1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team 1998-2008
*
* MegaBlock Allocator Interface. This file contains all the dirty
* architecture-dependent hackery required to get a chunk of aligned
* memory from the operating system.
*
* ---------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#include "RtsUtils.h"
#include "BlockAlloc.h"
#include "Trace.h"
#include "OSMem.h"
#include <string.h>
W_ peak_mblocks_allocated = 0;
W_ mblocks_allocated = 0;
W_ mpc_misses = 0;
/* -----------------------------------------------------------------------------
The MBlock Map: provides our implementation of HEAP_ALLOCED() and the
utilities to walk the really allocated (thus accessible without risk of
segfault) heap
-------------------------------------------------------------------------- */
/*
There are two different cases here: either we use "large address
space" (which really means two-step allocation), so we have to
manage which memory is good (= accessible without fear of segfault)
and which is not owned by us, or we use the older method and get
good memory straight from the system.
Both code paths need to provide:
void *getFirstMBlock(void ** state)
return the first (lowest address) mblock
that was actually committed
void *getNextMBlock(void ** state, void * mblock)
return the first (lowest address) mblock
that was committed, after the given one
For both these calls, @state is an in-out parameter that points to
an opaque state threading the calls togheter. The calls should only
be used in an interation fashion. Pass NULL if @state is not
interesting,or pass a pointer to NULL if you don't have a state.
void *getCommittedMBlocks(uint32_t n)
return @n new mblocks, ready to be used (reserved and committed)
void *decommitMBlocks(char *addr, uint32_t n)
release memory for @n mblocks, starting at the given address
void releaseFreeMemory()
potentially release any address space that was associated
with recently decommitted blocks
*/
#ifdef USE_LARGE_ADDRESS_SPACE
// Large address space means we use two-step allocation: reserve
// something large upfront, and then commit as needed
// (This is normally only useful on 64-bit, where we can assume
// that reserving 1TB is possible)
//
// There is no block map in this case, but there is a free list
// of blocks that were committed and decommitted at least once,
// which we use to choose which block to commit next in the already
// reserved space.
//
// We cannot let the OS choose it as we do in the
// non large address space case, because the committing wants to
// know the exact address upfront.
//
// The free list is coalesced and ordered, which means that
// allocate and free are worst-case O(n), but benchmarks have shown
// that this is not a significant problem, because large (>=2MB)
// allocations are infrequent and their time is mostly insignificant
// compared to the time to use that memory.
//
// The free list is stored in malloc()'d memory, unlike the other free
// lists in BlockAlloc.c which are stored in block descriptors,
// because we cannot touch the contents of decommitted mblocks.
typedef struct free_list {
struct free_list *prev;
struct free_list *next;
W_ address;
W_ size;
} free_list;
static free_list *free_list_head;
static W_ mblock_high_watermark;
/*
* it is quite important that these are in the same cache line as they
* are both needed by HEAP_ALLOCED. Moreover, we need to ensure that they
* don't share a cache line with anything else to prevent false sharing.
*/
struct mblock_address_range mblock_address_space = { 0, 0, {} };
static void *getAllocatedMBlock(free_list **start_iter, W_ startingAt)
{
free_list *iter;
W_ p = startingAt;
for (iter = *start_iter; iter != NULL; iter = iter->next)
{
if (p < iter->address)
break;
if (p == iter->address)
p += iter->size;
}
*start_iter = iter;
if (p >= mblock_high_watermark)
return NULL;
return (void*)p;
}
void * getFirstMBlock(void **state STG_UNUSED)
{
free_list *fake_state;
free_list **casted_state;
if (state)
casted_state = (free_list**)state;
else
casted_state = &fake_state;
*casted_state = free_list_head;
return getAllocatedMBlock(casted_state, mblock_address_space.begin);
}
void * getNextMBlock(void **state STG_UNUSED, void *mblock)
{
free_list *fake_state = free_list_head;
free_list **casted_state;
if (state)
casted_state = (free_list**)state;
else
casted_state = &fake_state;
return getAllocatedMBlock(casted_state, (W_)mblock + MBLOCK_SIZE);
}
static void *getReusableMBlocks(uint32_t n)
{
struct free_list *iter;
W_ size = MBLOCK_SIZE * (W_)n;
for (iter = free_list_head; iter != NULL; iter = iter->next) {
void *addr;
if (iter->size < size)
continue;
addr = (void*)iter->address;
iter->address += size;
iter->size -= size;
if (iter->size == 0) {
struct free_list *prev, *next;
prev = iter->prev;
next = iter->next;
if (prev == NULL) {
ASSERT(free_list_head == iter);
free_list_head = next;
} else {
prev->next = next;
}
if (next != NULL) {
next->prev = prev;
}
stgFree(iter);
}
osCommitMemory(addr, size);
return addr;
}
return NULL;
}
static void *getFreshMBlocks(uint32_t n)
{
W_ size = MBLOCK_SIZE * (W_)n;
void *addr = (void*)mblock_high_watermark;
if (mblock_high_watermark + size > mblock_address_space.end)
{
// whoa, 1 TB of heap?
errorBelch("out of memory");
stg_exit(EXIT_HEAPOVERFLOW);
}
osCommitMemory(addr, size);
mblock_high_watermark += size;
return addr;
}
static void *getCommittedMBlocks(uint32_t n)
{
void *p;
p = getReusableMBlocks(n);
if (p == NULL) {
p = getFreshMBlocks(n);
}
ASSERT(p != NULL && p != (void*)-1);
return p;
}
static void decommitMBlocks(char *addr, uint32_t n)
{
struct free_list *iter, *prev;
W_ size = MBLOCK_SIZE * (W_)n;
W_ address = (W_)addr;
osDecommitMemory(addr, size);
prev = NULL;
for (iter = free_list_head; iter != NULL; iter = iter->next)
{
prev = iter;
if (iter->address + iter->size < address)
continue;
if (iter->address + iter->size == address) {
iter->size += size;
if (address + size == mblock_high_watermark) {
mblock_high_watermark -= iter->size;
if (iter->prev) {
iter->prev->next = NULL;
} else {
ASSERT(iter == free_list_head);
free_list_head = NULL;
}
stgFree(iter);
return;
}
if (iter->next &&
iter->next->address == iter->address + iter->size) {
struct free_list *next;
next = iter->next;
iter->size += next->size;
iter->next = next->next;
if (iter->next) {
iter->next->prev = iter;
/* We don't need to consolidate more */
ASSERT(iter->next->address > iter->address + iter->size);
}
stgFree(next);
}
return;
} else if (address + size == iter->address) {
iter->address = address;
iter->size += size;
/* We don't need to consolidate backwards
(because otherwise it would have been handled by
the previous iteration) */
if (iter->prev) {
ASSERT(iter->prev->address + iter->prev->size < iter->address);
}
return;
} else {
struct free_list *new_iter;
/* All other cases have been handled */
ASSERT(iter->address > address + size);
new_iter = stgMallocBytes(sizeof(struct free_list), "freeMBlocks");
new_iter->address = address;
new_iter->size = size;
new_iter->next = iter;
new_iter->prev = iter->prev;
if (new_iter->prev) {
new_iter->prev->next = new_iter;
} else {
ASSERT(iter == free_list_head);
free_list_head = new_iter;
}
iter->prev = new_iter;
return;
}
}
/* We're past the last free list entry, so we must
be the highest allocation so far
*/
ASSERT(address + size <= mblock_high_watermark);
/* Fast path the case of releasing high or all memory */
if (address + size == mblock_high_watermark) {
mblock_high_watermark -= size;
} else {
struct free_list *new_iter;
new_iter = stgMallocBytes(sizeof(struct free_list), "freeMBlocks");
new_iter->address = address;
new_iter->size = size;
new_iter->next = NULL;
new_iter->prev = prev;
if (new_iter->prev) {
ASSERT(new_iter->prev->next == NULL);
new_iter->prev->next = new_iter;
} else {
ASSERT(free_list_head == NULL);
free_list_head = new_iter;
}
}
}
void releaseFreeMemory(void)
{
// This function exists for releasing address space
// on Windows 32 bit
//
// Do nothing if USE_LARGE_ADDRESS_SPACE, we never want
// to release address space
debugTrace(DEBUG_gc, "mblock_high_watermark: %p\n", mblock_high_watermark);
}
#else // !USE_LARGE_ADDRESS_SPACE
#if SIZEOF_VOID_P == 4
StgWord8 mblock_map[MBLOCK_MAP_SIZE]; // initially all zeros
static void
setHeapAlloced(void *p, StgWord8 i)
{
mblock_map[MBLOCK_MAP_ENTRY(p)] = i;
}
#elif SIZEOF_VOID_P == 8
MBlockMap **mblock_maps = NULL;
uint32_t mblock_map_count = 0;
MbcCacheLine mblock_cache[MBC_ENTRIES];
static MBlockMap *
findMBlockMap(void *p)
{
uint32_t i;
StgWord32 hi = (StgWord32) (((StgWord)p) >> 32);
for( i = 0; i < mblock_map_count; i++ )
{
if(mblock_maps[i]->addrHigh32 == hi)
{
return mblock_maps[i];
}
}
return NULL;
}
StgBool HEAP_ALLOCED_miss(StgWord mblock, void *p)
{
MBlockMap *map;
MBlockMapLine value;
uint32_t entry_no;
entry_no = mblock & (MBC_ENTRIES-1);
map = findMBlockMap(p);
if (map)
{
mpc_misses++;
value = map->lines[MBLOCK_MAP_LINE(p)];
mblock_cache[entry_no] = (mblock<<1) | value;
return value;
}
else
{
mblock_cache[entry_no] = (mblock<<1);
return 0;
}
}
static void
setHeapAlloced(void *p, StgWord8 i)
{
MBlockMap *map = findMBlockMap(p);
if(map == NULL)
{
mblock_map_count++;
mblock_maps = stgReallocBytes(mblock_maps,
sizeof(MBlockMap*) * mblock_map_count,
"markHeapAlloced(1)");
map = mblock_maps[mblock_map_count-1] =
stgMallocBytes(sizeof(MBlockMap),"markHeapAlloced(2)");
memset(map,0,sizeof(MBlockMap));
map->addrHigh32 = (StgWord32) (((StgWord)p) >> 32);
}
map->lines[MBLOCK_MAP_LINE(p)] = i;
{
StgWord mblock;
uint32_t entry_no;
mblock = (StgWord)p >> MBLOCK_SHIFT;
entry_no = mblock & (MBC_ENTRIES-1);
mblock_cache[entry_no] = (mblock << 1) + i;
}
}
#endif
static void
markHeapAlloced(void *p)
{
setHeapAlloced(p, 1);
}
static void
markHeapUnalloced(void *p)
{
setHeapAlloced(p, 0);
}
#if SIZEOF_VOID_P == 4
STATIC_INLINE
void * mapEntryToMBlock(uint32_t i)
{
return (void *)((StgWord)i << MBLOCK_SHIFT);
}
void * getFirstMBlock(void **state STG_UNUSED)
{
uint32_t i;
for (i = 0; i < MBLOCK_MAP_SIZE; i++) {
if (mblock_map[i]) return mapEntryToMBlock(i);
}
return NULL;
}
void * getNextMBlock(void **state STG_UNUSED, void *mblock)
{
uint32_t i;
for (i = MBLOCK_MAP_ENTRY(mblock) + 1; i < MBLOCK_MAP_SIZE; i++) {
if (mblock_map[i]) return mapEntryToMBlock(i);
}
return NULL;
}
#elif SIZEOF_VOID_P == 8
void * getNextMBlock(void **state STG_UNUSED, void *p)
{
MBlockMap *map;
uint32_t off, j;
uint32_t line_no;
MBlockMapLine line;
for (j = 0; j < mblock_map_count; j++) {
map = mblock_maps[j];
if (map->addrHigh32 == (StgWord)p >> 32) break;
}
if (j == mblock_map_count) return NULL;
for (; j < mblock_map_count; j++) {
map = mblock_maps[j];
if (map->addrHigh32 == (StgWord)p >> 32) {
line_no = MBLOCK_MAP_LINE(p);
off = (((StgWord)p >> MBLOCK_SHIFT) & (MBC_LINE_SIZE-1)) + 1;
// + 1 because we want the *next* mblock
} else {
line_no = 0; off = 0;
}
for (; line_no < MBLOCK_MAP_ENTRIES; line_no++) {
line = map->lines[line_no];
for (; off < MBC_LINE_SIZE; off++) {
if (line & (1<<off)) {
return (void*)(((StgWord)map->addrHigh32 << 32) +
line_no * MBC_LINE_SIZE * MBLOCK_SIZE +
off * MBLOCK_SIZE);
}
}
off = 0;
}
}
return NULL;
}
void * getFirstMBlock(void **state STG_UNUSED)
{
MBlockMap *map = mblock_maps[0];
uint32_t line_no, off;
MbcCacheLine line;
for (line_no = 0; line_no < MBLOCK_MAP_ENTRIES; line_no++) {
line = map->lines[line_no];
if (line) {
for (off = 0; off < MBC_LINE_SIZE; off++) {
if (line & (1<<off)) {
return (void*)(((StgWord)map->addrHigh32 << 32) +
line_no * MBC_LINE_SIZE * MBLOCK_SIZE +
off * MBLOCK_SIZE);
}
}
}
}
return NULL;
}
#endif // SIZEOF_VOID_P == 8
static void *getCommittedMBlocks(uint32_t n)
{
// The OS layer returns committed memory directly
void *ret = osGetMBlocks(n);
uint32_t i;
// fill in the table
for (i = 0; i < n; i++) {
markHeapAlloced( (StgWord8*)ret + i * MBLOCK_SIZE );
}
return ret;
}
static void decommitMBlocks(void *p, uint32_t n)
{
osFreeMBlocks(p, n);
uint32_t i;
for (i = 0; i < n; i++) {
markHeapUnalloced( (StgWord8*)p + i * MBLOCK_SIZE );
}
}
void releaseFreeMemory(void)
{
osReleaseFreeMemory();
}
#endif /* !USE_LARGE_ADDRESS_SPACE */
/* -----------------------------------------------------------------------------
Allocate new mblock(s)
-------------------------------------------------------------------------- */
void *
getMBlock(void)
{
return getMBlocks(1);
}
// The external interface: allocate 'n' mblocks, and return the
// address.
void *
getMBlocks(uint32_t n)
{
void *ret;
ret = getCommittedMBlocks(n);
debugTrace(DEBUG_gc, "allocated %d megablock(s) at %p",n,ret);
mblocks_allocated += n;
peak_mblocks_allocated = stg_max(peak_mblocks_allocated, mblocks_allocated);
return ret;
}
void
freeMBlocks(void *addr, uint32_t n)
{
debugTrace(DEBUG_gc, "freeing %d megablock(s) at %p",n,addr);
mblocks_allocated -= n;
decommitMBlocks(addr, n);
}
void
freeAllMBlocks(void)
{
debugTrace(DEBUG_gc, "freeing all megablocks");
#ifdef USE_LARGE_ADDRESS_SPACE
{
struct free_list *iter, *next;
for (iter = free_list_head; iter != NULL; iter = next)
{
next = iter->next;
stgFree(iter);
}
}
osReleaseHeapMemory();
mblock_address_space.begin = (W_)-1;
mblock_address_space.end = (W_)-1;
mblock_high_watermark = (W_)-1;
#else
osFreeAllMBlocks();
#if SIZEOF_VOID_P == 8
uint32_t n;
for (n = 0; n < mblock_map_count; n++) {
stgFree(mblock_maps[n]);
}
stgFree(mblock_maps);
#endif
#endif
}
void
initMBlocks(void)
{
osMemInit();
#ifdef USE_LARGE_ADDRESS_SPACE
{
W_ size;
#if aarch64_HOST_ARCH
size = (W_)1 << 38; // 1/4 TByte
#else
size = (W_)1 << 40; // 1 TByte
#endif
void *addr = osReserveHeapMemory(&size);
mblock_address_space.begin = (W_)addr;
mblock_address_space.end = (W_)addr + size;
mblock_high_watermark = (W_)addr;
}
#elif SIZEOF_VOID_P == 8
memset(mblock_cache,0xff,sizeof(mblock_cache));
#endif
}
|