1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team 1998-2008
*
* Generational garbage collector: utilities
*
* Documentation on the architecture of the Garbage Collector can be
* found in the online commentary:
*
* http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/GC
*
* ---------------------------------------------------------------------------*/
#include "Rts.h"
#include "RtsFlags.h"
#include "Storage.h"
#include "GC.h"
#include "GCThread.h"
#include "GCUtils.h"
#include "Printer.h"
#include "Trace.h"
#ifdef THREADED_RTS
#include "WSDeque.h"
#endif
#ifdef THREADED_RTS
SpinLock gc_alloc_block_sync;
#endif
bdescr *
allocBlock_sync(void)
{
bdescr *bd;
ACQUIRE_SPIN_LOCK(&gc_alloc_block_sync);
bd = allocBlock();
RELEASE_SPIN_LOCK(&gc_alloc_block_sync);
return bd;
}
#if 0
static void
allocBlocks_sync(nat n, bdescr **hd, bdescr **tl,
nat gen_no, step *stp,
StgWord32 flags)
{
bdescr *bd;
nat i;
ACQUIRE_SPIN_LOCK(&gc_alloc_block_sync);
bd = allocGroup(n);
for (i = 0; i < n; i++) {
bd[i].blocks = 1;
bd[i].gen_no = gen_no;
bd[i].step = stp;
bd[i].flags = flags;
bd[i].link = &bd[i+1];
bd[i].u.scan = bd[i].free = bd[i].start;
}
*hd = bd;
*tl = &bd[n-1];
RELEASE_SPIN_LOCK(&gc_alloc_block_sync);
}
#endif
void
freeChain_sync(bdescr *bd)
{
ACQUIRE_SPIN_LOCK(&gc_alloc_block_sync);
freeChain(bd);
RELEASE_SPIN_LOCK(&gc_alloc_block_sync);
}
/* -----------------------------------------------------------------------------
Workspace utilities
-------------------------------------------------------------------------- */
bdescr *
grab_local_todo_block (step_workspace *ws)
{
bdescr *bd;
step *stp;
stp = ws->step;
bd = ws->todo_overflow;
if (bd != NULL)
{
ws->todo_overflow = bd->link;
bd->link = NULL;
ws->n_todo_overflow--;
return bd;
}
bd = popWSDeque(ws->todo_q);
if (bd != NULL)
{
ASSERT(bd->link == NULL);
return bd;
}
return NULL;
}
bdescr *
steal_todo_block (nat s)
{
nat n;
bdescr *bd;
// look for work to steal
for (n = 0; n < n_gc_threads; n++) {
if (n == gct->thread_index) continue;
bd = stealWSDeque(gc_threads[n]->steps[s].todo_q);
if (bd) {
return bd;
}
}
return NULL;
}
void
push_scanned_block (bdescr *bd, step_workspace *ws)
{
ASSERT(bd != NULL);
ASSERT(bd->link == NULL);
ASSERT(bd->step == ws->step);
ASSERT(bd->u.scan == bd->free);
if (bd->start + BLOCK_SIZE_W - bd->free > WORK_UNIT_WORDS)
{
// a partially full block: put it on the part_list list.
bd->link = ws->part_list;
ws->part_list = bd;
ws->n_part_blocks++;
IF_DEBUG(sanity,
ASSERT(countBlocks(ws->part_list) == ws->n_part_blocks));
}
else
{
// put the scan block on the ws->scavd_list.
bd->link = ws->scavd_list;
ws->scavd_list = bd;
ws->n_scavd_blocks ++;
IF_DEBUG(sanity,
ASSERT(countBlocks(ws->scavd_list) == ws->n_scavd_blocks));
}
}
StgPtr
todo_block_full (nat size, step_workspace *ws)
{
StgPtr p;
bdescr *bd;
// todo_free has been pre-incremented by Evac.c:alloc_for_copy(). We
// are expected to leave it bumped when we've finished here.
ws->todo_free -= size;
bd = ws->todo_bd;
ASSERT(bd != NULL);
ASSERT(bd->link == NULL);
ASSERT(bd->step == ws->step);
// If the global list is not empty, or there's not much work in
// this block to push, and there's enough room in
// this block to evacuate the current object, then just increase
// the limit.
if (!looksEmptyWSDeque(ws->todo_q) ||
(ws->todo_free - bd->u.scan < WORK_UNIT_WORDS / 2)) {
if (ws->todo_free + size < bd->start + BLOCK_SIZE_W) {
ws->todo_lim = stg_min(bd->start + BLOCK_SIZE_W,
ws->todo_lim + stg_max(WORK_UNIT_WORDS,size));
debugTrace(DEBUG_gc, "increasing limit for %p to %p", bd->start, ws->todo_lim);
p = ws->todo_free;
ws->todo_free += size;
return p;
}
}
gct->copied += ws->todo_free - bd->free;
bd->free = ws->todo_free;
ASSERT(bd->u.scan >= bd->start && bd->u.scan <= bd->free);
// If this block is not the scan block, we want to push it out and
// make room for a new todo block.
if (bd != gct->scan_bd)
{
// If this block does not have enough space to allocate the
// current object, but it also doesn't have any work to push, then
// push it on to the scanned list. It cannot be empty, because
// then there would be enough room to copy the current object.
if (bd->u.scan == bd->free)
{
ASSERT(bd->free != bd->start);
push_scanned_block(bd, ws);
}
// Otherwise, push this block out to the global list.
else
{
step *stp;
stp = ws->step;
debugTrace(DEBUG_gc, "push todo block %p (%ld words), step %d, todo_q: %ld",
bd->start, (unsigned long)(bd->free - bd->u.scan),
stp->abs_no, dequeElements(ws->todo_q));
if (!pushWSDeque(ws->todo_q, bd)) {
bd->link = ws->todo_overflow;
ws->todo_overflow = bd;
ws->n_todo_overflow++;
}
}
}
ws->todo_bd = NULL;
ws->todo_free = NULL;
ws->todo_lim = NULL;
alloc_todo_block(ws, size);
p = ws->todo_free;
ws->todo_free += size;
return p;
}
StgPtr
alloc_todo_block (step_workspace *ws, nat size)
{
bdescr *bd/*, *hd, *tl */;
// Grab a part block if we have one, and it has enough room
if (ws->part_list != NULL &&
ws->part_list->start + BLOCK_SIZE_W - ws->part_list->free > (int)size)
{
bd = ws->part_list;
ws->part_list = bd->link;
ws->n_part_blocks--;
}
else
{
// blocks in to-space get the BF_EVACUATED flag.
// allocBlocks_sync(16, &hd, &tl,
// ws->step->gen_no, ws->step, BF_EVACUATED);
//
// tl->link = ws->part_list;
// ws->part_list = hd->link;
// ws->n_part_blocks += 15;
//
// bd = hd;
bd = allocBlock_sync();
bd->step = ws->step;
bd->gen_no = ws->step->gen_no;
bd->flags = BF_EVACUATED;
bd->u.scan = bd->free = bd->start;
}
bd->link = NULL;
ws->todo_bd = bd;
ws->todo_free = bd->free;
ws->todo_lim = stg_min(bd->start + BLOCK_SIZE_W,
bd->free + stg_max(WORK_UNIT_WORDS,size));
debugTrace(DEBUG_gc, "alloc new todo block %p for step %d",
bd->free, ws->step->abs_no);
return ws->todo_free;
}
/* -----------------------------------------------------------------------------
* Debugging
* -------------------------------------------------------------------------- */
#if DEBUG
void
printMutableList(generation *gen)
{
bdescr *bd;
StgPtr p;
debugBelch("mutable list %p: ", gen->mut_list);
for (bd = gen->mut_list; bd != NULL; bd = bd->link) {
for (p = bd->start; p < bd->free; p++) {
debugBelch("%p (%s), ", (void *)*p, info_type((StgClosure *)*p));
}
}
debugBelch("\n");
}
#endif /* DEBUG */
|