1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team 1998-2008
*
* Generational garbage collector: evacuation functions
*
* Documentation on the architecture of the Garbage Collector can be
* found in the online commentary:
*
* https://gitlab.haskell.org/ghc/ghc/wikis/commentary/rts/storage/gc
*
* ---------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "Evac.h"
#include "Storage.h"
#include "GC.h"
#include "GCThread.h"
#include "GCTDecl.h"
#include "GCUtils.h"
#include "Compact.h"
#include "MarkStack.h"
#include "Prelude.h"
#include "Trace.h"
#include "LdvProfile.h"
#include "CNF.h"
#include "Scav.h"
#include "NonMoving.h"
#include "CheckUnload.h" // n_unloaded_objects and markObjectCode
#if defined(THREADED_RTS) && !defined(PARALLEL_GC)
#define evacuate(p) evacuate1(p)
#define evacuate_BLACKHOLE(p) evacuate_BLACKHOLE1(p)
#define HEAP_ALLOCED_GC(p) HEAP_ALLOCED(p)
#endif
#if !defined(PARALLEL_GC) || defined(PROFILING)
#define copy_tag_nolock(p, info, src, size, stp, tag) \
copy_tag(p, info, src, size, stp, tag)
#endif
/* Note [Selector optimisation depth limit]
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* MAX_THUNK_SELECTOR_DEPTH is used to avoid long recursion of
* eval_thunk_selector due to nested selector thunks. Note that this *only*
* counts nested selector thunks, e.g. `fst (fst (... (fst x)))`. The collector
* will traverse interleaved selector-constructor pairs without limit, e.g.
*
* a = (fst b, _)
* b = (fst c, _)
* c = (fst d, _)
* d = (x, _)
*
*/
#define MAX_THUNK_SELECTOR_DEPTH 16
static void eval_thunk_selector (StgClosure **q, StgSelector *p, bool);
ATTR_NOINLINE static void evacuate_large(StgPtr p);
/* -----------------------------------------------------------------------------
Allocate some space in which to copy an object.
-------------------------------------------------------------------------- */
/* size is in words */
STATIC_INLINE StgPtr
alloc_for_copy (uint32_t size, uint32_t gen_no)
{
ASSERT(gen_no < RtsFlags.GcFlags.generations);
StgPtr to;
gen_workspace *ws;
if (RTS_UNLIKELY(RtsFlags.GcFlags.useNonmoving)) {
/* See Note [Deadlock detection under nonmoving collector]. */
const uint32_t oldest_gen_no = oldest_gen->no;
if (deadlock_detect_gc) {
gen_no = oldest_gen_no;
}
if (gen_no == oldest_gen_no) {
gct->copied += size;
to = nonmovingAllocate(gct->cap, size);
// Add segment to the todo list unless it's already there
// current->todo_link == NULL means not in todo list
struct NonmovingSegment *seg = nonmovingGetSegment(to);
if (!seg->todo_link) {
gen_workspace *ws = &gct->gens[oldest_gen_no];
seg->todo_link = ws->todo_seg;
ws->todo_seg = seg;
}
// The object which refers to this closure may have been aged (i.e.
// retained in a younger generation). Consequently, we must add the
// closure to the mark queue to ensure that it will be marked.
//
// However, if we are in a deadlock detection GC then we disable aging
// so there is no need.
//
// See Note [Non-moving GC: Marking evacuated objects].
if (major_gc && !deadlock_detect_gc) {
markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, (StgClosure *) to);
}
return to;
}
}
/* Find out where we're going, using the handy "to" pointer in
* the gen of the source object. If it turns out we need to
* evacuate to an older generation, adjust it here (see comment
* by evacuate()).
*/
if (gen_no < gct->evac_gen_no) {
if (gct->eager_promotion) {
gen_no = gct->evac_gen_no;
} else {
gct->failed_to_evac = true;
}
}
ws = &gct->gens[gen_no]; // zero memory references here
/* chain a new block onto the to-space for the destination gen if
* necessary.
*/
to = ws->todo_free;
ws->todo_free += size;
if (ws->todo_free > ws->todo_lim) {
to = todo_block_full(size, ws);
}
ASSERT(ws->todo_free >= ws->todo_bd->free && ws->todo_free <= ws->todo_lim);
return to;
}
/* -----------------------------------------------------------------------------
The evacuate() code
-------------------------------------------------------------------------- */
/*
* Note [Non-moving GC: Marking evacuated objects]
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* When the non-moving collector is in use we must be careful to ensure that any
* references to objects in the non-moving generation from younger generations
* are pushed to the mark queue.
*
* In particular we need to ensure that we handle newly-promoted objects are
* correctly marked. For instance, consider this case:
*
* generation 0 generation 1
* ────────────── ──────────────
*
* ┌───────┐
* ┌───────┐ │ A │
* │ B │ ◁────────────────────────── │ │
* │ │ ──┬─────────────────┐ └───────┘
* └───────┘ ┆ after GC │
* ┆ │
* ┌───────┐ ┆ before GC │ ┌───────┐
* │ C │ ◁┄┘ └─────▷ │ C' │
* │ │ │ │
* └───────┘ └───────┘
*
*
* In this case object C started off in generation 0 and was evacuated into
* generation 1 during the preparatory GC. However, the only reference to C'
* is from B, which lives in the generation 0 (via aging); this reference will
* not be visible to the concurrent non-moving collector (which can only
* traverse the generation 1 heap). Consequently, upon evacuating C we need to
* ensure that C' is added to the update remembered set as we know that it will
* continue to be reachable via B (which is assumed to be reachable as it lives
* in a younger generation).
*
* Where this happens depends upon the type of the object (e.g. C'):
*
* - In the case of "normal" small heap-allocated objects this happens in
* alloc_for_copy.
* - In the case of compact region this happens in evacuate_compact.
* - In the case of large objects this happens in evacuate_large.
*
* See also Note [Aging under the non-moving collector] in NonMoving.c.
*
*/
/* size is in words
We want to *always* inline this as often the size of the closure is static,
which allows unrolling of the copy loop.
*/
ATTR_ALWAYS_INLINE GNUC_ATTR_HOT static inline void
copy_tag(StgClosure **p, const StgInfoTable *info,
StgClosure *src, uint32_t size, uint32_t gen_no, StgWord tag)
{
StgPtr to, from;
uint32_t i;
to = alloc_for_copy(size,gen_no);
from = (StgPtr)src;
to[0] = (W_)info;
for (i = 1; i < size; i++) { // unroll for small i
to[i] = from[i];
}
// if (to+size+2 < bd->start + BLOCK_SIZE_W) {
// __builtin_prefetch(to + size + 2, 1);
// }
#if defined(PARALLEL_GC)
{
const StgInfoTable *new_info;
new_info = (const StgInfoTable *)cas((StgPtr)&src->header.info, (W_)info, MK_FORWARDING_PTR(to));
if (new_info != info) {
#if defined(PROFILING)
// We copied this object at the same time as another
// thread. We'll evacuate the object again and the copy
// we just made will be discarded at the next GC, but we
// may have copied it after the other thread called
// SET_EVACUAEE_FOR_LDV(), which would confuse the LDV
// profiler when it encounters this closure in
// processHeapClosureForDead. So we reset the LDVW field
// here.
LDVW(to) = 0;
#endif
return evacuate(p); // does the failed_to_evac stuff
} else {
// This doesn't need to have RELEASE ordering since we are guaranteed
// to scavenge the to-space object on the current core therefore
// no-one else will follow this pointer (FIXME: Is this true in
// light of the selector optimization?).
RELEASE_STORE(p, TAG_CLOSURE(tag,(StgClosure*)to));
}
}
#else
src->header.info = (const StgInfoTable *)MK_FORWARDING_PTR(to);
*p = TAG_CLOSURE(tag,(StgClosure*)to);
#endif /* defined(PARALLEL_GC) */
#if defined(PROFILING)
// We store the size of the just evacuated object in the LDV word so that
// the profiler can guess the position of the next object later.
// This is safe only if we are sure that no other thread evacuates
// the object again, so we cannot use copy_tag_nolock when PROFILING.
SET_EVACUAEE_FOR_LDV(from, size);
#endif
}
#if defined(PARALLEL_GC) && !defined(PROFILING)
ATTR_ALWAYS_INLINE static inline void
copy_tag_nolock(StgClosure **p, const StgInfoTable *info,
StgClosure *src, uint32_t size, uint32_t gen_no, StgWord tag)
{
StgPtr to, from;
uint32_t i;
to = alloc_for_copy(size,gen_no);
from = (StgPtr)src;
to[0] = (W_)info;
for (i = 1; i < size; i++) { // unroll for small i
to[i] = from[i];
}
// if somebody else reads the forwarding pointer, we better make
// sure there's a closure at the end of it.
RELEASE_STORE(p, TAG_CLOSURE(tag,(StgClosure*)to));
RELEASE_STORE(&src->header.info, \
(const StgInfoTable *)MK_FORWARDING_PTR(to));
// if (to+size+2 < bd->start + BLOCK_SIZE_W) {
// __builtin_prefetch(to + size + 2, 1);
// }
#if defined(PROFILING)
// We store the size of the just evacuated object in the LDV word so that
// the profiler can guess the position of the next object later.
SET_EVACUAEE_FOR_LDV(from, size);
#endif
}
#endif
/* Special version of copy() for when we only want to copy the info
* pointer of an object, but reserve some padding after it. This is
* used to optimise evacuation of TSOs.
*/
ATTR_ALWAYS_INLINE static inline bool
copyPart(StgClosure **p, StgClosure *src, uint32_t size_to_reserve,
uint32_t size_to_copy, uint32_t gen_no)
{
StgPtr to, from;
uint32_t i;
StgWord info;
#if defined(PARALLEL_GC)
spin:
info = xchg((StgPtr)&src->header.info, (W_)&stg_WHITEHOLE_info);
if (info == (W_)&stg_WHITEHOLE_info) {
#if defined(PROF_SPIN)
whitehole_gc_spin++;
#endif /* PROF_SPIN */
busy_wait_nop();
goto spin;
}
if (IS_FORWARDING_PTR(info)) {
RELEASE_STORE(&src->header.info, (const StgInfoTable *)info);
evacuate(p); // does the failed_to_evac stuff
return false;
}
#else
info = (W_)src->header.info;
#endif /* PARALLEL_GC */
to = alloc_for_copy(size_to_reserve, gen_no);
from = (StgPtr)src;
to[0] = info;
for (i = 1; i < size_to_copy; i++) { // unroll for small i
to[i] = from[i];
}
RELEASE_STORE(p, (StgClosure *) to);
RELEASE_STORE(&src->header.info, (const StgInfoTable*)MK_FORWARDING_PTR(to));
#if defined(PROFILING)
// We store the size of the just evacuated object in the LDV word so that
// the profiler can guess the position of the next object later.
SET_EVACUAEE_FOR_LDV(from, size_to_reserve);
// fill the slop
if (size_to_reserve - size_to_copy > 0)
LDV_FILL_SLOP(to + size_to_copy, (int)(size_to_reserve - size_to_copy));
#endif
return true;
}
/* Copy wrappers that don't tag the closure after copying */
ATTR_ALWAYS_INLINE GNUC_ATTR_HOT static inline void
copy(StgClosure **p, const StgInfoTable *info,
StgClosure *src, uint32_t size, uint32_t gen_no)
{
copy_tag(p,info,src,size,gen_no,0);
}
/* -----------------------------------------------------------------------------
Evacuate a large object
This just consists of removing the object from the (doubly-linked)
gen->large_objects list, and linking it on to the (singly-linked)
gct->todo_large_objects list, from where it will be scavenged later.
Convention: bd->flags has BF_EVACUATED set for a large object
that has been evacuated, or unset otherwise.
-------------------------------------------------------------------------- */
ATTR_NOINLINE static void
evacuate_large(StgPtr p)
{
bdescr *bd;
generation *gen, *new_gen;
uint32_t gen_no, new_gen_no;
gen_workspace *ws;
bd = Bdescr(p);
gen = RELAXED_LOAD(&bd->gen);
gen_no = RELAXED_LOAD(&bd->gen_no);
ACQUIRE_SPIN_LOCK(&gen->sync);
// already evacuated?
if (RELAXED_LOAD(&bd->flags) & BF_EVACUATED) {
/* Don't forget to set the gct->failed_to_evac flag if we didn't get
* the desired destination (see comments in evacuate()).
*/
if (gen_no < gct->evac_gen_no) {
gct->failed_to_evac = true;
TICK_GC_FAILED_PROMOTION();
}
RELEASE_SPIN_LOCK(&gen->sync);
return;
}
// remove from large_object list
dbl_link_remove(bd, &gen->large_objects);
/* link it on to the evacuated large object list of the destination gen
*/
new_gen_no = bd->dest_no;
if (RTS_UNLIKELY(deadlock_detect_gc)) {
/* See Note [Deadlock detection under nonmoving collector]. */
new_gen_no = oldest_gen->no;
} else if (new_gen_no < gct->evac_gen_no) {
if (gct->eager_promotion) {
new_gen_no = gct->evac_gen_no;
} else {
gct->failed_to_evac = true;
}
}
ws = &gct->gens[new_gen_no];
new_gen = &generations[new_gen_no];
__atomic_fetch_or(&bd->flags, BF_EVACUATED, __ATOMIC_ACQ_REL);
if (RTS_UNLIKELY(RtsFlags.GcFlags.useNonmoving && new_gen == oldest_gen)) {
__atomic_fetch_or(&bd->flags, BF_NONMOVING, __ATOMIC_ACQ_REL);
// See Note [Non-moving GC: Marking evacuated objects].
markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, (StgClosure *) p);
}
initBdescr(bd, new_gen, new_gen->to);
// If this is a block of pinned or compact objects, we don't have to scan
// these objects, because they aren't allowed to contain any outgoing
// pointers. For these blocks, we skip the scavenge stage and put
// them straight on the scavenged_large_objects list.
if (RELAXED_LOAD(&bd->flags) & BF_PINNED) {
ASSERT(get_itbl((StgClosure *)p)->type == ARR_WORDS);
if (new_gen != gen) { ACQUIRE_SPIN_LOCK(&new_gen->sync); }
dbl_link_onto(bd, &new_gen->scavenged_large_objects);
new_gen->n_scavenged_large_blocks += bd->blocks;
if (new_gen != gen) { RELEASE_SPIN_LOCK(&new_gen->sync); }
} else {
bd->link = ws->todo_large_objects;
ws->todo_large_objects = bd;
}
RELEASE_SPIN_LOCK(&gen->sync);
}
/* ----------------------------------------------------------------------------
Evacuate static objects
When a static object is visited for the first time in this GC, it
is chained on to the gct->static_objects list.
evacuate_static_object (link_field, q)
- link_field must be STATIC_LINK(q)
------------------------------------------------------------------------- */
STATIC_INLINE void
evacuate_static_object (StgClosure **link_field, StgClosure *q)
{
if (RTS_UNLIKELY(RtsFlags.GcFlags.useNonmoving)) {
// See Note [Static objects under the nonmoving collector] in Storage.c.
if (major_gc && !deadlock_detect_gc)
markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, q);
return;
}
StgWord link = RELAXED_LOAD((StgWord*) link_field);
// See Note [STATIC_LINK fields] for how the link field bits work
if (((link & STATIC_BITS) | prev_static_flag) != 3) {
StgWord new_list_head = (StgWord)q | static_flag;
#if !defined(THREADED_RTS)
*link_field = gct->static_objects;
gct->static_objects = (StgClosure *)new_list_head;
#else
StgWord prev;
prev = cas((StgVolatilePtr)link_field, link,
(StgWord)gct->static_objects);
if (prev == link) {
gct->static_objects = (StgClosure *)new_list_head;
}
#endif
}
}
/* ----------------------------------------------------------------------------
Evacuate an object inside a CompactNFData
These are treated in a similar way to large objects. We remove the block
from the compact_objects list of the generation it is on, and link it onto
the live_compact_objects list of the destination generation.
It is assumed that objects in the struct live in the same generation
as the struct itself all the time.
------------------------------------------------------------------------- */
STATIC_INLINE void
evacuate_compact (StgPtr p)
{
StgCompactNFData *str;
bdescr *bd;
generation *gen, *new_gen;
uint32_t gen_no, new_gen_no;
// We need to find the Compact# corresponding to this pointer, because it
// will give us the first block in the compact chain, which is the one we
// that gets linked onto the compact_objects list.
str = objectGetCompact((StgClosure*)p);
ASSERT(get_itbl((StgClosure*)str)->type == COMPACT_NFDATA);
bd = Bdescr((StgPtr)str);
gen_no = bd->gen_no;
if (RELAXED_LOAD(&bd->flags) & BF_NONMOVING) {
// We may have evacuated the block to the nonmoving generation. If so
// we need to make sure it is added to the mark queue since the only
// reference to it may be from the moving heap.
if (major_gc && !deadlock_detect_gc)
markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, (StgClosure *) str);
return;
}
// already evacuated? (we're about to do the same check,
// but we avoid taking the spin-lock)
if (bd->flags & BF_EVACUATED) {
/* Don't forget to set the gct->failed_to_evac flag if we didn't get
* the desired destination (see comments in evacuate()).
*/
debugTrace(DEBUG_compact, "Compact %p already evacuated", str);
if (gen_no < gct->evac_gen_no) {
gct->failed_to_evac = true;
TICK_GC_FAILED_PROMOTION();
}
return;
}
gen = bd->gen;
gen_no = bd->gen_no;
ACQUIRE_SPIN_LOCK(&gen->sync);
// already evacuated?
if (bd->flags & BF_EVACUATED) {
/* Don't forget to set the gct->failed_to_evac flag if we didn't get
* the desired destination (see comments in evacuate()).
*/
if (gen_no < gct->evac_gen_no) {
gct->failed_to_evac = true;
TICK_GC_FAILED_PROMOTION();
}
RELEASE_SPIN_LOCK(&gen->sync);
return;
}
// remove from compact_objects list
dbl_link_remove(bd, &gen->compact_objects);
/* link it on to the evacuated compact object list of the destination gen
*/
new_gen_no = bd->dest_no;
if (new_gen_no < gct->evac_gen_no) {
if (gct->eager_promotion) {
new_gen_no = gct->evac_gen_no;
} else {
gct->failed_to_evac = true;
}
}
new_gen = &generations[new_gen_no];
// Note: for speed we only update the generation of the first block here
// This means that bdescr of subsequent blocks will think they are in
// the wrong generation
// (This should not be a problem because there is no code that checks
// for that - the only code touching the generation of the block is
// in the GC, and that should never see blocks other than the first)
bd->flags |= BF_EVACUATED;
if (RTS_UNLIKELY(RtsFlags.GcFlags.useNonmoving && new_gen == oldest_gen)) {
__atomic_fetch_or(&bd->flags, BF_NONMOVING, __ATOMIC_RELAXED);
// See Note [Non-moving GC: Marking evacuated objects].
markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, (StgClosure *) str);
}
initBdescr(bd, new_gen, new_gen->to);
if (str->hash) {
// If there is a hash-table for sharing preservation then we need to add
// the compact to the scavenging work list to ensure that the hashtable
// is scavenged.
gen_workspace *ws = &gct->gens[new_gen_no];
bd->link = ws->todo_large_objects;
ws->todo_large_objects = bd;
} else {
if (new_gen != gen) { ACQUIRE_SPIN_LOCK(&new_gen->sync); }
dbl_link_onto(bd, &new_gen->live_compact_objects);
new_gen->n_live_compact_blocks += str->totalW / BLOCK_SIZE_W;
if (new_gen != gen) { RELEASE_SPIN_LOCK(&new_gen->sync); }
}
RELEASE_SPIN_LOCK(&gen->sync);
// Note: the object did not move in memory, because it lives
// in pinned (BF_COMPACT) allocation, so we do not need to rewrite it
// or muck with forwarding pointers
// Also there is no tag to worry about on the struct (tags are used
// for constructors and functions, but a struct is neither). There
// might be a tag on the object pointer, but again we don't change
// the pointer because we don't move the object so we don't need to
// rewrite the tag.
}
/* ----------------------------------------------------------------------------
Evacuate
This is called (eventually) for every live object in the system.
The caller to evacuate specifies a desired generation in the
gct->evac_gen thread-local variable. The following conditions apply to
evacuating an object which resides in generation M when we're
collecting up to generation N
if M >= gct->evac_gen
if M > N do nothing
else evac to gen->to
if M < gct->evac_gen evac to gct->evac_gen, step 0
if the object is already evacuated, then we check which generation
it now resides in.
if M >= gct->evac_gen do nothing
if M < gct->evac_gen set gct->failed_to_evac flag to indicate that we
didn't manage to evacuate this object into gct->evac_gen.
OPTIMISATION NOTES:
evacuate() is the single most important function performance-wise
in the GC. Various things have been tried to speed it up, but as
far as I can tell the code generated by gcc 3.2 with -O2 is about
as good as it's going to get. We pass the argument to evacuate()
in a register using the 'regparm' attribute (see the prototype for
evacuate() near the top of this file).
Changing evacuate() to take an (StgClosure **) rather than
returning the new pointer seems attractive, because we can avoid
writing back the pointer when it hasn't changed (eg. for a static
object, or an object in a generation > N). However, I tried it and
it doesn't help. One reason is that the (StgClosure **) pointer
gets spilled to the stack inside evacuate(), resulting in far more
extra reads/writes than we save.
------------------------------------------------------------------------- */
REGPARM1 GNUC_ATTR_HOT void
evacuate(StgClosure **p)
{
bdescr *bd = NULL;
uint32_t gen_no;
StgClosure *q;
const StgInfoTable *info;
StgWord tag;
q = RELAXED_LOAD(p);
loop:
/* The tag and the pointer are split, to be merged after evacing */
tag = GET_CLOSURE_TAG(q);
q = UNTAG_CLOSURE(q);
ASSERTM(LOOKS_LIKE_CLOSURE_PTR(q), "invalid closure, info=%p", q->header.info);
if (!HEAP_ALLOCED_GC(q)) {
if (!major_gc) return;
// Note [Object unloading] in CheckUnload.c
if (RTS_UNLIKELY(unload_mark_needed)) {
markObjectCode(q);
}
info = get_itbl(q);
switch (info->type) {
case THUNK_STATIC:
if (info->srt != 0) {
evacuate_static_object(THUNK_STATIC_LINK((StgClosure *)q), q);
}
return;
case FUN_STATIC:
if (info->srt != 0 || info->layout.payload.ptrs != 0) {
evacuate_static_object(STATIC_LINK(info,(StgClosure *)q), q);
}
return;
case IND_STATIC:
/* If q->saved_info != NULL, then it's a revertible CAF - it'll be
* on the CAF list, so don't do anything with it here (we'll
* scavenge it later).
*/
evacuate_static_object(IND_STATIC_LINK((StgClosure *)q), q);
return;
case CONSTR:
case CONSTR_1_0:
case CONSTR_2_0:
case CONSTR_1_1:
evacuate_static_object(STATIC_LINK(info,(StgClosure *)q), q);
return;
case CONSTR_0_1:
case CONSTR_0_2:
case CONSTR_NOCAF:
/* no need to put these on the static linked list, they don't need
* to be scavenged.
*/
return;
default:
barf("evacuate(static): strange closure type %d", (int)(info->type));
}
}
bd = Bdescr((P_)q);
uint16_t flags = RELAXED_LOAD(&bd->flags);
if ((flags & (BF_LARGE | BF_MARKED | BF_EVACUATED | BF_COMPACT | BF_NONMOVING)) != 0) {
// Pointer to non-moving heap. Non-moving heap is collected using
// mark-sweep so this object should be marked and then retained in sweep.
if (RTS_UNLIKELY(RELAXED_LOAD(&bd->flags) & BF_NONMOVING)) {
// NOTE: large objects in nonmoving heap are also marked with
// BF_NONMOVING. Those are moved to scavenged_large_objects list in
// mark phase.
if (major_gc && !deadlock_detect_gc)
markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, q);
return;
}
// pointer into to-space: just return it. It might be a pointer
// into a generation that we aren't collecting (> N), or it
// might just be a pointer into to-space. The latter doesn't
// happen often, but allowing it makes certain things a bit
// easier; e.g. scavenging an object is idempotent, so it's OK to
// have an object on the mutable list multiple times.
if (flags & BF_EVACUATED) {
// We aren't copying this object, so we have to check
// whether it is already in the target generation. (this is
// the write barrier).
if (RELAXED_LOAD(&bd->gen_no) < gct->evac_gen_no) {
gct->failed_to_evac = true;
TICK_GC_FAILED_PROMOTION();
}
return;
}
// Check for compact before checking for large, this allows doing the
// right thing for objects that are half way in the middle of the first
// block of a compact (and would be treated as large objects even though
// they are not)
if (flags & BF_COMPACT) {
evacuate_compact((P_)q);
return;
}
/* evacuate large objects by re-linking them onto a different list.
*/
if (flags & BF_LARGE) {
evacuate_large((P_)q);
return;
}
/* If the object is in a gen that we're compacting, then we
* need to use an alternative evacuate procedure.
*/
if (!is_marked((P_)q,bd)) {
mark((P_)q,bd);
push_mark_stack((P_)q);
}
return;
}
gen_no = bd->dest_no;
info = ACQUIRE_LOAD(&q->header.info);
if (IS_FORWARDING_PTR(info))
{
/* Already evacuated, just return the forwarding address.
* HOWEVER: if the requested destination generation (gct->evac_gen) is
* older than the actual generation (because the object was
* already evacuated to a younger generation) then we have to
* set the gct->failed_to_evac flag to indicate that we couldn't
* manage to promote the object to the desired generation.
*/
/*
* Optimisation: the check is fairly expensive, but we can often
* shortcut it if either the required generation is 0, or the
* current object (the EVACUATED) is in a high enough generation.
* We know that an EVACUATED always points to an object in the
* same or an older generation. gen is the lowest generation that the
* current object would be evacuated to, so we only do the full
* check if gen is too low.
*/
StgClosure *e = (StgClosure*)UN_FORWARDING_PTR(info);
RELAXED_STORE(p, TAG_CLOSURE(tag,e));
if (gen_no < gct->evac_gen_no) { // optimisation
// The ACQUIRE here is necessary to ensure that we see gen_no if the
// evacuted object lives in a block newly-allocated by a GC thread on
// another core.
if (ACQUIRE_LOAD(&Bdescr((P_)e)->gen_no) < gct->evac_gen_no) {
gct->failed_to_evac = true;
TICK_GC_FAILED_PROMOTION();
}
}
return;
}
switch (INFO_PTR_TO_STRUCT(info)->type) {
case WHITEHOLE:
goto loop;
// For ints and chars of low value, save space by replacing references to
// these with closures with references to common, shared ones in the RTS.
//
// * Except when compiling into Windows DLLs which don't support cross-package
// data references very well.
//
case CONSTR_0_1:
{
#if defined(COMPILING_WINDOWS_DLL)
copy_tag_nolock(p,info,q,sizeofW(StgHeader)+1,gen_no,tag);
#else
StgWord w = (StgWord)q->payload[0];
if (info == Czh_con_info &&
// unsigned, so always true: (StgChar)w >= MIN_CHARLIKE &&
(StgChar)w <= MAX_CHARLIKE) {
RELAXED_STORE(p, \
TAG_CLOSURE(tag, \
(StgClosure *)CHARLIKE_CLOSURE((StgChar)w)
));
}
else if (info == Izh_con_info &&
(StgInt)w >= MIN_INTLIKE && (StgInt)w <= MAX_INTLIKE) {
RELAXED_STORE(p, \
TAG_CLOSURE(tag, \
(StgClosure *)INTLIKE_CLOSURE((StgInt)w)
));
}
else {
copy_tag_nolock(p,info,q,sizeofW(StgHeader)+1,gen_no,tag);
}
#endif
return;
}
case FUN_0_1:
case FUN_1_0:
case CONSTR_1_0:
copy_tag_nolock(p,info,q,sizeofW(StgHeader)+1,gen_no,tag);
return;
case THUNK_1_0:
case THUNK_0_1:
copy(p,info,q,sizeofW(StgThunk)+1,gen_no);
return;
case THUNK_1_1:
case THUNK_2_0:
case THUNK_0_2:
copy(p,info,q,sizeofW(StgThunk)+2,gen_no);
return;
case FUN_1_1:
case FUN_2_0:
case FUN_0_2:
case CONSTR_1_1:
case CONSTR_2_0:
copy_tag_nolock(p,info,q,sizeofW(StgHeader)+2,gen_no,tag);
return;
case CONSTR_0_2:
copy_tag_nolock(p,info,q,sizeofW(StgHeader)+2,gen_no,tag);
return;
case THUNK:
copy(p,info,q,thunk_sizeW_fromITBL(INFO_PTR_TO_STRUCT(info)),gen_no);
return;
case FUN:
case CONSTR:
case CONSTR_NOCAF:
copy_tag_nolock(p,info,q,sizeW_fromITBL(INFO_PTR_TO_STRUCT(info)),gen_no,tag);
return;
case BLACKHOLE:
{
StgClosure *r;
const StgInfoTable *i;
r = ((StgInd*)q)->indirectee;
if (GET_CLOSURE_TAG(r) == 0) {
i = ACQUIRE_LOAD(&r->header.info);
if (IS_FORWARDING_PTR(i)) {
r = (StgClosure *)UN_FORWARDING_PTR(i);
i = ACQUIRE_LOAD(&r->header.info);
}
if (i == &stg_TSO_info
|| i == &stg_WHITEHOLE_info
|| i == &stg_BLOCKING_QUEUE_CLEAN_info
|| i == &stg_BLOCKING_QUEUE_DIRTY_info) {
copy(p,info,q,sizeofW(StgInd),gen_no);
return;
}
// Note [BLACKHOLE pointing to IND]
//
// BLOCKING_QUEUE can be overwritten by IND (see
// wakeBlockingQueue()). However, when this happens we must
// be updating the BLACKHOLE, so the BLACKHOLE's indirectee
// should now point to the value.
//
// The mutator might observe an inconsistent state, because
// the writes are happening in another thread, so it's
// possible for the mutator to follow an indirectee and find
// an IND. But this should never happen in the GC, because
// the mutators are all stopped and the writes have
// completed.
ASSERT(i != &stg_IND_info);
}
q = r;
RELEASE_STORE(p, r);
goto loop;
}
case MUT_VAR_CLEAN:
case MUT_VAR_DIRTY:
case MVAR_CLEAN:
case MVAR_DIRTY:
case TVAR:
case BLOCKING_QUEUE:
case WEAK:
case PRIM:
case MUT_PRIM:
copy(p,info,q,sizeW_fromITBL(INFO_PTR_TO_STRUCT(info)),gen_no);
return;
case BCO:
copy(p,info,q,bco_sizeW((StgBCO *)q),gen_no);
return;
case THUNK_SELECTOR:
eval_thunk_selector(p, (StgSelector *)q, true);
return;
case IND:
// follow chains of indirections, don't evacuate them
q = RELAXED_LOAD(&((StgInd*)q)->indirectee);
RELAXED_STORE(p, q);
goto loop;
case RET_BCO:
case RET_SMALL:
case RET_BIG:
case UPDATE_FRAME:
case UNDERFLOW_FRAME:
case STOP_FRAME:
case CATCH_FRAME:
case CATCH_STM_FRAME:
case CATCH_RETRY_FRAME:
case ATOMICALLY_FRAME:
// shouldn't see these
barf("evacuate: stack frame at %p\n", q);
case PAP:
copy(p,info,q,pap_sizeW((StgPAP*)q),gen_no);
return;
case AP:
copy(p,info,q,ap_sizeW((StgAP*)q),gen_no);
return;
case AP_STACK:
copy(p,info,q,ap_stack_sizeW((StgAP_STACK*)q),gen_no);
return;
case ARR_WORDS:
// just copy the block
copy(p,info,q,arr_words_sizeW((StgArrBytes *)q),gen_no);
return;
case MUT_ARR_PTRS_CLEAN:
case MUT_ARR_PTRS_DIRTY:
case MUT_ARR_PTRS_FROZEN_CLEAN:
case MUT_ARR_PTRS_FROZEN_DIRTY:
// just copy the block
copy(p,info,q,mut_arr_ptrs_sizeW((StgMutArrPtrs *)q),gen_no);
return;
case SMALL_MUT_ARR_PTRS_CLEAN:
case SMALL_MUT_ARR_PTRS_DIRTY:
case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
// just copy the block
copy(p,info,q,small_mut_arr_ptrs_sizeW((StgSmallMutArrPtrs *)q),gen_no);
return;
case TSO:
copy(p,info,q,sizeofW(StgTSO),gen_no);
return;
case STACK:
{
StgStack *stack = (StgStack *)q;
/* To evacuate a small STACK, we need to adjust the stack pointer
*/
{
StgStack *new_stack;
StgPtr r, s;
bool mine;
mine = copyPart(p,(StgClosure *)stack, stack_sizeW(stack),
sizeofW(StgStack), gen_no);
if (mine) {
new_stack = (StgStack *)*p;
move_STACK(stack, new_stack);
for (r = stack->sp, s = new_stack->sp;
r < stack->stack + stack->stack_size;) {
*s++ = *r++;
}
}
return;
}
}
case TREC_CHUNK:
copy(p,info,q,sizeofW(StgTRecChunk),gen_no);
return;
default:
barf("evacuate: strange closure type %d", (int)(INFO_PTR_TO_STRUCT(info)->type));
}
barf("evacuate");
}
/* -----------------------------------------------------------------------------
Evacuate a pointer that is guaranteed to point to a BLACKHOLE.
This is used for evacuating the updatee of an update frame on the stack. We
want to copy the blackhole even if it has been updated by another thread and
is now an indirection, because the original update frame still needs to
update it.
See also Note [upd-black-hole] in sm/Scav.c.
-------------------------------------------------------------------------- */
void
evacuate_BLACKHOLE(StgClosure **p)
{
bdescr *bd;
uint32_t gen_no;
StgClosure *q;
const StgInfoTable *info;
q = *p;
// closure is required to be a heap-allocated BLACKHOLE
ASSERT(HEAP_ALLOCED_GC(q));
ASSERT(GET_CLOSURE_TAG(q) == 0);
bd = Bdescr((P_)q);
const uint16_t flags = RELAXED_LOAD(&bd->flags);
// blackholes can't be in a compact
ASSERT((flags & BF_COMPACT) == 0);
if (RTS_UNLIKELY(RELAXED_LOAD(&bd->flags) & BF_NONMOVING)) {
if (major_gc && !deadlock_detect_gc)
markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, q);
return;
}
// blackholes *can* be in a large object: when raiseAsync() creates an
// AP_STACK the payload might be large enough to create a large object.
// See #14497.
if (flags & BF_LARGE) {
evacuate_large((P_)q);
return;
}
if (flags & BF_EVACUATED) {
if (bd->gen_no < gct->evac_gen_no) {
gct->failed_to_evac = true;
TICK_GC_FAILED_PROMOTION();
}
return;
}
if (flags & BF_MARKED) {
if (!is_marked((P_)q,bd)) {
mark((P_)q,bd);
push_mark_stack((P_)q);
}
return;
}
gen_no = bd->dest_no;
info = ACQUIRE_LOAD(&q->header.info);
if (IS_FORWARDING_PTR(info))
{
StgClosure *e = (StgClosure*)UN_FORWARDING_PTR(info);
*p = e;
if (gen_no < gct->evac_gen_no) { // optimisation
if (ACQUIRE_LOAD(&Bdescr((P_)e)->gen_no) < gct->evac_gen_no) {
gct->failed_to_evac = true;
TICK_GC_FAILED_PROMOTION();
}
}
return;
}
ASSERT(INFO_PTR_TO_STRUCT(info)->type == BLACKHOLE);
copy(p,info,q,sizeofW(StgInd),gen_no);
}
/* ----------------------------------------------------------------------------
Update a chain of thunk selectors with the given value. All selectors in the
chain become IND pointing to the value, except when there is a loop (i.e.
the value of a THUNK_SELECTOR is the THUNK_SELECTOR itself), in that case we
leave the selector as-is.
p is the current selector to update. In eval_thunk_selector we make a list
from selectors using ((StgThunk*)p)->payload[0] for the link field and use
that field to traverse the chain here.
val is the final value of the selector chain.
A chain is formed when we've got something like:
let x = C1 { f1 = e1 }
y = C2 { f2 = f1 x }
z = f2 y
Here the chain (p) we get when evacuating z is:
[ f2 y, f1 x ]
and val is e1.
-------------------------------------------------------------------------- */
static void
unchain_thunk_selectors(StgSelector *p, StgClosure *val)
{
while (p)
{
ASSERT(p->header.info == &stg_WHITEHOLE_info);
// val must be in to-space. Not always: when we recursively
// invoke eval_thunk_selector(), the recursive calls will not
// evacuate the value (because we want to select on the value,
// not evacuate it), so in this case val is in from-space.
// ASSERT(!HEAP_ALLOCED_GC(val) || Bdescr((P_)val)->gen_no > N || (Bdescr((P_)val)->flags & BF_EVACUATED));
StgSelector *prev = (StgSelector*)((StgClosure *)p)->payload[0];
// Update the THUNK_SELECTOR with an indirection to the
// value. The value is still in from-space at this stage.
//
// (old note: Why not do upd_evacuee(q,p)? Because we have an
// invariant that an EVACUATED closure always points to an
// object in the same or an older generation (required by
// the short-cut test in the EVACUATED case, below).
if ((StgClosure *)p == val) {
// must be a loop; just leave a BLACKHOLE in place. This
// can happen when we have a chain of selectors that
// eventually loops back on itself. We can't leave an
// indirection pointing to itself, and we want the program
// to deadlock if it ever enters this closure, so
// BLACKHOLE is correct.
// XXX we do not have BLACKHOLEs any more; replace with
// a THUNK_SELECTOR again. This will go into a loop if it is
// entered, and should result in a NonTermination exception.
RELAXED_STORE(&((StgThunk *)p)->payload[0], val);
SET_INFO_RELEASE((StgClosure *)p, &stg_sel_0_upd_info);
} else {
RELAXED_STORE(&((StgInd *)p)->indirectee, val);
SET_INFO_RELEASE((StgClosure *)p, &stg_IND_info);
}
// For the purposes of LDV profiling, we have created an
// indirection.
LDV_RECORD_CREATE(p);
p = prev;
}
}
/* -----------------------------------------------------------------------------
Evaluate a THUNK_SELECTOR if possible.
p points to a THUNK_SELECTOR that we want to evaluate.
If the THUNK_SELECTOR could not be evaluated (its selectee is still a THUNK,
for example), then the THUNK_SELECTOR itself will be evacuated depending on
the evac parameter.
-------------------------------------------------------------------------- */
static void
eval_thunk_selector (StgClosure **q, StgSelector *p, bool evac)
// NB. for legacy reasons, p & q are swapped around :(
{
uint32_t field;
StgInfoTable *info;
StgWord info_ptr;
StgClosure *selectee;
StgSelector *prev_thunk_selector;
bdescr *bd;
prev_thunk_selector = NULL;
// this is a chain of THUNK_SELECTORs that we are going to update
// to point to the value of the current THUNK_SELECTOR. Each
// closure on the chain is a WHITEHOLE, and points to the next in the
// chain with payload[0].
selector_chain:
bd = Bdescr((StgPtr)p);
if (HEAP_ALLOCED_GC(p)) {
// If the THUNK_SELECTOR is in to-space or in a generation that we
// are not collecting, then bale out early. We won't be able to
// save any space in any case, and updating with an indirection is
// trickier in a non-collected gen: we would have to update the
// mutable list.
if (RELAXED_LOAD(&bd->flags) & (BF_EVACUATED | BF_NONMOVING)) {
unchain_thunk_selectors(prev_thunk_selector, (StgClosure *)p);
*q = (StgClosure *)p;
// shortcut, behave as for: if (evac) evacuate(q);
if (evac && bd->gen_no < gct->evac_gen_no) {
gct->failed_to_evac = true;
TICK_GC_FAILED_PROMOTION();
}
return;
}
// we don't update THUNK_SELECTORS in the compacted
// generation, because compaction does not remove the INDs
// that result, this causes confusion later
// (scavenge_mark_stack doesn't deal with IND). BEWARE! This
// bit is very tricky to get right. If you make changes
// around here, test by compiling stage 3 with +RTS -c -RTS.
if (bd->flags & BF_MARKED) {
// must call evacuate() to mark this closure if evac==true
*q = (StgClosure *)p;
if (evac) evacuate(q);
unchain_thunk_selectors(prev_thunk_selector, (StgClosure *)p);
return;
}
}
// WHITEHOLE the selector thunk, since it is now under evaluation.
// This is important to stop us going into an infinite loop if
// this selector thunk eventually refers to itself.
#if defined(THREADED_RTS)
// In threaded mode, we'll use WHITEHOLE to lock the selector
// thunk while we evaluate it.
{
while(true) {
info_ptr = xchg((StgPtr)&p->header.info, (W_)&stg_WHITEHOLE_info);
if (info_ptr != (W_)&stg_WHITEHOLE_info) { break; }
#if defined(PROF_SPIN)
++whitehole_gc_spin;
#endif
busy_wait_nop();
}
// make sure someone else didn't get here first...
if (IS_FORWARDING_PTR(info_ptr) ||
INFO_PTR_TO_STRUCT((StgInfoTable *)info_ptr)->type != THUNK_SELECTOR) {
// v. tricky now. The THUNK_SELECTOR has been evacuated
// by another thread, and is now either a forwarding ptr or IND.
// We need to extract ourselves from the current situation
// as cleanly as possible.
// - unlock the closure
// - update *q, we may have done *some* evaluation
// - if evac, we need to call evacuate(), because we
// need the write-barrier stuff.
// - undo the chain we've built to point to p.
SET_INFO((StgClosure *)p, (const StgInfoTable *)info_ptr);
RELEASE_STORE(q, (StgClosure *) p);
if (evac) evacuate(q);
unchain_thunk_selectors(prev_thunk_selector, (StgClosure *)p);
return;
}
}
#else
// Save the real info pointer (NOTE: not the same as get_itbl()).
info_ptr = (StgWord)p->header.info;
SET_INFO((StgClosure *)p,&stg_WHITEHOLE_info);
#endif /* THREADED_RTS */
field = INFO_PTR_TO_STRUCT((StgInfoTable *)info_ptr)->layout.selector_offset;
// The selectee might be a constructor closure,
// so we untag the pointer.
selectee = UNTAG_CLOSURE(p->selectee);
selector_loop:
// selectee now points to the closure that we're trying to select
// a field from. It may or may not be in to-space: we try not to
// end up in to-space, but it's impractical to avoid it in
// general. The compacting GC scatters to-space pointers in
// from-space during marking, for example. We rely on the property
// that evacuate() doesn't mind if it gets passed a to-space pointer.
info = RELAXED_LOAD((StgInfoTable**) &selectee->header.info);
if (IS_FORWARDING_PTR(info)) {
// We don't follow pointers into to-space; the constructor
// has already been evacuated, so we won't save any space
// leaks by evaluating this selector thunk anyhow.
goto bale_out;
}
info = INFO_PTR_TO_STRUCT(info);
switch (info->type) {
case WHITEHOLE:
goto bale_out; // about to be evacuated by another thread (or a loop).
case CONSTR:
case CONSTR_1_0:
case CONSTR_0_1:
case CONSTR_2_0:
case CONSTR_1_1:
case CONSTR_0_2:
case CONSTR_NOCAF:
{
// check that the size is in range
ASSERT(field < (StgWord32)(info->layout.payload.ptrs +
info->layout.payload.nptrs));
// Select the right field from the constructor
StgClosure *val = RELAXED_LOAD(&selectee->payload[field]);
#if defined(PROFILING)
// For the purposes of LDV profiling, we have destroyed
// the original selector thunk, p.
if (era > 0) {
// Only modify the info pointer when LDV profiling is
// enabled. Note that this is incompatible with parallel GC,
// because it would allow other threads to start evaluating
// the same selector thunk.
SET_INFO((StgClosure*)p, (StgInfoTable *)info_ptr);
OVERWRITING_CLOSURE((StgClosure*)p);
SET_INFO((StgClosure*)p, &stg_WHITEHOLE_info);
write_barrier();
#if defined(PARALLEL_GC)
abort(); // LDV is incompatible with parallel GC
#endif
}
#endif
// the closure in val is now the "value" of the
// THUNK_SELECTOR in p. However, val may itself be a
// THUNK_SELECTOR, in which case we want to continue
// evaluating until we find the real value, and then
// update the whole chain to point to the value.
val_loop:
info_ptr = ACQUIRE_LOAD((StgWord*) &UNTAG_CLOSURE(val)->header.info);
if (!IS_FORWARDING_PTR(info_ptr))
{
info = INFO_PTR_TO_STRUCT((StgInfoTable *)info_ptr);
switch (info->type) {
case IND:
case IND_STATIC:
val = RELAXED_LOAD(&((StgInd *)val)->indirectee);
goto val_loop;
case THUNK_SELECTOR:
// Use payload to make a list of thunk selectors, to be
// used in unchain_thunk_selectors
RELAXED_STORE(&((StgClosure*)p)->payload[0], (StgClosure *)prev_thunk_selector);
prev_thunk_selector = p;
p = (StgSelector*)val;
goto selector_chain;
default:
break;
}
}
RELAXED_STORE(&((StgClosure*)p)->payload[0], (StgClosure *)prev_thunk_selector);
prev_thunk_selector = p;
*q = val;
// update the other selectors in the chain *before*
// evacuating the value. This is necessary in the case
// where the value turns out to be one of the selectors
// in the chain (i.e. we have a loop), and evacuating it
// would corrupt the chain.
unchain_thunk_selectors(prev_thunk_selector, val);
// evacuate() cannot recurse through
// eval_thunk_selector(), because we know val is not
// a THUNK_SELECTOR.
if (evac) evacuate(q);
return;
}
case IND:
case IND_STATIC:
// Again, we might need to untag a constructor.
selectee = UNTAG_CLOSURE( RELAXED_LOAD(&((StgInd *)selectee)->indirectee) );
goto selector_loop;
case BLACKHOLE:
{
StgClosure *r;
const StgInfoTable *i;
r = ACQUIRE_LOAD(&((StgInd*)selectee)->indirectee);
// establish whether this BH has been updated, and is now an
// indirection, as in evacuate().
if (GET_CLOSURE_TAG(r) == 0) {
i = ACQUIRE_LOAD(&r->header.info);
if (IS_FORWARDING_PTR(i)) {
r = (StgClosure *)UN_FORWARDING_PTR(i);
i = RELAXED_LOAD(&r->header.info);
}
if (i == &stg_TSO_info
|| i == &stg_WHITEHOLE_info
|| i == &stg_BLOCKING_QUEUE_CLEAN_info
|| i == &stg_BLOCKING_QUEUE_DIRTY_info) {
goto bale_out;
}
ASSERT(i != &stg_IND_info);
}
selectee = UNTAG_CLOSURE( RELAXED_LOAD(&((StgInd *)selectee)->indirectee) );
goto selector_loop;
}
case THUNK_SELECTOR:
{
StgClosure *val;
// recursively evaluate this selector. We don't want to
// recurse indefinitely, so we impose a depth bound.
// See Note [Selector optimisation depth limit].
if (gct->thunk_selector_depth >= MAX_THUNK_SELECTOR_DEPTH) {
goto bale_out;
}
gct->thunk_selector_depth++;
// false says "don't evacuate the result". It will,
// however, update any THUNK_SELECTORs that are evaluated
// along the way.
eval_thunk_selector(&val, (StgSelector*)selectee, false);
gct->thunk_selector_depth--;
// did we actually manage to evaluate it?
if (val == selectee) goto bale_out;
// Of course this pointer might be tagged...
selectee = UNTAG_CLOSURE(val);
goto selector_loop;
}
case AP:
case AP_STACK:
case THUNK:
case THUNK_1_0:
case THUNK_0_1:
case THUNK_2_0:
case THUNK_1_1:
case THUNK_0_2:
case THUNK_STATIC:
// not evaluated yet
goto bale_out;
default:
barf("eval_thunk_selector: strange selectee %d",
(int)(info->type));
}
bale_out:
// We didn't manage to evaluate this thunk; restore the old info
// pointer. But don't forget: we still need to evacuate the thunk itself.
SET_INFO((StgClosure *)p, (const StgInfoTable *)info_ptr);
// THREADED_RTS: we just unlocked the thunk, so another thread
// might get in and update it. copy() will lock it again and
// check whether it was updated in the meantime.
*q = (StgClosure *)p;
if (evac) {
copy(q,(const StgInfoTable *)info_ptr,(StgClosure *)p,THUNK_SELECTOR_sizeW(),bd->dest_no);
}
unchain_thunk_selectors(prev_thunk_selector, *q);
}
|