list in each generation, where the
  list is held through the bd->link field of the bdescr of the StgCompactNFData
  closure (as for large objects). They live in a different list than large
  objects because the operation to free them is different (all blocks in
  a compact must be freed individually), and stats/sanity behavior are
  slightly different. This is also the reason that compact allocates memory
  using a special function instead of just calling allocate().

  Compacts are also suitable for network or disk serialization, and to
  that extent they support a pointer fixup operation, which adjusts pointers
  from a previous layout of the chain in memory to the new allocation.
  This works by constructing a temporary binary search table (in the C heap)
  of the old block addresses (which are known from the block header), and
  then searching for each pointer in the table, and adjusting it.
  It relies on ABI compatibility and static linking (or no ASLR) because it
  does not attempt to reconstruct info tables, and uses info tables to detect
  pointers. In practice this means only the exact same binary should be
  used.
*/

typedef enum {
    ALLOCATE_APPEND,
    ALLOCATE_NEW,
    ALLOCATE_IMPORT_NEW,
    ALLOCATE_IMPORT_APPEND,
} AllocateOp;

static StgCompactNFDataBlock *
compactAllocateBlockInternal(Capability            *cap,
                             StgWord                aligned_size,
                             StgCompactNFDataBlock *first,
                             AllocateOp             operation)
{
    StgCompactNFDataBlock *self;
    bdescr *block, *head;
    uint32_t n_blocks;
    generation *g;

    n_blocks = aligned_size / BLOCK_SIZE;

    // Attempting to allocate an object larger than maxHeapSize
    // should definitely be disallowed.  (bug #1791)
    if ((RtsFlags.GcFlags.maxHeapSize > 0 &&
         n_blocks >= RtsFlags.GcFlags.maxHeapSize) ||
        n_blocks >= HS_INT32_MAX)   // avoid overflow when
                                    // calling allocGroup() below
    {
        reportHeapOverflow();
        // reportHeapOverflow() doesn't exit (see #2592), but we aren't
        // in a position to do a clean shutdown here: we
        // either have to allocate the memory or exit now.
        // Allocating the memory would be bad, because the user
        // has requested that we not exceed maxHeapSize, so we
        // just exit.
        stg_exit(EXIT_HEAPOVERFLOW);
    }

    // It is imperative that first is the first block in the compact
    // (or NULL if the compact does not exist yet)
    // because the evacuate code does not update the generation of
    // blocks other than the first (so we would get the statistics
    // wrong and crash in Sanity)
    if (first != NULL) {
        block = Bdescr((P_)first);
        g = block->gen;
    } else {
        g = g0;
    }

    ACQUIRE_SM_LOCK;
    block = allocGroup(n_blocks);
    switch (operation) {
    case ALLOCATE_NEW:
        ASSERT(first == NULL);
        ASSERT(g == g0);
        dbl_link_onto(block, &g0->compact_objects);
        g->n_compact_blocks += block->blocks;
        g->n_new_large_words += aligned_size / sizeof(StgWord);
        break;

    case ALLOCATE_IMPORT_NEW:
        dbl_link_onto(block, &g0->compact_blocks_in_import);
        FALLTHROUGH;
    case ALLOCATE_IMPORT_APPEND:
        ASSERT(first == NULL);
        ASSERT(g == g0);
        g->n_compact_blocks_in_import += block->blocks;
        g->n_new_large_words += aligned_size / sizeof(StgWord);
        break;

    case ALLOCATE_APPEND:
        g->n_compact_blocks += block->blocks;
        if (g == g0)
            g->n_new_large_words += aligned_size / sizeof(StgWord);
        break;

    default:
#if defined(DEBUG)
        ASSERT(!"code should not be reached");
#else
        RTS_UNREACHABLE;
#endif
    }
    RELEASE_SM_LOCK;

    cap->total_allocated += aligned_size / sizeof(StgWord);

    self = (StgCompactNFDataBlock*) block->start;
    self->self = self;
    self->next = NULL;

    head = block;
    initBdescr(head, g, g);
    head->flags = BF_COMPACT;
    for (block = head + 1, n_blocks --; n_blocks > 0; block++, n_blocks--) {
        block->link = head;
        block->blocks = 0;
        block->flags = BF_COMPACT;
    }

    return self;
}

static inline StgCompactNFDataBlock *
compactGetFirstBlock(StgCompactNFData *str)
{
    return (StgCompactNFDataBlock*) ((W_)str - sizeof(StgCompactNFDataBlock));
}

static inline StgCompactNFData *
firstBlockGetCompact(StgCompactNFDataBlock *block)
{
    return (StgCompactNFData*) ((W_)block + sizeof(StgCompactNFDataBlock));
}

void
compactFree(StgCompactNFData *str)
{
    StgCompactNFDataBlock *block, *next;
    bdescr *bd;

    block = compactGetFirstBlock(str);

    for ( ; block; block = next) {
        next = block->next;
        bd = Bdescr((StgPtr)block);
        ASSERT((bd->flags & BF_EVACUATED) == 0);
        freeGroup(bd);
    }
}

#if defined(DEBUG)
void
compactMarkKnown(StgCompactNFData *str)
{
    bdescr *bd;
    StgCompactNFDataBlock *block;

    block = compactGetFirstBlock(str);
    for ( ; block; block = block->next) {
        bd = Bdescr((StgPtr)block);
        bd->flags |= BF_KNOWN;
    }
}

StgWord
countCompactBlocks(bdescr *outer)
{
    StgCompactNFDataBlock *block;
    W_ count;

    count = 0;
    while (outer) {
        bdescr *inner;

        block = (StgCompactNFDataBlock*)(outer->start);
        do {
            inner = Bdescr((P_)block);
            ASSERT(inner->flags & BF_COMPACT);

            count += inner->blocks;
            block = block->next;
        } while(block);

        outer = outer->link;
    }

    return count;
}

// Like countCompactBlocks, but adjusts the size so each mblock is assumed to
// only contain BLOCKS_PER_MBLOCK blocks.  Used in memInventory().
StgWord
countAllocdCompactBlocks(bdescr *outer)
{
    StgCompactNFDataBlock *block;
    W_ count;

    count = 0;
    while (outer) {
        bdescr *inner;

        block = (StgCompactNFDataBlock*)(outer->start);
        do {
            inner = Bdescr((P_)block);
            ASSERT(inner->flags & BF_COMPACT);

            count += inner->blocks;
            // See BlockAlloc.c:countAllocdBlocks()
            if (inner->blocks > BLOCKS_PER_MBLOCK) {
                count -= (MBLOCK_SIZE / BLOCK_SIZE - BLOCKS_PER_MBLOCK)
                    * (inner->blocks/(MBLOCK_SIZE/BLOCK_SIZE));
            }
            block = block->next;
        } while(block);

        outer = outer->link;
    }

    return count;
}
#endif

StgCompactNFData *
compactNew (Capability *cap, StgWord size)
{
    StgWord aligned_size;
    StgCompactNFDataBlock *block;
    StgCompactNFData *self;
    bdescr *bd;

    aligned_size = BLOCK_ROUND_UP(size + sizeof(StgCompactNFData)
                                  + sizeof(StgCompactNFDataBlock));

    // Don't allow sizes larger than a megablock, because we can't use the
    // memory after the first mblock for storing objects.
    if (aligned_size >= BLOCK_SIZE * BLOCKS_PER_MBLOCK)
        aligned_size = BLOCK_SIZE * BLOCKS_PER_MBLOCK;

    block = compactAllocateBlockInternal(cap, aligned_size, NULL,
                                         ALLOCATE_NEW);

    self = firstBlockGetCompact(block);
    SET_HDR((StgClosure*)self, &stg_COMPACT_NFDATA_CLEAN_info, CCS_SYSTEM);
    self->autoBlockW = aligned_size / sizeof(StgWord);
    self->nursery = block;
    self->last = block;
    self->hash = NULL;

    block->owner = self;

    bd = Bdescr((P_)block);
    bd->free = (StgPtr)((W_)self + sizeof(StgCompactNFData));
    self->hp = bd->free;
    self->hpLim = bd->start + bd->blocks * BLOCK_SIZE_W;

    self->totalW = bd->blocks * BLOCK_SIZE_W;

    debugTrace(DEBUG_compact, "compactNew: size %" FMT_Word, size);

    return self;
}

static StgCompactNFDataBlock *
compactAppendBlock (Capability       *cap,
                    StgCompactNFData *str,
                    StgWord           aligned_size)
{
    StgCompactNFDataBlock *block;
    bdescr *bd;

    block = compactAllocateBlockInternal(cap, aligned_size,
                                         compactGetFirstBlock(str),
                                         ALLOCATE_APPEND);
    block->owner = str;
    block->next = NULL;

    ASSERT(str->last->next == NULL);
    str->last->next = block;
    str->last = block;

    bd = Bdescr((P_)block);
    bd->free = (StgPtr)((W_)block + sizeof(StgCompactNFDataBlock));
    ASSERT(bd->free == (StgPtr)block + sizeofW(StgCompactNFDataBlock));

    str->totalW += bd->blocks * BLOCK_SIZE_W;

    return block;
}

void
compactResize (Capability *cap, StgCompactNFData *str, StgWord new_size)
{
    StgWord aligned_size;

    aligned_size = BLOCK_ROUND_UP(new_size + sizeof(StgCompactNFDataBlock));

    // Don't allow sizes larger than a megablock, because we can't use the
    // memory after the first mblock for storing objects.
    if (aligned_size >= BLOCK_SIZE * BLOCKS_PER_MBLOCK)
        aligned_size = BLOCK_SIZE * BLOCKS_PER_MBLOCK;

    str->autoBlockW = aligned_size / sizeof(StgWord);
    compactAppendBlock(cap, str, aligned_size);
}

STATIC_INLINE bool
has_room_for  (bdescr *bd, StgWord sizeW)
{
    return (bd->free < bd->start + BLOCK_SIZE_W * BLOCKS_PER_MBLOCK
            && bd->free + sizeW <= bd->start + BLOCK_SIZE_W * bd->blocks);
}

static bool
block_is_full (StgCompactNFDataBlock *block)
{
    bdescr *bd;

    // We consider a block full if we could not fit
    // an entire closure with 7 payload items
    // (this leaves a slop of 64 bytes at most, but
    // it avoids leaving a block almost empty to fit
    // a large byte array, while at the same time
    // it avoids trying to allocate a large closure
    // in a chain of almost empty blocks)

    bd = Bdescr((StgPtr)block);
    return (!has_room_for(bd,7));
}

void *
allocateForCompact (Capability *cap,
                    StgCompactNFData *str,
                    StgWord sizeW)
{
    StgPtr to;
    StgWord next_size;
    StgCompactNFDataBlock *block;
    bdescr *bd;

    ASSERT(str->nursery != NULL);
    ASSERT(str->hp > Bdescr((P_)str->nursery)->start);
    ASSERT(str->hp <= Bdescr((P_)str->nursery)->start +
           Bdescr((P_)str->nursery)->blocks * BLOCK_SIZE_W);

 retry:
    if (str->hp + sizeW < str->hpLim) {
        to = str->hp;
        str->hp += sizeW;
        return to;
    }

    bd = Bdescr((P_)str->nursery);
    bd->free = str->hp;

    // We know it doesn't fit in the nursery
    // if it is a large object, allocate a new block
    if (sizeW > LARGE_OBJECT_THRESHOLD/sizeof(W_)) {
        next_size = BLOCK_ROUND_UP(sizeW*sizeof(W_) +
                                   sizeof(StgCompactNFData));
        block = compactAppendBlock(cap, str, next_size);
        bd = Bdescr((P_)block);
        to = bd->free;
        bd->free += sizeW;
        return to;
    }

    // move the nursery past full blocks
    if (block_is_full (str->nursery)) {
        do {
            str->nursery = str->nursery->next;
        } while (str->nursery && block_is_full(str->nursery));

        if (str->nursery == NULL) {
            str->nursery = compactAppendBlock(cap, str,
                                              str->autoBlockW * sizeof(W_));
        }
        bd = Bdescr((P_)str->nursery);
        str->hp = bd->free;
        str->hpLim = bd->start + bd->blocks * BLOCK_SIZE_W;
        goto retry;
    }

    // try subsequent blocks
    for (block = str->nursery->next; block != NULL; block = block->next) {
        bd = Bdescr((P_)block);
        if (has_room_for(bd,sizeW)) {
            to = bd->free;
            bd->free += sizeW;
            return to;
        }
    }

    // If all else fails, allocate a new block of the right size.
    next_size = stg_max(str->autoBlockW * sizeof(StgWord),
                    BLOCK_ROUND_UP(sizeW * sizeof(StgWord)
                                   + sizeof(StgCompactNFDataBlock)));

    block = compactAppendBlock(cap, str, next_size);
    bd = Bdescr((P_)block);
    to = bd->free;
    bd->free += sizeW;
    return to;
}


void
insertCompactHash (Capability *cap,
                   StgCompactNFData *str,
                   StgClosure *p, StgClosure *to)
{
    insertHashTable(str->hash, (StgWord)p, (const void*)to);
    const StgInfoTable *strinfo = str->header.info;
    if (strinfo == &stg_COMPACT_NFDATA_CLEAN_info) {
        strinfo = &stg_COMPACT_NFDATA_DIRTY_info;
        recordClosureMutated(cap, (StgClosure*)str);
    }
}


StgWord
compactContains (StgCompactNFData *str, StgPtr what)
{
    bdescr *bd;

    // This check is the reason why this needs to be
    // implemented in C instead of (possibly faster) Cmm
    if (!HEAP_ALLOCED (what))
        return 0;

    // Note that we don't care about tags, they are eaten
    // away by the Bdescr operation anyway
    bd = Bdescr((P_)what);
    return (bd->flags & BF_COMPACT) != 0 &&
        (str == NULL || objectGetCompact((StgClosure*)what) == str);
}

StgCompactNFDataBlock *
compactAllocateBlock(Capability            *cap,
                     StgWord                size,
                     StgCompactNFDataBlock *previous)
{
    StgWord aligned_size;
    StgCompactNFDataBlock *block;
    bdescr *bd;

    aligned_size = BLOCK_ROUND_UP(size);

    // We do not link the new object into the generation ever
    // - we cannot let the GC know about this object until we're done
    // importing it and we have fixed up all info tables and stuff
    //
    // but we do update n_compact_blocks, otherwise memInventory()
    // in Sanity will think we have a memory leak, because it compares
    // the blocks he knows about with the blocks obtained by the
    // block allocator
    // (if by chance a memory leak does happen due to a bug somewhere
    // else, memInventory will also report that all compact blocks
    // associated with this compact are leaked - but they are not really,
    // we have a pointer to them and we're not losing track of it, it's
    // just we can't use the GC until we're done with the import)
    //
    // (That btw means that the high level import code must be careful
    // not to lose the pointer, so don't use the primops directly
    // unless you know what you're doing!)

    // Other trickery: we pass NULL as first, which means our blocks
    // are always in generation 0
    // This is correct because the GC has never seen the blocks so
    // it had no chance of promoting them

    block = compactAllocateBlockInternal(cap, aligned_size, NULL,
                                         previous != NULL ? ALLOCATE_IMPORT_APPEND : ALLOCATE_IMPORT_NEW);
    if (previous != NULL)
        previous->next = block;

    bd = Bdescr((P_)block);
    bd->free = (P_)((W_)bd->start + size);

    return block;
}

//
// shouldCompact(c,p): returns:
//    SHOULDCOMPACT_IN_CNF if the object is in c
//    SHOULDCOMPACT_STATIC if the object is static
//    SHOULDCOMPACT_NOTIN_CNF if the object is dynamic and not in c
//
StgWord shouldCompact (StgCompactNFData *str, StgClosure *p)
{
    bdescr *bd;

    if (!HEAP_ALLOCED(p))
        return SHOULDCOMPACT_STATIC;  // we have to copy static closures too

    bd = Bdescr((P_)p);
    if (bd->flags & BF_PINNED) {
        return SHOULDCOMPACT_PINNED;
    }
    if ((bd->flags & BF_COMPACT) && objectGetCompact(p) == str) {
        return SHOULDCOMPACT_IN_CNF;
    } else {
        return SHOULDCOMPACT_NOTIN_CNF;
    }
}

/* -----------------------------------------------------------------------------
   Sanity-checking a compact
   -------------------------------------------------------------------------- */

#if defined(DEBUG)
STATIC_INLINE void
check_object_in_compact (StgCompactNFData *str, StgClosure *p)
{
    bdescr *bd;

    // Only certain static closures are allowed to be referenced from
    // a compact, but let's be generous here and assume that all
    // static closures are OK.
    if (!HEAP_ALLOCED(p))
        return;

    bd = Bdescr((P_)p);
    ASSERT((bd->flags & BF_COMPACT) != 0 && objectGetCompact(p) == str);
}

static void
verify_mut_arr_ptrs (StgCompactNFData *str,
                     StgMutArrPtrs    *a)
{
    StgPtr p, q;

    p = (StgPtr)&a->payload[0];
    q = (StgPtr)&a->payload[a->ptrs];
    for (; p < q; p++) {
        check_object_in_compact(str, UNTAG_CLOSURE(*(StgClosure**)p));
    }

    return;
}

static void
verify_consistency_block (StgCompactNFData *str, StgCompactNFDataBlock *block)
{
    bdescr *bd;
    StgPtr p;
    const StgInfoTable *info;
    StgClosure *q;

    p = (P_)firstBlockGetCompact(block);
    bd = Bdescr((P_)block);
    while (p < bd->free) {
        q = (StgClosure*)p;

        ASSERT(LOOKS_LIKE_CLOSURE_PTR(q));

        info = get_itbl(q);
        switch (info->type) {
        case CONSTR_1_0:
            check_object_in_compact(str, UNTAG_CLOSURE(q->payload[0]));
            FALLTHROUGH;
        case CONSTR_0_1:
            p += sizeofW(StgClosure) + 1;
            break;

        case CONSTR_2_0:
            check_object_in_compact(str, UNTAG_CLOSURE(q->payload[1]));
            FALLTHROUGH;
        case CONSTR_1_1:
            check_object_in_compact(str, UNTAG_CLOSURE(q->payload[0]));
            FALLTHROUGH;
        case CONSTR_0_2:
            p += sizeofW(StgClosure) + 2;
            break;

        case CONSTR:
        case PRIM:
        case CONSTR_NOCAF:
        {
            uint32_t i;

            for (i = 0; i < info->layout.payload.ptrs; i++) {
                check_object_in_compact(str, UNTAG_CLOSURE(q->payload[i]));
            }
            p += sizeofW(StgClosure) + info->layout.payload.ptrs +
                info->layout.payload.nptrs;
            break;
        }

        case ARR_WORDS:
            p += arr_words_sizeW((StgArrBytes*)p);
            break;

        case MUT_ARR_PTRS_FROZEN_CLEAN:
        case MUT_ARR_PTRS_FROZEN_DIRTY:
            verify_mut_arr_ptrs(str, (StgMutArrPtrs*)p);
            p += mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
            break;

        case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
        case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
        {
            uint32_t i;
            StgSmallMutArrPtrs *arr = (StgSmallMutArrPtrs*)p;

            for (i = 0; i < arr->ptrs; i++)
                check_object_in_compact(str, UNTAG_CLOSURE(arr->payload[i]));

            p += sizeofW(StgSmallMutArrPtrs) + arr->ptrs;
            break;
        }

        case COMPACT_NFDATA:
            p += sizeofW(StgCompactNFData);
            break;

        default:
            barf("verify_consistency_block");
        }
    }

    return;
}

static void
verify_consistency_loop (StgCompactNFData *str)
{
    StgCompactNFDataBlock *block;

    block = compactGetFirstBlock(str);
    do {
        verify_consistency_block(str, block);
        block = block->next;
    } while (block && block->owner);
}

void verifyCompact (StgCompactNFData *str USED_IF_DEBUG)
{
    IF_DEBUG(sanity, verify_consistency_loop(str));
}
#endif // DEBUG

/* -----------------------------------------------------------------------------
   Fixing up pointers
   -------------------------------------------------------------------------- */

STATIC_INLINE bool
any_needs_fixup(StgCompactNFDataBlock *block)
{
    // ->next pointers are always valid, even if some blocks were
    // not allocated where we want them, because compactAllocateAt()
    // will take care to adjust them

    do {
        if (block->self != block)
            return true;
        block = block->next;
    } while (block && block->owner);

    return false;
}

#if defined(DEBUG)
static void
spew_failing_pointer(StgWord *fixup_table, uint32_t count, StgWord address)
{
    uint32_t i;
    StgWord key, value;
    StgCompactNFDataBlock *block;
    bdescr *bd;
    StgWord size;

    debugBelch("Failed to adjust 0x%" FMT_HexWord ". Block dump follows...\n",
               address);

    for (i  = 0; i < count; i++) {
        key = fixup_table [2 * i];
        value = fixup_table [2 * i + 1];

        block = (StgCompactNFDataBlock*)value;
        bd = Bdescr((P_)block);
        size = (W_)bd->free - (W_)bd->start;

        debugBelch("%" FMT_Word32 ": was 0x%" FMT_HexWord "-0x%" FMT_HexWord
                   ", now 0x%" FMT_HexWord "-0x%" FMT_HexWord "\n", i, key,
                   key+size, value, value+size);
    }
}
#endif

STATIC_INLINE StgCompactNFDataBlock *
find_pointer(StgWord *fixup_table, uint32_t count, StgClosure *q)
{
    StgWord address = (W_)q;
    uint32_t a, b, c;
    StgWord key, value;
    bdescr *bd;

    a = 0;
    b = count;
    while (a < b-1) {
        c = (a+b)/2;

        key = fixup_table[c * 2];
        value = fixup_table[c * 2 + 1];

        if (key > address)
            b = c;
        else
            a = c;
    }

    // three cases here: 0, 1 or 2 blocks to check
    for ( ; a < b; a++) {
        key = fixup_table[a * 2];
        value = fixup_table[a * 2 + 1];

        if (key > address)
            goto fail;

        bd = Bdescr((P_)value);

        if (key + bd->blocks * BLOCK_SIZE <= address)
            goto fail;

        return (StgCompactNFDataBlock*)value;
    }

 fail:
    // We should never get here

#if defined(DEBUG)
    spew_failing_pointer(fixup_table, count, address);
#endif
    return NULL;
}

static bool
fixup_one_pointer(StgWord *fixup_table, uint32_t count, StgClosure **p)
{
    StgWord tag;
    StgClosure *q;
    StgCompactNFDataBlock *block;


    q = *p;
    tag = GET_CLOSURE_TAG(q);
    q = UNTAG_CLOSURE(q);

    // We can encounter a pointer outside the compact if it points to
    // a static constructor that does not (directly or indirectly)
    // reach any CAFs. (see Note [Compact Normal Forms])
    if (!HEAP_ALLOCED(q))
        return true;

    block = find_pointer(fixup_table, count, q);
    if (block == NULL)
        return false;
    if (block == block->self)
        return true;

    q = (StgClosure*)((W_)q - (W_)block->self + (W_)block);
    *p = TAG_CLOSURE(tag, q);

    return true;
}

static bool
fixup_mut_arr_ptrs (StgWord          *fixup_table,
                    uint32_t               count,
                    StgMutArrPtrs    *a)
{
    StgPtr p, q;

    p = (StgPtr)&a->payload[0];
    q = (StgPtr)&a->payload[a->ptrs];
    for (; p < q; p++) {
        if (!fixup_one_pointer(fixup_table, count, (StgClosure**)p))
            return false;
    }

    return true;
}

static bool
fixup_block(StgCompactNFDataBlock *block, StgWord *fixup_table, uint32_t count)
{
    const StgInfoTable *info;
    bdescr *bd;
    StgPtr p;

    bd = Bdescr((P_)block);
    p = bd->start + sizeofW(StgCompactNFDataBlock);
    while (p < bd->free) {
        ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
        info = get_itbl((StgClosure*)p);

        switch (info->type) {
        case CONSTR_1_0:
            if (!fixup_one_pointer(fixup_table, count,
                                   &((StgClosure*)p)->payload[0]))
                return false;
            FALLTHROUGH;
        case CONSTR_0_1:
            p += sizeofW(StgClosure) + 1;
            break;

        case CONSTR_2_0:
            if (!fixup_one_pointer(fixup_table, count,
                                   &((StgClosure*)p)->payload[1]))
                return false;
            FALLTHROUGH;
        case CONSTR_1_1:
            if (!fixup_one_pointer(fixup_table, count,
                                   &((StgClosure*)p)->payload[0]))
                return false;
            FALLTHROUGH;
        case CONSTR_0_2:
            p += sizeofW(StgClosure) + 2;
            break;

        case CONSTR:
        case PRIM:
        case CONSTR_NOCAF:
        {
            StgPtr end;

            end = (P_)((StgClosure *)p)->payload + info->layout.payload.ptrs;
            for (p = (P_)((StgClosure *)p)->payload; p < end; p++) {
                if (!fixup_one_pointer(fixup_table, count, (StgClosure **)p))
                    return false;
            }
            p += info->layout.payload.nptrs;
            break;
        }

        case ARR_WORDS:
            p += arr_words_sizeW((StgArrBytes*)p);
            break;

        case MUT_ARR_PTRS_FROZEN_CLEAN:
        case MUT_ARR_PTRS_FROZEN_DIRTY:
            fixup_mut_arr_ptrs(fixup_table, count, (StgMutArrPtrs*)p);
            p += mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
            break;

        case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
        case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
        {
            uint32_t i;
            StgSmallMutArrPtrs *arr = (StgSmallMutArrPtrs*)p;

            for (i = 0; i < arr->ptrs; i++) {
                if (!fixup_one_pointer(fixup_table, count,
                                       &arr->payload[i]))
                    return false;
            }

            p += sizeofW(StgSmallMutArrPtrs) + arr->ptrs;
            break;
        }

        case COMPACT_NFDATA:
            if (p == (bd->start + sizeofW(StgCompactNFDataBlock))) {
                // Ignore the COMPACT_NFDATA header
                // (it will be fixed up later)
                p += sizeofW(StgCompactNFData);
                break;
            }

            FALLTHROUGH;

        default:
            debugBelch("Invalid non-NFData closure (type %d) in Compact\n",
                       info->type);
            return false;
        }
    }

    return true;
}

static int
cmp_fixup_table_item (const void *e1, const void *e2)
{
    const StgWord *w1 = e1;
    const StgWord *w2 = e2;

    return *w1 - *w2;
}

static StgWord *
build_fixup_table (StgCompactNFDataBlock *block, uint32_t *pcount)
{
    uint32_t count;
    StgCompactNFDataBlock *tmp;
    StgWord *table;

    count = 0;
    tmp = block;
    do {
        count++;
        tmp = tmp->next;
    } while(tmp && tmp->owner);

    table = stgMallocBytes(sizeof(StgWord) * 2 * count, "build_fixup_table");

    count = 0;
    do {
        table[count * 2] = (W_)block->self;
        table[count * 2 + 1] = (W_)block;
        count++;
        block = block->next;
    } while(block && block->owner);

    qsort(table, count, sizeof(StgWord) * 2, cmp_fixup_table_item);

    *pcount = count;
    return table;
}

static bool
fixup_loop(StgCompactNFDataBlock *block, StgClosure **proot)
{
    StgWord *table;
    bool ok;
    uint32_t count;

    table = build_fixup_table (block, &count);

    do {
        if (!fixup_block(block, table, count)) {
            ok = false;
            goto out;
        }

        block = block->next;
    } while(block && block->owner);

    ok = fixup_one_pointer(table, count, proot);

 out:
    stgFree(table);
    return ok;
}

static void
fixup_early(StgCompactNFData *str, StgCompactNFDataBlock *block)
{
    StgCompactNFDataBlock *last;

    do {
        last = block;
        block = block->next;
    } while(block);

    str->last = last;
}

static void
fixup_late(StgCompactNFData *str, StgCompactNFDataBlock *block)
{
    StgCompactNFDataBlock *nursery;
    bdescr *bd;
    StgWord totalW;

    nursery = block;
    totalW = 0;
    do {
        block->self = block;

        bd = Bdescr((P_)block);
        totalW += bd->blocks * BLOCK_SIZE_W;

        if (block->owner != NULL) {
            if (bd->free != bd->start)
                nursery = block;
            block->owner = str;
        }

        block = block->next;
    } while(block);

    str->nursery = nursery;
    bd = Bdescr((P_)nursery);
    str->hp = bd->free;
    str->hpLim = bd->start + bd->blocks * BLOCK_SIZE_W;

    str->totalW = totalW;
}

static StgClosure *
maybe_fixup_internal_pointers (StgCompactNFDataBlock *block,
                               StgClosure            *root)
{
    bool ok;
    StgClosure **proot;

    // Check for fast path
    if (!any_needs_fixup(block))
        return root;

    IF_DEBUG(compact, debugBelch("Compact imported at the wrong address, "
                            "will fix up internal pointers\n"));

    // I am PROOT!
    proot = &root;

    ok = fixup_loop(block, proot);
    if (!ok)
        *proot = NULL;

    return *proot;
}

StgPtr
compactFixupPointers(StgCompactNFData *str,
                     StgClosure       *root)
{
    StgCompactNFDataBlock *block;
    bdescr *bd;
    StgWord total_blocks;

    block = compactGetFirstBlock(str);

    fixup_early(str, block);

    root = maybe_fixup_internal_pointers(block, root);

    // Do the late fixup even if we did not fixup all
    // internal pointers, we need that for GC and Sanity
    fixup_late(str, block);

    // Now we're ready to let the GC, Sanity, the profiler
    // etc. know about this object
    bd = Bdescr((P_)block);

    total_blocks = str->totalW / BLOCK_SIZE_W;

    ACQUIRE_SM_LOCK;
    ASSERT(bd->gen == g0);
    ASSERT(g0->n_compact_blocks_in_import >= total_blocks);
    g0->n_compact_blocks_in_import -= total_blocks;
    g0->n_compact_blocks += total_blocks;
    dbl_link_remove(bd, &g0->compact_blocks_in_import);
    dbl_link_onto(bd, &g0->compact_objects);
    RELEASE_SM_LOCK;

#if defined(DEBUG)
    if (root)
        verify_consistency_loop(str);
#endif

    return (StgPtr)root;
}