summaryrefslogtreecommitdiff
path: root/rts/sm/NonMoving.c
blob: f383949ebfc9e7408e2d5bbe784846acc4b02695 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
/* -----------------------------------------------------------------------------
 *
 * (c) The GHC Team, 1998-2018
 *
 * Non-moving garbage collector and allocator
 *
 * ---------------------------------------------------------------------------*/

#include "Rts.h"
#include "RtsUtils.h"
#include "Capability.h"
#include "Printer.h"
#include "Storage.h"
// We call evacuate, which expects the thread-local gc_thread to be valid;
// This is sometimes declared as a register variable therefore it is necessary
// to include the declaration so that the compiler doesn't clobber the register.
#include "GCThread.h"
#include "GCTDecl.h"
#include "Schedule.h"

#include "NonMoving.h"
#include "NonMovingMark.h"
#include "NonMovingSweep.h"
#include "StablePtr.h" // markStablePtrTable
#include "Schedule.h" // markScheduler
#include "Weak.h" // dead_weak_ptr_list

struct NonmovingHeap nonmovingHeap;

uint8_t nonmovingMarkEpoch = 1;

static void nonmovingBumpEpoch(void) {
    nonmovingMarkEpoch = nonmovingMarkEpoch == 1 ? 2 : 1;
}

/*
 * Note [Non-moving garbage collector]
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 *
 * TODO
 *
 * Note [Concurrent non-moving collection]
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * Concurrency-control of non-moving garbage collection is a bit tricky. There
 * are a few things to keep in mind:
 *
 *  - Only one non-moving collection may be active at a time. This is enforced by the
 *    concurrent_coll_running flag, which is set when a collection is on-going. If
 *    we attempt to initiate a new collection while this is set we wait on the
 *    concurrent_coll_finished condition variable, which signals when the
 *    active collection finishes.
 *
 *  - In between the mark and sweep phases the non-moving collector must synchronize
 *    with mutator threads to collect and mark their final update remembered
 *    sets. This is accomplished using
 *    stopAllCapabilitiesWith(SYNC_FLUSH_UPD_REM_SET). Capabilities are held
 *    the final mark has concluded.
 *
 *
 * Note [Live data accounting in nonmoving collector]
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * The nonmoving collector uses an approximate heuristic for reporting live
 * data quantity. Specifically, during mark we record how much live data we
 * find in nonmoving_live_words. At the end of mark we declare this amount to
 * be how much live data we have on in the nonmoving heap (by setting
 * oldest_gen->live_estimate).
 *
 * In addition, we update oldest_gen->live_estimate every time we fill a
 * segment. This, as well, is quite approximate: we assume that all blocks
 * above next_free_next are newly-allocated. In principle we could refer to the
 * bitmap to count how many blocks we actually allocated but this too would be
 * approximate due to concurrent collection and ultimately seems more costly
 * than the problem demands.
 *
 */

memcount nonmoving_live_words = 0;

static void nonmovingClearBitmap(struct NonmovingSegment *seg);
static void nonmovingMark_(MarkQueue *mark_queue, StgWeak **dead_weaks, StgTSO **resurrected_threads);

/* Signals to mutators that they should stop to synchronize with the nonmoving
 * collector so it can proceed to sweep phase. */
bool nonmoving_syncing = false;

static void nonmovingInitSegment(struct NonmovingSegment *seg, uint8_t block_size)
{
    seg->link = NULL;
    seg->todo_link = NULL;
    seg->next_free = 0;
    seg->next_free_snap = 0;
    seg->block_size = block_size;
    nonmovingClearBitmap(seg);
    Bdescr((P_)seg)->u.scan = nonmovingSegmentGetBlock(seg, 0);
}

// Add a segment to the free list.
void nonmovingPushFreeSegment(struct NonmovingSegment *seg)
{
    // See Note [Live data accounting in nonmoving collector].
    if (nonmovingHeap.n_free > NONMOVING_MAX_FREE) {
        bdescr *bd = Bdescr((StgPtr) seg);
        ACQUIRE_SM_LOCK;
        ASSERT(oldest_gen->n_blocks >= bd->blocks);
        ASSERT(oldest_gen->n_words >= BLOCK_SIZE_W * bd->blocks);
        oldest_gen->n_blocks -= bd->blocks;
        oldest_gen->n_words  -= BLOCK_SIZE_W * bd->blocks;
        freeGroup(bd);
        RELEASE_SM_LOCK;
        return;
    }

    while (true) {
        struct NonmovingSegment *old = nonmovingHeap.free;
        seg->link = old;
        if (cas((StgVolatilePtr) &nonmovingHeap.free, (StgWord) old, (StgWord) seg) == (StgWord) old)
            break;
    }
    __sync_add_and_fetch(&nonmovingHeap.n_free, 1);
}

static struct NonmovingSegment *nonmovingPopFreeSegment(void)
{
    while (true) {
        struct NonmovingSegment *seg = nonmovingHeap.free;
        if (seg == NULL) {
            return NULL;
        }
        if (cas((StgVolatilePtr) &nonmovingHeap.free,
                (StgWord) seg,
                (StgWord) seg->link) == (StgWord) seg) {
            __sync_sub_and_fetch(&nonmovingHeap.n_free, 1);
            return seg;
        }
    }
}

/*
 * Request a fresh segment from the free segment list or allocate one of the
 * given node.
 *
 */
static struct NonmovingSegment *nonmovingAllocSegment(uint32_t node)
{
    // First try taking something off of the free list
    struct NonmovingSegment *ret;
    ret = nonmovingPopFreeSegment();

    // Nothing in the free list, allocate a new segment...
    if (ret == NULL) {
        // Take gc spinlock: another thread may be scavenging a moving
        // generation and call `todo_block_full`
        ACQUIRE_SPIN_LOCK(&gc_alloc_block_sync);
        bdescr *bd = allocAlignedGroupOnNode(node, NONMOVING_SEGMENT_BLOCKS);
        // See Note [Live data accounting in nonmoving collector].
        oldest_gen->n_blocks += bd->blocks;
        oldest_gen->n_words  += BLOCK_SIZE_W * bd->blocks;
        RELEASE_SPIN_LOCK(&gc_alloc_block_sync);

        for (StgWord32 i = 0; i < bd->blocks; ++i) {
            initBdescr(&bd[i], oldest_gen, oldest_gen);
            bd[i].flags = BF_NONMOVING;
        }
        ret = (struct NonmovingSegment *)bd->start;
    }

    // Check alignment
    ASSERT(((uintptr_t)ret % NONMOVING_SEGMENT_SIZE) == 0);
    return ret;
}

static inline unsigned long log2_floor(unsigned long x)
{
    return sizeof(unsigned long)*8 - 1 - __builtin_clzl(x);
}

static inline unsigned long log2_ceil(unsigned long x)
{
    unsigned long log = log2_floor(x);
    return (x - (1 << log)) ? log + 1 : log;
}

// Advance a segment's next_free pointer. Returns true if segment if full.
static bool advance_next_free(struct NonmovingSegment *seg)
{
    uint8_t *bitmap = seg->bitmap;
    unsigned int blk_count = nonmovingSegmentBlockCount(seg);
    for (unsigned int i = seg->next_free+1; i < blk_count; i++) {
        if (!bitmap[i]) {
            seg->next_free = i;
            return false;
        }
    }
    seg->next_free = blk_count;
    return true;
}

static struct NonmovingSegment *pop_active_segment(struct NonmovingAllocator *alloca)
{
    while (true) {
        struct NonmovingSegment *seg = alloca->active;
        if (seg == NULL) {
            return NULL;
        }
        if (cas((StgVolatilePtr) &alloca->active,
                (StgWord) seg,
                (StgWord) seg->link) == (StgWord) seg) {
            return seg;
        }
    }
}

/* sz is in words */
GNUC_ATTR_HOT
void *nonmovingAllocate(Capability *cap, StgWord sz)
{
    unsigned int allocator_idx = log2_ceil(sz * sizeof(StgWord)) - NONMOVING_ALLOCA0;

    // The max we ever allocate is 3276 bytes (anything larger is a large
    // object and not moved) which is covered by allocator 9.
    ASSERT(allocator_idx < NONMOVING_ALLOCA_CNT);

    struct NonmovingAllocator *alloca = nonmovingHeap.allocators[allocator_idx];

    // Allocate into current segment
    struct NonmovingSegment *current = alloca->current[cap->no];
    ASSERT(current); // current is never NULL
    void *ret = nonmovingSegmentGetBlock(current, current->next_free);
    ASSERT(GET_CLOSURE_TAG(ret) == 0); // check alignment

    // Add segment to the todo list unless it's already there
    // current->todo_link == NULL means not in todo list
    if (!current->todo_link) {
        gen_workspace *ws = &gct->gens[oldest_gen->no];
        current->todo_link = ws->todo_seg;
        ws->todo_seg = current;
    }

    // Advance the current segment's next_free or allocate a new segment if full
    bool full = advance_next_free(current);
    if (full) {
        // Current segment is full: update live data estimate link it to
        // filled, take an active segment if one exists, otherwise allocate a
        // new segment.

        // Update live data estimate.
        // See Note [Live data accounting in nonmoving collector].
        unsigned int new_blocks =  nonmovingSegmentBlockCount(current) - current->next_free_snap;
        atomic_inc(&oldest_gen->live_estimate, new_blocks * nonmovingSegmentBlockSize(current) / sizeof(W_));

        // push the current segment to the filled list
        nonmovingPushFilledSegment(current);

        // first look for a new segment in the active list
        struct NonmovingSegment *new_current = pop_active_segment(alloca);

        // there are no active segments, allocate new segment
        if (new_current == NULL) {
            new_current = nonmovingAllocSegment(cap->node);
            nonmovingInitSegment(new_current, NONMOVING_ALLOCA0 + allocator_idx);
        }

        // make it current
        new_current->link = NULL;
        alloca->current[cap->no] = new_current;
    }

    return ret;
}

/* Allocate a nonmovingAllocator */
static struct NonmovingAllocator *alloc_nonmoving_allocator(uint32_t n_caps)
{
    size_t allocator_sz =
        sizeof(struct NonmovingAllocator) +
        sizeof(void*) * n_caps; // current segment pointer for each capability
    struct NonmovingAllocator *alloc =
        stgMallocBytes(allocator_sz, "nonmovingInit");
    memset(alloc, 0, allocator_sz);
    return alloc;
}

void nonmovingInit(void)
{
    if (! RtsFlags.GcFlags.useNonmoving) return;
    for (unsigned int i = 0; i < NONMOVING_ALLOCA_CNT; i++) {
        nonmovingHeap.allocators[i] = alloc_nonmoving_allocator(n_capabilities);
    }
}

void nonmovingExit(void)
{
    if (! RtsFlags.GcFlags.useNonmoving) return;
    for (unsigned int i = 0; i < NONMOVING_ALLOCA_CNT; i++) {
        stgFree(nonmovingHeap.allocators[i]);
    }
}

/*
 * Wait for any concurrent collections to finish. Called during shutdown to
 * ensure we don't steal capabilities that the nonmoving collector still has yet
 * to synchronize with.
 */
void nonmovingWaitUntilFinished(void)
{
}

/*
 * Assumes that no garbage collector or mutator threads are running to safely
 * resize the nonmoving_allocators.
 *
 * Must hold sm_mutex.
 */
void nonmovingAddCapabilities(uint32_t new_n_caps)
{
    unsigned int old_n_caps = nonmovingHeap.n_caps;
    struct NonmovingAllocator **allocs = nonmovingHeap.allocators;

    for (unsigned int i = 0; i < NONMOVING_ALLOCA_CNT; i++) {
        struct NonmovingAllocator *old = allocs[i];
        allocs[i] = alloc_nonmoving_allocator(new_n_caps);

        // Copy the old state
        allocs[i]->filled = old->filled;
        allocs[i]->active = old->active;
        for (unsigned int j = 0; j < old_n_caps; j++) {
            allocs[i]->current[j] = old->current[j];
        }
        stgFree(old);

        // Initialize current segments for the new capabilities
        for (unsigned int j = old_n_caps; j < new_n_caps; j++) {
            allocs[i]->current[j] = nonmovingAllocSegment(capabilities[j]->node);
            nonmovingInitSegment(allocs[i]->current[j], NONMOVING_ALLOCA0 + i);
            allocs[i]->current[j]->link = NULL;
        }
    }
    nonmovingHeap.n_caps = new_n_caps;
}

static void nonmovingClearBitmap(struct NonmovingSegment *seg)
{
    unsigned int n = nonmovingSegmentBlockCount(seg);
    memset(seg->bitmap, 0, n);
}

static void nonmovingClearSegmentBitmaps(struct NonmovingSegment *seg)
{
    while (seg) {
        nonmovingClearBitmap(seg);
        seg = seg->link;
    }
}

static void nonmovingClearAllBitmaps(void)
{
    for (int alloca_idx = 0; alloca_idx < NONMOVING_ALLOCA_CNT; ++alloca_idx) {
        struct NonmovingAllocator *alloca = nonmovingHeap.allocators[alloca_idx];
        nonmovingClearSegmentBitmaps(alloca->filled);
    }

    // Clear large object bits
    for (bdescr *bd = nonmoving_large_objects; bd; bd = bd->link) {
        bd->flags &= ~BF_MARKED;
    }
}

/* Prepare the heap bitmaps and snapshot metadata for a mark */
static void nonmovingPrepareMark(void)
{
    nonmovingClearAllBitmaps();
    nonmovingBumpEpoch();
    for (int alloca_idx = 0; alloca_idx < NONMOVING_ALLOCA_CNT; ++alloca_idx) {
        struct NonmovingAllocator *alloca = nonmovingHeap.allocators[alloca_idx];

        // Update current segments' snapshot pointers
        for (uint32_t cap_n = 0; cap_n < n_capabilities; ++cap_n) {
            struct NonmovingSegment *seg = alloca->current[cap_n];
            seg->next_free_snap = seg->next_free;
        }

        // Update filled segments' snapshot pointers
        struct NonmovingSegment *seg = alloca->filled;
        while (seg) {
            seg->next_free_snap = seg->next_free;
            seg = seg->link;
        }

        // N.B. It's not necessary to update snapshot pointers of active segments;
        // they were set after they were swept and haven't seen any allocation
        // since.
    }

    ASSERT(oldest_gen->scavenged_large_objects == NULL);
    bdescr *next;
    for (bdescr *bd = oldest_gen->large_objects; bd; bd = next) {
        next = bd->link;
        bd->flags |= BF_NONMOVING_SWEEPING;
        dbl_link_onto(bd, &nonmoving_large_objects);
    }
    n_nonmoving_large_blocks += oldest_gen->n_large_blocks;
    oldest_gen->large_objects = NULL;
    oldest_gen->n_large_words = 0;
    oldest_gen->n_large_blocks = 0;
    nonmoving_live_words = 0;

#if defined(DEBUG)
    debug_caf_list_snapshot = debug_caf_list;
    debug_caf_list = (StgIndStatic*)END_OF_CAF_LIST;
#endif
}

// Mark weak pointers in the non-moving heap. They'll either end up in
// dead_weak_ptr_list or stay in weak_ptr_list. Either way they need to be kept
// during sweep. See `MarkWeak.c:markWeakPtrList` for the moving heap variant
// of this.
static void nonmovingMarkWeakPtrList(MarkQueue *mark_queue, StgWeak *dead_weak_ptr_list)
{
    for (StgWeak *w = oldest_gen->weak_ptr_list; w; w = w->link) {
        markQueuePushClosure_(mark_queue, (StgClosure*)w);
        // Do not mark finalizers and values here, those fields will be marked
        // in `nonmovingMarkDeadWeaks` (for dead weaks) or
        // `nonmovingTidyWeaks` (for live weaks)
    }

    // We need to mark dead_weak_ptr_list too. This is subtle:
    //
    // - By the beginning of this GC we evacuated all weaks to the non-moving
    //   heap (in `markWeakPtrList`)
    //
    // - During the scavenging of the moving heap we discovered that some of
    //   those weaks are dead and moved them to `dead_weak_ptr_list`. Note that
    //   because of the fact above _all weaks_ are in the non-moving heap at
    //   this point.
    //
    // - So, to be able to traverse `dead_weak_ptr_list` and run finalizers we
    //   need to mark it.
    for (StgWeak *w = dead_weak_ptr_list; w; w = w->link) {
        markQueuePushClosure_(mark_queue, (StgClosure*)w);
        nonmovingMarkDeadWeak(mark_queue, w);
    }
}

void nonmovingCollect(StgWeak **dead_weaks, StgTSO **resurrected_threads)
{
    resizeGenerations();

    nonmovingPrepareMark();
    nonmovingPrepareSweep();

    // N.B. These should have been cleared at the end of the last sweep.
    ASSERT(nonmoving_marked_large_objects == NULL);
    ASSERT(n_nonmoving_marked_large_blocks == 0);

    MarkQueue *mark_queue = stgMallocBytes(sizeof(MarkQueue), "mark queue");
    initMarkQueue(mark_queue);
    current_mark_queue = mark_queue;

    // Mark roots
    markCAFs((evac_fn)markQueueAddRoot, mark_queue);
    for (unsigned int n = 0; n < n_capabilities; ++n) {
        markCapability((evac_fn)markQueueAddRoot, mark_queue,
                capabilities[n], true/*don't mark sparks*/);
    }
    markScheduler((evac_fn)markQueueAddRoot, mark_queue);
    nonmovingMarkWeakPtrList(mark_queue, *dead_weaks);
    markStablePtrTable((evac_fn)markQueueAddRoot, mark_queue);

    // Mark threads resurrected during moving heap scavenging
    for (StgTSO *tso = *resurrected_threads; tso != END_TSO_QUEUE; tso = tso->global_link) {
        markQueuePushClosure_(mark_queue, (StgClosure*)tso);
    }

    // Roots marked, mark threads and weak pointers

    // At this point all threads are moved to threads list (from old_threads)
    // and all weaks are moved to weak_ptr_list (from old_weak_ptr_list) by
    // the previous scavenge step, so we need to move them to "old" lists
    // again.

    // Fine to override old_threads because any live or resurrected threads are
    // moved to threads or resurrected_threads lists.
    ASSERT(oldest_gen->old_threads == END_TSO_QUEUE);
    ASSERT(nonmoving_old_threads == END_TSO_QUEUE);
    nonmoving_old_threads = oldest_gen->threads;
    oldest_gen->threads = END_TSO_QUEUE;

    // Make sure we don't lose any weak ptrs here. Weaks in old_weak_ptr_list
    // will either be moved to `dead_weaks` (if dead) or `weak_ptr_list` (if
    // alive).
    ASSERT(oldest_gen->old_weak_ptr_list == NULL);
    ASSERT(nonmoving_old_weak_ptr_list == NULL);
    nonmoving_old_weak_ptr_list = oldest_gen->weak_ptr_list;
    oldest_gen->weak_ptr_list = NULL;

    // We are now safe to start concurrent marking

    // Note that in concurrent mark we can't use dead_weaks and
    // resurrected_threads from the preparation to add new weaks and threads as
    // that would cause races between minor collection and mark. So we only pass
    // those lists to mark function in sequential case. In concurrent case we
    // allocate fresh lists.

    // Use the weak and thread lists from the preparation for any new weaks and
    // threads found to be dead in mark.
    nonmovingMark_(mark_queue, dead_weaks, resurrected_threads);
}

/* Mark mark queue, threads, and weak pointers until no more weaks have been
 * resuscitated
 */
static void nonmovingMarkThreadsWeaks(MarkQueue *mark_queue)
{
    while (true) {
        // Propagate marks
        nonmovingMark(mark_queue);

        // Tidy threads and weaks
        nonmovingTidyThreads();

        if (! nonmovingTidyWeaks(mark_queue))
            return;
    }
}

static void nonmovingMark_(MarkQueue *mark_queue, StgWeak **dead_weaks, StgTSO **resurrected_threads)
{
    debugTrace(DEBUG_nonmoving_gc, "Starting mark...");

    // Do concurrent marking; most of the heap will get marked here.
    nonmovingMarkThreadsWeaks(mark_queue);

    nonmovingResurrectThreads(mark_queue, resurrected_threads);

    // No more resurrecting threads after this point

    // Do last marking of weak pointers
    while (true) {
        // Propagate marks
        nonmovingMark(mark_queue);

        if (!nonmovingTidyWeaks(mark_queue))
            break;
    }

    nonmovingMarkDeadWeaks(mark_queue, dead_weaks);

    // Propagate marks
    nonmovingMark(mark_queue);

    // Now remove all dead objects from the mut_list to ensure that a younger
    // generation collection doesn't attempt to look at them after we've swept.
    nonmovingSweepMutLists();

    debugTrace(DEBUG_nonmoving_gc,
               "Done marking, resurrecting threads before releasing capabilities");

#if defined(DEBUG)
    // Zap CAFs that we will sweep
    nonmovingGcCafs(mark_queue);
#endif

    ASSERT(mark_queue->top->head == 0);
    ASSERT(mark_queue->blocks->link == NULL);

    // Update oldest_gen thread and weak lists
    // Note that we need to append these lists as a concurrent minor GC may have
    // added stuff to them while we're doing mark-sweep concurrently
    {
        StgTSO **threads = &oldest_gen->threads;
        while (*threads != END_TSO_QUEUE) {
            threads = &(*threads)->global_link;
        }
        *threads = nonmoving_threads;
        nonmoving_threads = END_TSO_QUEUE;
        nonmoving_old_threads = END_TSO_QUEUE;
    }

    {
        StgWeak **weaks = &oldest_gen->weak_ptr_list;
        while (*weaks) {
            weaks = &(*weaks)->link;
        }
        *weaks = nonmoving_weak_ptr_list;
        nonmoving_weak_ptr_list = NULL;
        nonmoving_old_weak_ptr_list = NULL;
    }

    current_mark_queue = NULL;
    freeMarkQueue(mark_queue);
    stgFree(mark_queue);

    oldest_gen->live_estimate = nonmoving_live_words;
    oldest_gen->n_old_blocks = 0;
    resizeGenerations();

    /****************************************************
     * Sweep
     ****************************************************/

    // Because we can't mark large object blocks (no room for mark bit) we
    // collect them in a map in mark_queue and we pass it here to sweep large
    // objects
    nonmovingSweepLargeObjects();
    nonmovingSweepStableNameTable();

    nonmovingSweep();
    ASSERT(nonmovingHeap.sweep_list == NULL);
    debugTrace(DEBUG_nonmoving_gc, "Finished sweeping.");

    // TODO: Remainder of things done by GarbageCollect (update stats)
}

#if defined(DEBUG)

// Use this with caution: this doesn't work correctly during scavenge phase
// when we're doing parallel scavenging. Use it in mark phase or later (where
// we don't allocate more anymore).
void assert_in_nonmoving_heap(StgPtr p)
{
    if (!HEAP_ALLOCED_GC(p))
        return;

    bdescr *bd = Bdescr(p);
    if (bd->flags & BF_LARGE) {
        // It should be in a capability (if it's not filled yet) or in non-moving heap
        for (uint32_t cap = 0; cap < n_capabilities; ++cap) {
            if (bd == capabilities[cap]->pinned_object_block) {
                return;
            }
        }
        ASSERT(bd->flags & BF_NONMOVING);
        return;
    }

    // Search snapshot segments
    for (struct NonmovingSegment *seg = nonmovingHeap.sweep_list; seg; seg = seg->link) {
        if (p >= (P_)seg && p < (((P_)seg) + NONMOVING_SEGMENT_SIZE_W)) {
            return;
        }
    }

    for (int alloca_idx = 0; alloca_idx < NONMOVING_ALLOCA_CNT; ++alloca_idx) {
        struct NonmovingAllocator *alloca = nonmovingHeap.allocators[alloca_idx];
        // Search current segments
        for (uint32_t cap_idx = 0; cap_idx < n_capabilities; ++cap_idx) {
            struct NonmovingSegment *seg = alloca->current[cap_idx];
            if (p >= (P_)seg && p < (((P_)seg) + NONMOVING_SEGMENT_SIZE_W)) {
                return;
            }
        }

        // Search active segments
        int seg_idx = 0;
        struct NonmovingSegment *seg = alloca->active;
        while (seg) {
            if (p >= (P_)seg && p < (((P_)seg) + NONMOVING_SEGMENT_SIZE_W)) {
                return;
            }
            seg_idx++;
            seg = seg->link;
        }

        // Search filled segments
        seg_idx = 0;
        seg = alloca->filled;
        while (seg) {
            if (p >= (P_)seg && p < (((P_)seg) + NONMOVING_SEGMENT_SIZE_W)) {
                return;
            }
            seg_idx++;
            seg = seg->link;
        }
    }

    // We don't search free segments as they're unused

    barf("%p is not in nonmoving heap\n", (void*)p);
}

void nonmovingPrintSegment(struct NonmovingSegment *seg)
{
    int num_blocks = nonmovingSegmentBlockCount(seg);

    debugBelch("Segment with %d blocks of size 2^%d (%d bytes, %u words, scan: %p)\n",
               num_blocks,
               seg->block_size,
               1 << seg->block_size,
               (unsigned int) ROUNDUP_BYTES_TO_WDS(1 << seg->block_size),
               (void*)Bdescr((P_)seg)->u.scan);

    for (nonmoving_block_idx p_idx = 0; p_idx < seg->next_free; ++p_idx) {
        StgClosure *p = (StgClosure*)nonmovingSegmentGetBlock(seg, p_idx);
        if (nonmovingGetMark(seg, p_idx) != 0) {
            debugBelch("%d (%p)* :\t", p_idx, (void*)p);
        } else {
            debugBelch("%d (%p)  :\t", p_idx, (void*)p);
        }
        printClosure(p);
    }

    debugBelch("End of segment\n\n");
}

void nonmovingPrintAllocator(struct NonmovingAllocator *alloc)
{
    debugBelch("Allocator at %p\n", (void*)alloc);
    debugBelch("Filled segments:\n");
    for (struct NonmovingSegment *seg = alloc->filled; seg != NULL; seg = seg->link) {
        debugBelch("%p ", (void*)seg);
    }
    debugBelch("\nActive segments:\n");
    for (struct NonmovingSegment *seg = alloc->active; seg != NULL; seg = seg->link) {
        debugBelch("%p ", (void*)seg);
    }
    debugBelch("\nCurrent segments:\n");
    for (uint32_t i = 0; i < n_capabilities; ++i) {
        debugBelch("%p ", alloc->current[i]);
    }
    debugBelch("\n");
}

void locate_object(P_ obj)
{
    // Search allocators
    for (int alloca_idx = 0; alloca_idx < NONMOVING_ALLOCA_CNT; ++alloca_idx) {
        struct NonmovingAllocator *alloca = nonmovingHeap.allocators[alloca_idx];
        for (uint32_t cap = 0; cap < n_capabilities; ++cap) {
            struct NonmovingSegment *seg = alloca->current[cap];
            if (obj >= (P_)seg && obj < (((P_)seg) + NONMOVING_SEGMENT_SIZE_W)) {
                debugBelch("%p is in current segment of capability %d of allocator %d at %p\n", obj, cap, alloca_idx, (void*)seg);
                return;
            }
        }
        int seg_idx = 0;
        struct NonmovingSegment *seg = alloca->active;
        while (seg) {
            if (obj >= (P_)seg && obj < (((P_)seg) + NONMOVING_SEGMENT_SIZE_W)) {
                debugBelch("%p is in active segment %d of allocator %d at %p\n", obj, seg_idx, alloca_idx, (void*)seg);
                return;
            }
            seg_idx++;
            seg = seg->link;
        }

        seg_idx = 0;
        seg = alloca->filled;
        while (seg) {
            if (obj >= (P_)seg && obj < (((P_)seg) + NONMOVING_SEGMENT_SIZE_W)) {
                debugBelch("%p is in filled segment %d of allocator %d at %p\n", obj, seg_idx, alloca_idx, (void*)seg);
                return;
            }
            seg_idx++;
            seg = seg->link;
        }
    }

    struct NonmovingSegment *seg = nonmovingHeap.free;
    int seg_idx = 0;
    while (seg) {
        if (obj >= (P_)seg && obj < (((P_)seg) + NONMOVING_SEGMENT_SIZE_W)) {
            debugBelch("%p is in free segment %d at %p\n", obj, seg_idx, (void*)seg);
            return;
        }
        seg_idx++;
        seg = seg->link;
    }

    // Search nurseries
    for (uint32_t nursery_idx = 0; nursery_idx < n_nurseries; ++nursery_idx) {
        for (bdescr* nursery_block = nurseries[nursery_idx].blocks; nursery_block; nursery_block = nursery_block->link) {
            if (obj >= nursery_block->start && obj <= nursery_block->start + nursery_block->blocks*BLOCK_SIZE_W) {
                debugBelch("%p is in nursery %d\n", obj, nursery_idx);
                return;
            }
        }
    }

    // Search generations
    for (uint32_t g = 0; g < RtsFlags.GcFlags.generations - 1; ++g) {
        generation *gen = &generations[g];
        for (bdescr *blk = gen->blocks; blk; blk = blk->link) {
            if (obj >= blk->start && obj < blk->free) {
                debugBelch("%p is in generation %" FMT_Word32 " blocks\n", obj, g);
                return;
            }
        }
        for (bdescr *blk = gen->old_blocks; blk; blk = blk->link) {
            if (obj >= blk->start && obj < blk->free) {
                debugBelch("%p is in generation %" FMT_Word32 " old blocks\n", obj, g);
                return;
            }
        }
    }

    // Search large objects
    for (uint32_t g = 0; g < RtsFlags.GcFlags.generations - 1; ++g) {
        generation *gen = &generations[g];
        for (bdescr *large_block = gen->large_objects; large_block; large_block = large_block->link) {
            if ((P_)large_block->start == obj) {
                debugBelch("%p is in large blocks of generation %d\n", obj, g);
                return;
            }
        }
    }

    for (bdescr *large_block = nonmoving_large_objects; large_block; large_block = large_block->link) {
        if ((P_)large_block->start == obj) {
            debugBelch("%p is in nonmoving_large_objects\n", obj);
            return;
        }
    }

    for (bdescr *large_block = nonmoving_marked_large_objects; large_block; large_block = large_block->link) {
        if ((P_)large_block->start == obj) {
            debugBelch("%p is in nonmoving_marked_large_objects\n", obj);
            return;
        }
    }
}

void nonmovingPrintSweepList()
{
    debugBelch("==== SWEEP LIST =====\n");
    int i = 0;
    for (struct NonmovingSegment *seg = nonmovingHeap.sweep_list; seg; seg = seg->link) {
        debugBelch("%d: %p\n", i++, (void*)seg);
    }
    debugBelch("= END OF SWEEP LIST =\n");
}

void check_in_mut_list(StgClosure *p)
{
    for (uint32_t cap_n = 0; cap_n < n_capabilities; ++cap_n) {
        for (bdescr *bd = capabilities[cap_n]->mut_lists[oldest_gen->no]; bd; bd = bd->link) {
            for (StgPtr q = bd->start; q < bd->free; ++q) {
                if (*((StgPtr**)q) == (StgPtr*)p) {
                    debugBelch("Object is in mut list of cap %d: %p\n", cap_n, capabilities[cap_n]->mut_lists[oldest_gen->no]);
                    return;
                }
            }
        }
    }

    debugBelch("Object is not in a mut list\n");
}

void print_block_list(bdescr* bd)
{
    while (bd) {
        debugBelch("%p, ", (void*)bd);
        bd = bd->link;
    }
    debugBelch("\n");
}

void print_thread_list(StgTSO* tso)
{
    while (tso != END_TSO_QUEUE) {
        printClosure((StgClosure*)tso);
        tso = tso->global_link;
    }
}

#endif