summaryrefslogtreecommitdiff
path: root/rts/sm/NonMovingScav.c
blob: 9f92563032f4aca059cb8a376f9ad7a1a94a8425 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
#include "Rts.h"
#include "RtsUtils.h"
#include "NonMoving.h"
#include "NonMovingScav.h"
#include "Capability.h"
#include "Scav.h"
#include "Evac.h"
#include "GCThread.h" // for GCUtils.h
#include "GCUtils.h"
#include "Printer.h"
#include "MarkWeak.h" // scavengeLiveWeak

/*
 * Note [Scavenging the non-moving heap]
 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 * The moving GC promotes objects from the moving heap into the non-moving heap
 * via evacuation and subsequent scavenging. This of course raises the question
 * of how to keep track of which objects still require scavenging. The story
 * here is as follows:
 *
 *  - each GC thread maintains a list, `todo_seg`, of "todo" segments which
 *    still have outstanding scavenging work
 *  - similar to the moving collector, we use the scan pointer of a segment's
 *    block descriptor to track the first yet-to-be-scavenged object.
 *  - the first time we evacuate into an segment during a GC, we push the
 *    segment onto the `todo_seg` list
 *  - scavenge_find_work checks `todo_seg` as a source of scavenging work
 *
 * The scan pointer requires very careful treatment here. Specifically, we must
 * only scavenge objects which we evacuated in the current GC to avoid issues
 * like #21885. objects evacuated to the non-moving generation. In particular,
 * objects can be allocated into the non-moving generation by two ways:
 *
 *  a. evacuation out of from-space by the garbage collector
 *  b. direct allocation by the mutator
 *
 * Like all evacuation, objects moved by (a) must be scavenged, since they
 * may contain references to other objects located in from-space..
 * However, we must not neglect to consider objects allocated by path (b).
 * In short, the problem is that objects directly allocated by the mutator
 * may become unreachable (but not swept, since the containing segment is
 * not yet full), at which point they may contain references to swept objects.
 * Specifically, we observed this in #21885 in the following way:
 *
 * 1. the mutator (specifically in #21885, a `lockCAF`) allocates an object
 *    (specifically a blackhole, which here we will call `blkh`; see Note
 *    [Static objects under the nonmoving collector] for the reason why) on
 *    the non-moving heap. The bitmap of the allocated block remains 0
 *    (since allocation doesn't affect the bitmap) and the containing
 *    segment's (which we will call `blkh_seg`) `next_free` is advanced.
 * 2. We enter the blackhole, evaluating the blackhole to produce a result
 *    (specificaly a cons cell) in the nursery
 * 3. The blackhole gets updated into an indirection pointing to the cons
 *    cell; it is pushed to the generational remembered set
 * 4. we perform a GC, the cons cell is evacuated into the nonmoving heap
 *    (into segment `cons_seg`)
 * 5. the cons cell is marked
 * 6. the GC concludes
 * 7. the CAF and blackhole become unreachable
 * 8. `cons_seg` is filled
 * 9. we start another GC; the cons cell is swept
 * 10. we start a new GC
 * 11. something is evacuated into `blkh_seg`, adding it to the "todo" list
 * 12. we attempt to scavenge `blkh_seg` (namely, all unmarked blocks
 *     between `scan` and `next_free`, which includes `blkh`). We attempt to
 *     evacuate `blkh`'s indirectee, which is the previously-swept cons cell.
 *     This is unsafe, since the indirectee is no longer a valid heap
 *     object.
 *
 * The problem here was that the scavenging logic previously assumed that (a)
 * was the only source of allocations into the non-moving heap and therefore
 * *all* unmarked blocks between `scan` and `next_free` were evacuated.
 * However, due to (b) this is not true, since the scan pointer was only
 * updated (1) when the segment was initialized (to point to block 0),
 * and (2) when an object is scavenged (by advancing it to the next block).
 * Consequently, at the beginning of a GC `scan` may point a block which was
 * allocated by the mutator since the last GC.
 *
 * The solution is to ensure that that the scanned region only encompasses
 * the region of objects allocated for evacuation during the present GC. We do
 * this by updating `scan` as we push the segment to the todo-segment list to
 * point to the block which was evacuated into.
 *
 */

void
nonmovingScavengeOne (StgClosure *q)
{
    ASSERT(LOOKS_LIKE_CLOSURE_PTR(q));
    StgPtr p = (StgPtr)q;
    const StgInfoTable *info = get_itbl(q);
    const bool saved_eager_promotion = gct->eager_promotion;

    switch (info->type) {

    case MVAR_CLEAN:
    case MVAR_DIRTY:
    {
        StgMVar *mvar = ((StgMVar *)p);
        gct->eager_promotion = false;
        evacuate((StgClosure **)&mvar->head);
        evacuate((StgClosure **)&mvar->tail);
        evacuate((StgClosure **)&mvar->value);
        gct->eager_promotion = saved_eager_promotion;
        if (gct->failed_to_evac) {
            mvar->header.info = &stg_MVAR_DIRTY_info;

            // See Note [Dirty flags in the non-moving collector] in NonMoving.c
            markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, (StgClosure *) mvar->head);
            markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, (StgClosure *) mvar->tail);
            markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, (StgClosure *) mvar->value);
        } else {
            mvar->header.info = &stg_MVAR_CLEAN_info;
        }
        break;
    }

    case TVAR:
    {
        StgTVar *tvar = ((StgTVar *)p);
        gct->eager_promotion = false;
        evacuate((StgClosure **)&tvar->current_value);
        evacuate((StgClosure **)&tvar->first_watch_queue_entry);
        gct->eager_promotion = saved_eager_promotion;
        if (gct->failed_to_evac) {
            tvar->header.info = &stg_TVAR_DIRTY_info;

            // See Note [Dirty flags in the non-moving collector] in NonMoving.c
            markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, (StgClosure *) tvar->current_value);
            markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, (StgClosure *) tvar->first_watch_queue_entry);
        } else {
            tvar->header.info = &stg_TVAR_CLEAN_info;
        }
        break;
    }

    case FUN_2_0:
        scavenge_fun_srt(info);
        evacuate(&((StgClosure *)p)->payload[1]);
        evacuate(&((StgClosure *)p)->payload[0]);
        break;

    case THUNK_2_0:
        scavenge_thunk_srt(info);
        evacuate(&((StgThunk *)p)->payload[1]);
        evacuate(&((StgThunk *)p)->payload[0]);
        break;

    case CONSTR_2_0:
        evacuate(&((StgClosure *)p)->payload[1]);
        evacuate(&((StgClosure *)p)->payload[0]);
        break;

    case THUNK_1_0:
        scavenge_thunk_srt(info);
        evacuate(&((StgThunk *)p)->payload[0]);
        break;

    case FUN_1_0:
        scavenge_fun_srt(info);
        FALLTHROUGH;
    case CONSTR_1_0:
        evacuate(&((StgClosure *)p)->payload[0]);
        break;

    case THUNK_0_1:
        scavenge_thunk_srt(info);
        break;

    case FUN_0_1:
        scavenge_fun_srt(info);
        FALLTHROUGH;
    case CONSTR_0_1:
        break;

    case THUNK_0_2:
        scavenge_thunk_srt(info);
        break;

    case FUN_0_2:
        scavenge_fun_srt(info);
        FALLTHROUGH;
    case CONSTR_0_2:
        break;

    case THUNK_1_1:
        scavenge_thunk_srt(info);
        evacuate(&((StgThunk *)p)->payload[0]);
        break;

    case FUN_1_1:
        scavenge_fun_srt(info);
        FALLTHROUGH;
    case CONSTR_1_1:
        evacuate(&q->payload[0]);
        break;

    case FUN:
        scavenge_fun_srt(info);
        goto gen_obj;

    case THUNK:
    {
        scavenge_thunk_srt(info);
        StgPtr end = (P_)((StgThunk *)p)->payload + info->layout.payload.ptrs;
        for (p = (P_)((StgThunk *)p)->payload; p < end; p++) {
            evacuate((StgClosure **)p);
        }
        break;
    }

    case WEAK:
    {
        // We must evacuate the key since it may refer to an object in the
        // moving heap which may be long gone by the time we call
        // nonmovingTidyWeaks.
        StgWeak *weak = (StgWeak *) p;
        gct->eager_promotion = true;
        evacuate(&weak->key);
        gct->eager_promotion = saved_eager_promotion;
        goto gen_obj;
    }

    gen_obj:
    case CONSTR:
    case CONSTR_NOCAF:
    case PRIM:
    {
        StgPtr end = (P_)((StgClosure *)p)->payload + info->layout.payload.ptrs;
        for (p = (P_)((StgClosure *)p)->payload; p < end; p++) {
            evacuate((StgClosure **)p);
        }
        break;
    }

    case BCO: {
        StgBCO *bco = (StgBCO *)p;
        evacuate((StgClosure **)&bco->instrs);
        evacuate((StgClosure **)&bco->literals);
        evacuate((StgClosure **)&bco->ptrs);
        break;
    }

    case MUT_VAR_CLEAN:
    case MUT_VAR_DIRTY: {
        StgMutVar *mv = (StgMutVar *) p;
        gct->eager_promotion = false;
        evacuate(&mv->var);
        gct->eager_promotion = saved_eager_promotion;
        if (gct->failed_to_evac) {
            ((StgClosure *)q)->header.info = &stg_MUT_VAR_DIRTY_info;

            // See Note [Dirty flags in the non-moving collector] in NonMoving.c
            markQueuePushClosureGC(&gct->cap->upd_rem_set.queue, (StgClosure *) mv->var);
        } else {
            ((StgClosure *)q)->header.info = &stg_MUT_VAR_CLEAN_info;
        }
        break;
    }

    case BLOCKING_QUEUE:
    {
        StgBlockingQueue *bq = (StgBlockingQueue *)p;

        gct->eager_promotion = false;
        evacuate(&bq->bh);
        evacuate((StgClosure**)&bq->owner);
        evacuate((StgClosure**)&bq->queue);
        evacuate((StgClosure**)&bq->link);
        gct->eager_promotion = saved_eager_promotion;

        if (gct->failed_to_evac) {
            bq->header.info = &stg_BLOCKING_QUEUE_DIRTY_info;
        } else {
            bq->header.info = &stg_BLOCKING_QUEUE_CLEAN_info;
        }
        break;
    }

    case THUNK_SELECTOR:
    {
        StgSelector *s = (StgSelector *)p;
        evacuate(&s->selectee);
        break;
    }

    // A chunk of stack saved in a heap object
    case AP_STACK:
    {
        StgAP_STACK *ap = (StgAP_STACK *)p;

        evacuate(&ap->fun);
        scavenge_stack((StgPtr)ap->payload, (StgPtr)ap->payload + ap->size);
        break;
    }

    case PAP:
        p = scavenge_PAP((StgPAP *)p);
        break;

    case AP:
        scavenge_AP((StgAP *)p);
        break;

    case ARR_WORDS:
        // nothing to follow
        break;

    case MUT_ARR_PTRS_CLEAN:
    case MUT_ARR_PTRS_DIRTY:
    {
        gct->eager_promotion = false;
        scavenge_mut_arr_ptrs((StgMutArrPtrs*)p);
        gct->eager_promotion = saved_eager_promotion;
        if (gct->failed_to_evac) {
            ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_DIRTY_info;
        } else {
            ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_CLEAN_info;
        }
        gct->failed_to_evac = true; // always put it on the mutable list.
        break;
    }

    case MUT_ARR_PTRS_FROZEN_CLEAN:
    case MUT_ARR_PTRS_FROZEN_DIRTY:
        // follow everything
    {
        scavenge_mut_arr_ptrs((StgMutArrPtrs*)p);

        if (gct->failed_to_evac) {
            ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN_DIRTY_info;
        } else {
            ((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN_CLEAN_info;
        }
        break;
    }

    case SMALL_MUT_ARR_PTRS_CLEAN:
    case SMALL_MUT_ARR_PTRS_DIRTY:
        // follow everything
    {
        StgPtr next = p + small_mut_arr_ptrs_sizeW((StgSmallMutArrPtrs*)p);
        gct->eager_promotion = false;
        for (p = (P_)((StgSmallMutArrPtrs *)p)->payload; p < next; p++) {
            evacuate((StgClosure **)p);
        }
        gct->eager_promotion = saved_eager_promotion;

        if (gct->failed_to_evac) {
            ((StgClosure *)q)->header.info = &stg_SMALL_MUT_ARR_PTRS_DIRTY_info;
        } else {
            ((StgClosure *)q)->header.info = &stg_SMALL_MUT_ARR_PTRS_CLEAN_info;
        }
        gct->failed_to_evac = true; // always put it on the mutable list.
        break;
    }

    case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
    case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
        // follow everything
    {
        StgPtr next = p + small_mut_arr_ptrs_sizeW((StgSmallMutArrPtrs*)p);
        for (p = (P_)((StgSmallMutArrPtrs *)p)->payload; p < next; p++) {
            evacuate((StgClosure **)p);
        }

        if (gct->failed_to_evac) {
            ((StgClosure *)q)->header.info = &stg_SMALL_MUT_ARR_PTRS_FROZEN_DIRTY_info;
        } else {
            ((StgClosure *)q)->header.info = &stg_SMALL_MUT_ARR_PTRS_FROZEN_CLEAN_info;
        }
        break;
    }

    case TSO:
    {
        scavengeTSO((StgTSO *)p);
        break;
    }

    case STACK:
    {
        StgStack *stack = (StgStack*)p;

        gct->eager_promotion = false;
        scavenge_stack(stack->sp, stack->stack + stack->stack_size);
        gct->eager_promotion = saved_eager_promotion;
        stack->dirty = gct->failed_to_evac;
        break;
    }

    case MUT_PRIM:
    {
        StgPtr end = (P_)((StgClosure *)p)->payload + info->layout.payload.ptrs;
        gct->eager_promotion = false;
        for (p = (P_)((StgClosure *)p)->payload; p < end; p++) {
            evacuate((StgClosure **)p);
        }
        gct->eager_promotion = saved_eager_promotion;
        gct->failed_to_evac = true; // mutable
        break;
    }

    case TREC_CHUNK:
      {
        StgWord i;
        StgTRecChunk *tc = ((StgTRecChunk *) p);
        TRecEntry *e = &(tc -> entries[0]);
        gct->eager_promotion = false;
        evacuate((StgClosure **)&tc->prev_chunk);
        for (i = 0; i < tc -> next_entry_idx; i ++, e++ ) {
          evacuate((StgClosure **)&e->tvar);
          evacuate((StgClosure **)&e->expected_value);
          evacuate((StgClosure **)&e->new_value);
        }
        gct->eager_promotion = saved_eager_promotion;
        gct->failed_to_evac = true; // mutable
        break;
      }

    case IND:
    case BLACKHOLE:
    case IND_STATIC:
        evacuate(&((StgInd *)p)->indirectee);
        break;

    case COMPACT_NFDATA:
        scavenge_compact((StgCompactNFData*)p);
        break;

    case CONTINUATION:
        scavenge_continuation((StgContinuation *)p);
        break;

    default:
        barf("nonmoving scavenge: unimplemented/strange closure type %d @ %p",
             info->type, p);
    }

    if (gct->failed_to_evac) {
        // Mutable object or points to a younger object, add to the mut_list
        gct->failed_to_evac = false;
        if (oldest_gen->no > 0) {
            recordMutableGen_GC(q, oldest_gen->no);
        }
    }
}

/* Scavenge objects evacuated into a nonmoving segment by a minor GC */
void
scavengeNonmovingSegment (struct NonmovingSegment *seg)
{
    const StgWord blk_size = nonmovingSegmentBlockSize(seg);
    gct->evac_gen_no = oldest_gen->no;
    gct->failed_to_evac = false;

    // scavenge objects between scan and free_ptr whose bitmap bits are 0
    bdescr *seg_block = Bdescr((P_)seg);

    ASSERT(seg_block->u.scan >= (P_)nonmovingSegmentGetBlock(seg, 0));
    ASSERT(seg_block->u.scan <= (P_)nonmovingSegmentGetBlock(seg, seg->next_free));

    StgPtr scan = seg_block->u.scan;
    StgPtr scan_end = (P_)nonmovingSegmentGetBlock(seg, seg->next_free);
    if (scan == scan_end)
        return;

    // At this point the segment is not on the todo_seg list. Consequently, we
    // may need to re-add it during scavenging (as we may evacuate a new object
    // to this segment); this has the effect of updating the scan pointer.
    // We must therefore take care to move the scan pointer to the end of the
    // scanned region *before* doing any scavenging.
    seg_block->u.scan = scan_end;

    nonmoving_block_idx p_idx = nonmovingGetBlockIdx(scan);
    while (scan < scan_end) {
        StgClosure *p = (StgClosure*)scan;

        // bit set = was allocated in a previous GC, no need to scavenge
        // bit not set = new allocation, so scavenge
        if (nonmovingGetMark(seg, p_idx) == 0) {
            nonmovingScavengeOne(p);
        }

        scan = (StgPtr) ((uint8_t*) scan + blk_size);
        p_idx++;
    }
}