1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team, 1998-2006
*
* Sanity checking code for the heap and stack.
*
* Used when debugging: check that everything reasonable.
*
* - All things that are supposed to be pointers look like pointers.
*
* - Objects in text space are marked as static closures, those
* in the heap are dynamic.
*
* ---------------------------------------------------------------------------*/
#include "PosixSource.h"
#include "Rts.h"
#if defined(DEBUG) /* whole file */
#include "RtsUtils.h"
#include "sm/Storage.h"
#include "sm/BlockAlloc.h"
#include "GCThread.h"
#include "Sanity.h"
#include "Schedule.h"
#include "Apply.h"
#include "Printer.h"
#include "Arena.h"
#include "RetainerProfile.h"
#include "CNF.h"
#include "sm/NonMoving.h"
#include "sm/NonMovingMark.h"
#include "Profiling.h" // prof_arena
#include "HeapAlloc.h"
/* -----------------------------------------------------------------------------
Forward decls.
-------------------------------------------------------------------------- */
int isHeapAlloced ( StgPtr p);
static void checkSmallBitmap ( StgPtr payload, StgWord bitmap, uint32_t );
static void checkLargeBitmap ( StgPtr payload, StgLargeBitmap*, uint32_t );
static void checkClosureShallow ( const StgClosure * );
static void checkSTACK (StgStack *stack);
static W_ countNonMovingSegments ( struct NonmovingSegment *segs );
static W_ countNonMovingHeap ( struct NonmovingHeap *heap );
/* -----------------------------------------------------------------------------
Debugging utility.
-------------------------------------------------------------------------- */
// the HEAP_ALLOCED macro in function form. Useful for use in GDB or similar.
int isHeapAlloced ( StgPtr p) { return HEAP_ALLOCED(p); }
/* -----------------------------------------------------------------------------
Check stack sanity
-------------------------------------------------------------------------- */
static void
checkSmallBitmap( StgPtr payload, StgWord bitmap, uint32_t size )
{
uint32_t i;
for(i = 0; i < size; i++, bitmap >>= 1 ) {
if ((bitmap & 1) == 0) {
checkClosureShallow((StgClosure *)payload[i]);
}
}
}
static void
checkLargeBitmap( StgPtr payload, StgLargeBitmap* large_bitmap, uint32_t size )
{
StgWord bmp;
uint32_t i, j;
i = 0;
for (bmp=0; i < size; bmp++) {
StgWord bitmap = large_bitmap->bitmap[bmp];
j = 0;
for(; i < size && j < BITS_IN(W_); j++, i++, bitmap >>= 1 ) {
if ((bitmap & 1) == 0) {
checkClosureShallow((StgClosure *)payload[i]);
}
}
}
}
/*
* check that it looks like a valid closure - without checking its payload
* used to avoid recursion between checking PAPs and checking stack
* chunks.
*/
static void
checkClosureShallow( const StgClosure* p )
{
ASSERT(LOOKS_LIKE_CLOSURE_PTR(UNTAG_CONST_CLOSURE(p)));
}
// check an individual stack object
StgOffset
checkStackFrame( StgPtr c )
{
uint32_t size;
const StgRetInfoTable* info;
info = get_ret_itbl((StgClosure *)c);
/* All activation records have 'bitmap' style layout info. */
switch (info->i.type) {
case UPDATE_FRAME:
ASSERT(LOOKS_LIKE_CLOSURE_PTR(((StgUpdateFrame*)c)->updatee));
FALLTHROUGH;
case ATOMICALLY_FRAME:
case CATCH_RETRY_FRAME:
case CATCH_STM_FRAME:
case CATCH_FRAME:
// small bitmap cases (<= 32 entries)
case UNDERFLOW_FRAME:
case STOP_FRAME:
case RET_SMALL:
size = BITMAP_SIZE(info->i.layout.bitmap);
checkSmallBitmap((StgPtr)c + 1,
BITMAP_BITS(info->i.layout.bitmap), size);
return 1 + size;
case RET_BCO: {
StgBCO *bco;
uint32_t size;
bco = (StgBCO *)*(c+1);
size = BCO_BITMAP_SIZE(bco);
checkLargeBitmap((StgPtr)c + 2, BCO_BITMAP(bco), size);
return 2 + size;
}
case RET_BIG: // large bitmap (> 32 entries)
size = GET_LARGE_BITMAP(&info->i)->size;
checkLargeBitmap((StgPtr)c + 1, GET_LARGE_BITMAP(&info->i), size);
return 1 + size;
case RET_FUN:
{
const StgFunInfoTable *fun_info;
StgRetFun *ret_fun;
ret_fun = (StgRetFun *)c;
fun_info = get_fun_itbl(UNTAG_CONST_CLOSURE(ret_fun->fun));
size = ret_fun->size;
switch (fun_info->f.fun_type) {
case ARG_GEN:
checkSmallBitmap((StgPtr)ret_fun->payload,
BITMAP_BITS(fun_info->f.b.bitmap), size);
break;
case ARG_GEN_BIG:
checkLargeBitmap((StgPtr)ret_fun->payload,
GET_FUN_LARGE_BITMAP(fun_info), size);
break;
default:
checkSmallBitmap((StgPtr)ret_fun->payload,
BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]),
size);
break;
}
return sizeofW(StgRetFun) + size;
}
default:
barf("checkStackFrame: weird activation record found on stack (%p %d).",c,info->i.type);
}
}
// check sections of stack between update frames
void
checkStackChunk( StgPtr sp, StgPtr stack_end )
{
StgPtr p;
p = sp;
while (p < stack_end) {
p += checkStackFrame( p );
}
ASSERT( p == stack_end );
}
static void
checkPAP (StgClosure *tagged_fun, StgClosure** payload, StgWord n_args)
{
const StgClosure *fun;
const StgFunInfoTable *fun_info;
fun = UNTAG_CONST_CLOSURE(tagged_fun);
ASSERT(LOOKS_LIKE_CLOSURE_PTR(fun));
fun_info = get_fun_itbl(fun);
switch (fun_info->f.fun_type) {
case ARG_GEN:
checkSmallBitmap( (StgPtr)payload,
BITMAP_BITS(fun_info->f.b.bitmap), n_args );
break;
case ARG_GEN_BIG:
checkLargeBitmap( (StgPtr)payload,
GET_FUN_LARGE_BITMAP(fun_info),
n_args );
break;
case ARG_BCO:
checkLargeBitmap( (StgPtr)payload,
BCO_BITMAP(fun),
n_args );
break;
default:
checkSmallBitmap( (StgPtr)payload,
BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]),
n_args );
break;
}
ASSERT(fun_info->f.arity > TAG_MASK ? GET_CLOSURE_TAG(tagged_fun) == 0
: GET_CLOSURE_TAG(tagged_fun) == fun_info->f.arity);
}
#if defined(PROFILING)
static void
checkClosureProfSanity(const StgClosure *p)
{
StgProfHeader prof_hdr = p->header.prof;
CostCentreStack *ccs = prof_hdr.ccs;
if (HEAP_ALLOCED_GC((void*)ccs)) {
checkPtrInArena((StgPtr)ccs, prof_arena);
}
}
#endif
/* Note [Racing weak pointer evacuation]
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* While debugging a GC crash (#18919) I noticed a spurious crash due to the
* end-of-GC sanity check stumbling across a weak pointer with unevacuated key.
* This can happen when two GC threads race to evacuate a weak pointer.
* Specifically, we start out with a heap with a weak pointer reachable
* from both a generation's weak pointer list and some other root-reachable
* closure (e.g. a Just constructor):
*
* O W
* ┌──────────┐ ┌──────────┐
* Root ────→ │ Just │ ╭───→ │ Weak# │ ←─────── weak_ptr_list
* Set ├──────────┤ │ ├──────────┤
* │ │ ────╯ │ value │ ─→ ...
* └──────────┘ │ key │ ───╮ K
* │ ... │ │ ┌──────────┐
* └──────────┘ ╰──→ │ ... │
* ├──────────┤
*
* The situation proceeds as follows:
*
* 1. Thread A initiates a GC, wakes up the GC worker threads, and starts
* evacuating roots.
* 2. Thread A evacuates a weak pointer object O to location O'.
* 3. Thread A fills the block where O' lives and pushes it to its
* work-stealing queue.
* 4. Thread B steals the O' block and starts scavenging it.
* 5. Thread A enters markWeakPtrList.
* 6. Thread A starts evacuating W, resulting in Wb'.
* 7. Thread B scavenges O', evacuating W', resulting in Wa'.
* 8. Thread A and B are now racing to evacuate W. Only one will win the race
* (due to the CAS in copy_tag). Let the winning copy be called W'.
* 9. W will be replaced by a forwarding pointer to the winning copy, W'.
* 10. Whichever thread loses the race will retry evacuation, see
* that W has already been evacuated, and proceed as usual.
* 10. W' will get added to weak_ptr_list by markWeakPtrList.
* 11. Eventually W' will be scavenged.
* 12. traverseWeakPtrList will see that W' has been scavenged and evacuate the
* its key.
* 13. However, the copy that lost the race is not on `weak_ptr_list`
* and will therefore never get its `key` field scavenged (since
* `traverseWeakPtrList` will never see it).
*
* Now the heap looks like:
*
* O' W (from-space)
* ┌──────────┐ ┌──────────┐
* Root ────→ │ Just │ │ Fwd-ptr │ ───────────╮
* Set ├──────────┤ ├──────────┤ │
* │ │ ────╮ │ value │ ─→ ... │
* └──────────┘ │ │ key │ ────────────────────────╮
* │ │ ... │ │ │
* │ └──────────┘ │ │
* │ │ │
* │ Wa' │ │
* │ ┌──────────┐ ╭────╯ │
* ╰───→ │ Weak# │ ←─────┤ │
* ├──────────┤ ╰─ weak_ptr_list │
* │ value │ ─→ ... │
* │ key │ ───╮ K' │
* │ ... │ │ ┌──────────┐ │
* └──────────┘ ╰──→ │ ... │ │
* ├──────────┤ │
* Wb' │
* ┌──────────┐ │
* │ Weak# │ │
* ├──────────┤ │
* │ value │ ─→ ... │
* │ key │ ───╮ K (from-space) │
* │ ... │ │ ┌──────────┐ │
* └──────────┘ ╰──→ │ 0xaaaaa │ ←──╯
* ├──────────┤
*
*
* Without sanity checking this is fine; we have introduced a spurious copy of
* W, Wb' into the heap but it is unreachable and therefore won't cause any
* trouble. However, with sanity checking we may encounter this spurious copy
* when walking the heap. Moreover, this copy was never added to weak_ptr_list,
* meaning that its key field (along with the other fields mark as
* non-pointers) will not get scavenged and will therefore point into
* from-space.
*
* To avoid this checkClosure skips over the key field when it sees a weak
* pointer. Note that all fields of Wb' *other* than the key field should be
* valid, so we don't skip the closure entirely.
*
* We then do additional checking of all closures on the weak_ptr_lists, where
* we *do* check `key`.
*/
// Check validity of objects on weak_ptr_list.
// See Note [Racing weak pointer evacuation].
static void
checkGenWeakPtrList( uint32_t g )
{
for (StgWeak *w = generations[g].weak_ptr_list; w != NULL; w = w->link) {
ASSERT(LOOKS_LIKE_CLOSURE_PTR(w));
ASSERT(w->header.info == &stg_WEAK_info || w->header.info == &stg_DEAD_WEAK_info);
ASSERT(LOOKS_LIKE_CLOSURE_PTR(w->key));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(w->value));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(w->finalizer));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(w->cfinalizers));
}
}
// Returns closure size in words
StgOffset
checkClosure( const StgClosure* p )
{
const StgInfoTable *info;
ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
p = UNTAG_CONST_CLOSURE(p);
info = p->header.info;
load_load_barrier();
if (IS_FORWARDING_PTR(info)) {
barf("checkClosure: found EVACUATED closure %d", info->type);
}
#if defined(PROFILING)
checkClosureProfSanity(p);
#endif
info = INFO_PTR_TO_STRUCT(info);
load_load_barrier();
switch (info->type) {
case MVAR_CLEAN:
case MVAR_DIRTY:
{
StgMVar *mvar = (StgMVar *)p;
ASSERT(LOOKS_LIKE_CLOSURE_PTR(mvar->head));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(mvar->tail));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(mvar->value));
return sizeofW(StgMVar);
}
case THUNK:
case THUNK_1_0:
case THUNK_0_1:
case THUNK_1_1:
case THUNK_0_2:
case THUNK_2_0:
{
uint32_t i;
for (i = 0; i < info->layout.payload.ptrs; i++) {
ASSERT(LOOKS_LIKE_CLOSURE_PTR(((StgThunk *)p)->payload[i]));
}
return thunk_sizeW_fromITBL(info);
}
case FUN:
case FUN_1_0:
case FUN_0_1:
case FUN_1_1:
case FUN_0_2:
case FUN_2_0:
case CONSTR:
case CONSTR_NOCAF:
case CONSTR_1_0:
case CONSTR_0_1:
case CONSTR_1_1:
case CONSTR_0_2:
case CONSTR_2_0:
case BLACKHOLE:
case PRIM:
case MUT_PRIM:
case MUT_VAR_CLEAN:
case MUT_VAR_DIRTY:
case TVAR:
case THUNK_STATIC:
case FUN_STATIC:
case COMPACT_NFDATA:
{
uint32_t i;
for (i = 0; i < info->layout.payload.ptrs; i++) {
ASSERT(LOOKS_LIKE_CLOSURE_PTR(p->payload[i]));
}
return sizeW_fromITBL(info);
}
case BLOCKING_QUEUE:
{
StgBlockingQueue *bq = (StgBlockingQueue *)p;
// NO: the BH might have been updated now
// ASSERT(get_itbl(bq->bh)->type == BLACKHOLE);
ASSERT(LOOKS_LIKE_CLOSURE_PTR(bq->bh));
ASSERT(get_itbl((StgClosure *)(bq->owner))->type == TSO);
ASSERT(// A bq with no other blocked TSOs:
bq->queue == (MessageBlackHole*)END_TSO_QUEUE ||
// A bq with blocked TSOs in its queue:
bq->queue->header.info == &stg_MSG_BLACKHOLE_info ||
// A bq with a deleted (in throwToMsg()) MSG_BLACKHOLE:
bq->queue->header.info == &stg_IND_info);
ASSERT(bq->link == (StgBlockingQueue*)END_TSO_QUEUE ||
get_itbl((StgClosure *)(bq->link))->type == IND ||
get_itbl((StgClosure *)(bq->link))->type == BLOCKING_QUEUE);
return sizeofW(StgBlockingQueue);
}
case BCO: {
StgBCO *bco = (StgBCO *)p;
ASSERT(LOOKS_LIKE_CLOSURE_PTR(bco->instrs));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(bco->literals));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(bco->ptrs));
return bco_sizeW(bco);
}
case IND_STATIC: /* (1, 0) closure */
ASSERT(LOOKS_LIKE_CLOSURE_PTR(((StgIndStatic*)p)->indirectee));
return sizeW_fromITBL(info);
case WEAK:
/* deal with these specially - the info table isn't
* representative of the actual layout.
*/
{ StgWeak *w = (StgWeak *)p;
// N.B. Checking most of the fields here is not safe.
// See Note [Racing weak pointer evacuation] for why.
ASSERT(LOOKS_LIKE_CLOSURE_PTR(w->cfinalizers));
return sizeW_fromITBL(info);
}
case THUNK_SELECTOR:
ASSERT(LOOKS_LIKE_CLOSURE_PTR(((StgSelector *)p)->selectee));
return THUNK_SELECTOR_sizeW();
case IND:
{
/* we don't expect to see any of these after GC
* but they might appear during execution
*/
StgInd *ind = (StgInd *)p;
ASSERT(LOOKS_LIKE_CLOSURE_PTR(ind->indirectee));
return sizeofW(StgInd);
}
case RET_BCO:
case RET_SMALL:
case RET_BIG:
case UPDATE_FRAME:
case UNDERFLOW_FRAME:
case STOP_FRAME:
case CATCH_FRAME:
case ATOMICALLY_FRAME:
case CATCH_RETRY_FRAME:
case CATCH_STM_FRAME:
barf("checkClosure: stack frame");
case AP:
{
StgAP* ap = (StgAP *)p;
checkPAP (ap->fun, ap->payload, ap->n_args);
return ap_sizeW(ap);
}
case PAP:
{
StgPAP* pap = (StgPAP *)p;
checkPAP (pap->fun, pap->payload, pap->n_args);
return pap_sizeW(pap);
}
case AP_STACK:
{
StgAP_STACK *ap = (StgAP_STACK *)p;
ASSERT(LOOKS_LIKE_CLOSURE_PTR(ap->fun));
checkStackChunk((StgPtr)ap->payload, (StgPtr)ap->payload + ap->size);
return ap_stack_sizeW(ap);
}
case ARR_WORDS:
return arr_words_sizeW((StgArrBytes *)p);
case MUT_ARR_PTRS_CLEAN:
case MUT_ARR_PTRS_DIRTY:
case MUT_ARR_PTRS_FROZEN_CLEAN:
case MUT_ARR_PTRS_FROZEN_DIRTY:
{
StgMutArrPtrs* a = (StgMutArrPtrs *)p;
uint32_t i;
for (i = 0; i < a->ptrs; i++) {
ASSERT(LOOKS_LIKE_CLOSURE_PTR(a->payload[i]));
}
return mut_arr_ptrs_sizeW(a);
}
case SMALL_MUT_ARR_PTRS_CLEAN:
case SMALL_MUT_ARR_PTRS_DIRTY:
case SMALL_MUT_ARR_PTRS_FROZEN_CLEAN:
case SMALL_MUT_ARR_PTRS_FROZEN_DIRTY:
{
StgSmallMutArrPtrs *a = (StgSmallMutArrPtrs *)p;
for (uint32_t i = 0; i < a->ptrs; i++) {
ASSERT(LOOKS_LIKE_CLOSURE_PTR(a->payload[i]));
}
return small_mut_arr_ptrs_sizeW(a);
}
case TSO:
checkTSO((StgTSO *)p);
return sizeofW(StgTSO);
case STACK:
checkSTACK((StgStack*)p);
return stack_sizeW((StgStack*)p);
case TREC_CHUNK:
{
uint32_t i;
StgTRecChunk *tc = (StgTRecChunk *)p;
ASSERT(LOOKS_LIKE_CLOSURE_PTR(tc->prev_chunk));
for (i = 0; i < tc -> next_entry_idx; i ++) {
ASSERT(LOOKS_LIKE_CLOSURE_PTR(tc->entries[i].tvar));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(tc->entries[i].expected_value));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(tc->entries[i].new_value));
}
return sizeofW(StgTRecChunk);
}
default:
barf("checkClosure (closure type %d)", info->type);
}
}
/* -----------------------------------------------------------------------------
Check Heap Sanity
After garbage collection, the live heap is in a state where we can
run through and check that all the pointers point to the right
place. This function starts at a given position and sanity-checks
all the objects in the remainder of the chain.
-------------------------------------------------------------------------- */
void checkHeapChain (bdescr *bd)
{
for (; bd != NULL; bd = bd->link) {
if(!(bd->flags & BF_SWEPT)) {
StgPtr p = bd->start;
while (p < bd->free) {
uint32_t size = checkClosure((StgClosure *)p);
/* This is the smallest size of closure that can live in the heap */
ASSERT( size >= MIN_PAYLOAD_SIZE + sizeofW(StgHeader) );
p += size;
/* skip over slop, see Note [slop on the heap] */
while (p < bd->free &&
(*p < 0x1000 || !LOOKS_LIKE_INFO_PTR(*p))) { p++; }
}
}
}
}
/* -----------------------------------------------------------------------------
* Check nonmoving heap sanity
*
* After a concurrent sweep the nonmoving heap can be checked for validity.
* -------------------------------------------------------------------------- */
static void checkNonmovingSegments (struct NonmovingSegment *seg)
{
while (seg != NULL) {
const nonmoving_block_idx count = nonmovingSegmentBlockCount(seg);
for (nonmoving_block_idx i=0; i < count; i++) {
if (seg->bitmap[i] == nonmovingMarkEpoch) {
StgPtr p = nonmovingSegmentGetBlock(seg, i);
checkClosure((StgClosure *) p);
} else if (i < nonmovingSegmentInfo(seg)->next_free_snap){
seg->bitmap[i] = 0;
}
}
seg = seg->link;
}
}
void checkNonmovingHeap (const struct NonmovingHeap *heap)
{
for (unsigned int i=0; i < NONMOVING_ALLOCA_CNT; i++) {
const struct NonmovingAllocator *alloc = heap->allocators[i];
checkNonmovingSegments(alloc->filled);
checkNonmovingSegments(alloc->active);
for (unsigned int cap=0; cap < n_capabilities; cap++) {
checkNonmovingSegments(alloc->current[cap]);
}
}
}
void
checkHeapChunk(StgPtr start, StgPtr end)
{
StgPtr p;
uint32_t size;
for (p=start; p<end; p+=size) {
ASSERT(LOOKS_LIKE_INFO_PTR(*p));
size = checkClosure((StgClosure *)p);
/* This is the smallest size of closure that can live in the heap. */
ASSERT( size >= MIN_PAYLOAD_SIZE + sizeofW(StgHeader) );
}
}
void
checkLargeObjects(bdescr *bd)
{
while (bd != NULL) {
if (!(bd->flags & BF_PINNED)) {
checkClosure((StgClosure *)bd->start);
}
bd = bd->link;
}
}
static void
checkCompactObjects(bdescr *bd)
{
// Compact objects are similar to large objects, but they have a
// StgCompactNFDataBlock at the beginning, before the actual closure
for ( ; bd != NULL; bd = bd->link) {
ASSERT(bd->flags & BF_COMPACT);
StgCompactNFDataBlock *block = (StgCompactNFDataBlock*)bd->start;
StgCompactNFData *str = block->owner;
ASSERT((W_)str == (W_)block + sizeof(StgCompactNFDataBlock));
StgWord totalW = 0;
StgCompactNFDataBlock *last;
for ( ; block ; block = block->next) {
last = block;
ASSERT(block->owner == str);
totalW += Bdescr((P_)block)->blocks * BLOCK_SIZE_W;
StgPtr start = Bdescr((P_)block)->start + sizeofW(StgCompactNFDataBlock);
StgPtr free;
if (Bdescr((P_)block)->start == (P_)str->nursery) {
free = str->hp;
} else {
free = Bdescr((P_)block)->free;
}
StgPtr p = start;
while (p < free) {
// We can't use checkClosure() here because in
// compactAdd#/compactAddWithSharing# when we see a non-
// compactable object (a function, mutable object, or pinned
// object) we leave the location for the object in the payload
// empty.
StgClosure *c = (StgClosure*)p;
checkClosureShallow(c);
p += closure_sizeW(c);
}
}
ASSERT(str->totalW == totalW);
ASSERT(str->last == last);
}
}
static void
checkSTACK (StgStack *stack)
{
StgPtr sp = stack->sp;
StgOffset stack_size = stack->stack_size;
StgPtr stack_end = stack->stack + stack_size;
ASSERT(stack->stack <= sp && sp <= stack_end);
checkStackChunk(sp, stack_end);
}
void
checkTSO(StgTSO *tso)
{
StgTSO *next = tso->_link;
const StgInfoTable *info = (const StgInfoTable*) tso->_link->header.info;
load_load_barrier();
ASSERT(next == END_TSO_QUEUE ||
info == &stg_MVAR_TSO_QUEUE_info ||
info == &stg_TSO_info ||
info == &stg_WHITEHOLE_info); // used to happen due to STM doing
// lockTSO(), might not happen now
if ( tso->why_blocked == BlockedOnMVar
|| tso->why_blocked == BlockedOnMVarRead
|| tso->why_blocked == BlockedOnBlackHole
|| tso->why_blocked == BlockedOnMsgThrowTo
|| tso->why_blocked == BlockedOnIOCompletion
|| tso->why_blocked == NotBlocked
) {
ASSERT(LOOKS_LIKE_CLOSURE_PTR(tso->block_info.closure));
}
ASSERT(LOOKS_LIKE_CLOSURE_PTR(tso->bq));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(tso->blocked_exceptions));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(tso->stackobj));
ASSERT(LOOKS_LIKE_CLOSURE_PTR(tso->global_link) &&
(tso->global_link == END_TSO_QUEUE ||
get_itbl((StgClosure*)tso->global_link)->type == TSO));
}
/*
Check that all TSOs have been evacuated.
Optionally also check the sanity of the TSOs.
*/
void
checkGlobalTSOList (bool checkTSOs)
{
for (uint32_t g = 0; g < RtsFlags.GcFlags.generations; g++) {
for (StgTSO *tso = generations[g].threads; tso != END_TSO_QUEUE;
tso = tso->global_link) {
ASSERT(LOOKS_LIKE_CLOSURE_PTR(tso));
ASSERT(get_itbl((StgClosure *)tso)->type == TSO);
if (checkTSOs) {
checkTSO(tso);
}
// If this TSO is dirty and in an old generation, it better
// be on the mutable list.
if (tso->dirty) {
ASSERT(Bdescr((P_)tso)->gen_no == 0 || (tso->flags & TSO_MARKED));
tso->flags &= ~TSO_MARKED;
}
StgStack *stack = tso->stackobj;
while (1) {
if (stack->dirty & STACK_DIRTY) {
ASSERT(Bdescr((P_)stack)->gen_no == 0 || (stack->dirty & STACK_SANE));
stack->dirty &= ~STACK_SANE;
}
StgUnderflowFrame *frame =
(StgUnderflowFrame*) (stack->stack + stack->stack_size
- sizeofW(StgUnderflowFrame));
if (frame->info != &stg_stack_underflow_frame_info
|| frame->next_chunk == (StgStack*)END_TSO_QUEUE) {
break;
}
stack = frame->next_chunk;
}
}
}
}
/* -----------------------------------------------------------------------------
Check mutable list sanity.
-------------------------------------------------------------------------- */
static void
checkMutableList( bdescr *mut_bd, uint32_t gen )
{
bdescr *bd;
StgPtr q;
StgClosure *p;
for (bd = mut_bd; bd != NULL; bd = bd->link) {
for (q = bd->start; q < bd->free; q++) {
p = (StgClosure *)*q;
ASSERT(!HEAP_ALLOCED(p) || Bdescr((P_)p)->gen_no == gen);
checkClosure(p);
switch (get_itbl(p)->type) {
case TSO:
((StgTSO *)p)->flags |= TSO_MARKED;
break;
case STACK:
((StgStack *)p)->dirty |= STACK_SANE;
break;
}
}
}
}
static void
checkLocalMutableLists (uint32_t cap_no)
{
uint32_t g;
for (g = 1; g < RtsFlags.GcFlags.generations; g++) {
checkMutableList(capabilities[cap_no]->mut_lists[g], g);
}
}
static void
checkMutableLists (void)
{
uint32_t i;
for (i = 0; i < n_capabilities; i++) {
checkLocalMutableLists(i);
}
}
/*
Check the static objects list.
*/
void
checkStaticObjects ( StgClosure* static_objects )
{
StgClosure *p = static_objects;
const StgInfoTable *info;
while (p != END_OF_STATIC_OBJECT_LIST) {
p = UNTAG_STATIC_LIST_PTR(p);
checkClosure(p);
info = get_itbl(p);
switch (info->type) {
case IND_STATIC:
{
const StgClosure *indirectee;
indirectee = UNTAG_CONST_CLOSURE(((StgIndStatic *)p)->indirectee);
ASSERT(LOOKS_LIKE_CLOSURE_PTR(indirectee));
ASSERT(LOOKS_LIKE_INFO_PTR((StgWord)indirectee->header.info));
p = *IND_STATIC_LINK((StgClosure *)p);
break;
}
case THUNK_STATIC:
p = *THUNK_STATIC_LINK((StgClosure *)p);
break;
case FUN_STATIC:
p = *STATIC_LINK(info,(StgClosure *)p);
break;
case CONSTR:
case CONSTR_NOCAF:
case CONSTR_1_0:
case CONSTR_2_0:
case CONSTR_1_1:
p = *STATIC_LINK(info,(StgClosure *)p);
break;
default:
barf("checkStaticObjetcs: strange closure %p (%s)",
p, info_type(p));
}
}
}
/* Nursery sanity check */
void
checkNurserySanity (nursery *nursery)
{
bdescr *bd, *prev;
uint32_t blocks = 0;
prev = NULL;
for (bd = nursery->blocks; bd != NULL; bd = bd->link) {
ASSERT(bd->gen == g0);
ASSERT(bd->u.back == prev);
prev = bd;
blocks += bd->blocks;
}
ASSERT(blocks == nursery->n_blocks);
}
static void checkGeneration (generation *gen,
bool after_major_gc USED_IF_THREADS)
{
uint32_t n;
gen_workspace *ws;
//ASSERT(countBlocks(gen->blocks) == gen->n_blocks);
ASSERT(countBlocks(gen->large_objects) == gen->n_large_blocks);
#if defined(THREADED_RTS)
// Note [heap sanity checking with SMP]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// heap sanity checking doesn't work with SMP for two reasons:
//
// * We can't zero the slop. However, we can sanity-check the heap after a
// major gc, because there is no slop. See also Updates.h and Note
// [zeroing slop when overwriting closures].
//
// * The nonmoving collector may be mutating its large object lists,
// unless we were in fact called by the nonmoving collector.
if (!after_major_gc) return;
#endif
if (RtsFlags.GcFlags.useNonmoving && gen == oldest_gen) {
ASSERT(countNonMovingSegments(nonmovingHeap.free) == (W_) nonmovingHeap.n_free * NONMOVING_SEGMENT_BLOCKS);
ASSERT(countBlocks(nonmoving_large_objects) == n_nonmoving_large_blocks);
ASSERT(countBlocks(nonmoving_marked_large_objects) == n_nonmoving_marked_large_blocks);
// Compact regions
// Accounting here is tricky due to the fact that the CNF allocation
// code modifies generation->n_compact_blocks directly. However, most
// objects being swept by the nonmoving GC are tracked in
// nonmoving_*_compact_objects. Consequently we can only maintain a very loose
// sanity invariant here.
uint32_t counted_cnf_blocks = 0;
counted_cnf_blocks += countCompactBlocks(nonmoving_marked_compact_objects);
counted_cnf_blocks += countCompactBlocks(nonmoving_compact_objects);
counted_cnf_blocks += countCompactBlocks(oldest_gen->compact_objects);
uint32_t total_cnf_blocks = 0;
total_cnf_blocks += n_nonmoving_compact_blocks + oldest_gen->n_compact_blocks;
total_cnf_blocks += n_nonmoving_marked_compact_blocks;
ASSERT(counted_cnf_blocks == total_cnf_blocks);
}
checkHeapChain(gen->blocks);
for (n = 0; n < n_capabilities; n++) {
ws = &gc_threads[n]->gens[gen->no];
checkHeapChain(ws->todo_bd);
checkHeapChain(ws->part_list);
checkHeapChain(ws->scavd_list);
}
// Check weak pointer lists
// See Note [Racing weak pointer evacuation].
for (uint32_t g = 0; g < RtsFlags.GcFlags.generations; g++) {
checkGenWeakPtrList(g);
}
checkLargeObjects(gen->large_objects);
checkCompactObjects(gen->compact_objects);
}
/* Full heap sanity check. */
static void checkFullHeap (bool after_major_gc)
{
uint32_t g, n;
for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
checkGeneration(&generations[g], after_major_gc);
}
for (n = 0; n < n_capabilities; n++) {
checkNurserySanity(&nurseries[n]);
}
}
void checkSanity (bool after_gc, bool major_gc)
{
checkFullHeap(after_gc && major_gc);
checkFreeListSanity();
// always check the stacks in threaded mode, because checkHeap()
// does nothing in this case.
if (after_gc) {
checkMutableLists();
checkGlobalTSOList(true);
}
}
static void
markCompactBlocks(bdescr *bd)
{
for (; bd != NULL; bd = bd->link) {
compactMarkKnown(((StgCompactNFDataBlock*)bd->start)->owner);
}
}
static void
markNonMovingSegments(struct NonmovingSegment *seg)
{
while (seg) {
markBlocks(Bdescr((P_)seg));
seg = seg->link;
}
}
// If memInventory() calculates that we have a memory leak, this
// function will try to find the block(s) that are leaking by marking
// all the ones that we know about, and search through memory to find
// blocks that are not marked. In the debugger this can help to give
// us a clue about what kind of block leaked. In the future we might
// annotate blocks with their allocation site to give more helpful
// info.
static void
findMemoryLeak (void)
{
uint32_t g, i, j;
for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
for (i = 0; i < n_capabilities; i++) {
markBlocks(capabilities[i]->mut_lists[g]);
markBlocks(gc_threads[i]->gens[g].part_list);
markBlocks(gc_threads[i]->gens[g].scavd_list);
markBlocks(gc_threads[i]->gens[g].todo_bd);
}
markBlocks(generations[g].blocks);
markBlocks(generations[g].large_objects);
markCompactBlocks(generations[g].compact_objects);
}
for (i = 0; i < n_nurseries; i++) {
markBlocks(nurseries[i].blocks);
}
for (i = 0; i < n_capabilities; i++) {
markBlocks(gc_threads[i]->free_blocks);
markBlocks(capabilities[i]->pinned_object_block);
markBlocks(capabilities[i]->upd_rem_set.queue.blocks);
}
if (RtsFlags.GcFlags.useNonmoving) {
markBlocks(upd_rem_set_block_list);
markBlocks(nonmoving_large_objects);
markBlocks(nonmoving_marked_large_objects);
markBlocks(nonmoving_compact_objects);
markBlocks(nonmoving_marked_compact_objects);
for (i = 0; i < NONMOVING_ALLOCA_CNT; i++) {
struct NonmovingAllocator *alloc = nonmovingHeap.allocators[i];
markNonMovingSegments(alloc->filled);
markNonMovingSegments(alloc->active);
for (j = 0; j < n_capabilities; j++) {
markNonMovingSegments(alloc->current[j]);
}
}
markNonMovingSegments(nonmovingHeap.sweep_list);
markNonMovingSegments(nonmovingHeap.free);
if (current_mark_queue)
markBlocks(current_mark_queue->blocks);
}
#if defined(PROFILING)
// TODO:
// if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_RETAINER) {
// markRetainerBlocks();
// }
#endif
// count the blocks allocated by the arena allocator
// TODO:
// markArenaBlocks();
// count the blocks containing executable memory
markBlocks(exec_block);
reportUnmarkedBlocks();
}
void
checkRunQueue(Capability *cap)
{
StgTSO *prev, *tso;
prev = END_TSO_QUEUE;
uint32_t n;
for (n = 0, tso = cap->run_queue_hd; tso != END_TSO_QUEUE;
prev = tso, tso = tso->_link, n++) {
ASSERT(prev == END_TSO_QUEUE || prev->_link == tso);
ASSERT(tso->block_info.prev == prev);
}
ASSERT(cap->run_queue_tl == prev);
ASSERT(cap->n_run_queue == n);
}
/* -----------------------------------------------------------------------------
Memory leak detection
memInventory() checks for memory leaks by counting up all the
blocks we know about and comparing that to the number of blocks
allegedly floating around in the system.
-------------------------------------------------------------------------- */
// Useful for finding partially full blocks in gdb
void findSlop(bdescr *bd);
void findSlop(bdescr *bd)
{
W_ slop;
for (; bd != NULL; bd = bd->link) {
slop = (bd->blocks * BLOCK_SIZE_W) - (bd->free - bd->start);
if (slop > (1024/sizeof(W_))) {
debugBelch("block at %p (bdescr %p) has %" FMT_Word "KB slop\n",
bd->start, bd, slop / (1024/(W_)sizeof(W_)));
}
}
}
static W_
genBlocks (generation *gen)
{
W_ ret = 0;
if (RtsFlags.GcFlags.useNonmoving && gen == oldest_gen) {
// See Note [Live data accounting in nonmoving collector].
ASSERT(countNonMovingHeap(&nonmovingHeap) == gen->n_blocks);
ret += countAllocdBlocks(nonmoving_large_objects);
ret += countAllocdBlocks(nonmoving_marked_large_objects);
ret += countAllocdCompactBlocks(nonmoving_compact_objects);
ret += countAllocdCompactBlocks(nonmoving_marked_compact_objects);
ret += countNonMovingHeap(&nonmovingHeap);
if (current_mark_queue)
ret += countBlocks(current_mark_queue->blocks);
} else {
ASSERT(countBlocks(gen->blocks) == gen->n_blocks);
ASSERT(countCompactBlocks(gen->compact_objects) == gen->n_compact_blocks);
ASSERT(countCompactBlocks(gen->compact_blocks_in_import) == gen->n_compact_blocks_in_import);
ret += gen->n_blocks;
}
ASSERT(countBlocks(gen->large_objects) == gen->n_large_blocks);
ret += gen->n_old_blocks +
countAllocdBlocks(gen->large_objects) +
countAllocdCompactBlocks(gen->compact_objects) +
countAllocdCompactBlocks(gen->compact_blocks_in_import);
return ret;
}
static W_
countNonMovingSegments(struct NonmovingSegment *segs)
{
W_ ret = 0;
while (segs) {
ret += countBlocks(Bdescr((P_)segs));
segs = segs->link;
}
return ret;
}
static W_
countNonMovingAllocator(struct NonmovingAllocator *alloc)
{
W_ ret = countNonMovingSegments(alloc->filled)
+ countNonMovingSegments(alloc->active);
for (uint32_t i = 0; i < n_capabilities; ++i) {
ret += countNonMovingSegments(alloc->current[i]);
}
return ret;
}
static W_
countNonMovingHeap(struct NonmovingHeap *heap)
{
W_ ret = 0;
for (int alloc_idx = 0; alloc_idx < NONMOVING_ALLOCA_CNT; alloc_idx++) {
ret += countNonMovingAllocator(heap->allocators[alloc_idx]);
}
ret += countNonMovingSegments(heap->sweep_list);
ret += countNonMovingSegments(heap->free);
return ret;
}
void
memInventory (bool show)
{
uint32_t g, i;
W_ gen_blocks[RtsFlags.GcFlags.generations];
W_ nursery_blocks = 0, free_pinned_blocks = 0, retainer_blocks = 0,
arena_blocks = 0, exec_blocks = 0, gc_free_blocks = 0,
upd_rem_set_blocks = 0;
W_ live_blocks = 0, free_blocks = 0;
bool leak;
#if defined(THREADED_RTS)
// Can't easily do a memory inventory: We might race with the nonmoving
// collector. In principle we could try to take nonmoving_collection_mutex
// and do an inventory if we have it but we don't currently implement this.
if (RtsFlags.GcFlags.useNonmoving)
return;
#endif
// count the blocks we current have
for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
gen_blocks[g] = 0;
for (i = 0; i < n_capabilities; i++) {
gen_blocks[g] += countBlocks(capabilities[i]->mut_lists[g]);
gen_blocks[g] += countBlocks(gc_threads[i]->gens[g].part_list);
gen_blocks[g] += countBlocks(gc_threads[i]->gens[g].scavd_list);
gen_blocks[g] += countBlocks(gc_threads[i]->gens[g].todo_bd);
}
gen_blocks[g] += genBlocks(&generations[g]);
}
for (i = 0; i < n_nurseries; i++) {
ASSERT(countBlocks(nurseries[i].blocks) == nurseries[i].n_blocks);
nursery_blocks += nurseries[i].n_blocks;
}
for (i = 0; i < n_capabilities; i++) {
W_ n = countBlocks(gc_threads[i]->free_blocks);
gc_free_blocks += n;
if (capabilities[i]->pinned_object_block != NULL) {
nursery_blocks += capabilities[i]->pinned_object_block->blocks;
}
nursery_blocks += countBlocks(capabilities[i]->pinned_object_blocks);
free_pinned_blocks += countBlocks(capabilities[i]->pinned_object_empty);
}
#if defined(PROFILING)
if (RtsFlags.ProfFlags.doHeapProfile == HEAP_BY_RETAINER) {
retainer_blocks = retainerStackBlocks();
}
#endif
// count the blocks allocated by the arena allocator
arena_blocks = arenaBlocks();
// count the blocks containing executable memory
exec_blocks = countAllocdBlocks(exec_block);
/* count the blocks on the free list */
free_blocks = countFreeList();
// count UpdRemSet blocks
for (i = 0; i < n_capabilities; ++i) {
upd_rem_set_blocks += countBlocks(capabilities[i]->upd_rem_set.queue.blocks);
}
upd_rem_set_blocks += countBlocks(upd_rem_set_block_list);
live_blocks = 0;
for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
live_blocks += gen_blocks[g];
}
live_blocks += nursery_blocks +
+ retainer_blocks + arena_blocks + exec_blocks + gc_free_blocks
+ upd_rem_set_blocks + free_pinned_blocks;
#define MB(n) (((double)(n) * BLOCK_SIZE_W) / ((1024*1024)/sizeof(W_)))
leak = live_blocks + free_blocks != mblocks_allocated * BLOCKS_PER_MBLOCK;
if (show || leak)
{
if (leak) {
debugBelch("Memory leak detected:\n");
} else {
debugBelch("Memory inventory:\n");
}
for (g = 0; g < RtsFlags.GcFlags.generations; g++) {
debugBelch(" gen %d blocks : %5" FMT_Word " blocks (%6.1lf MB)\n", g,
gen_blocks[g], MB(gen_blocks[g]));
}
debugBelch(" nursery : %5" FMT_Word " blocks (%6.1lf MB)\n",
nursery_blocks, MB(nursery_blocks));
debugBelch(" empty pinned : %5" FMT_Word " blocks (%6.1lf MB)\n",
free_pinned_blocks, MB(free_pinned_blocks));
debugBelch(" retainer : %5" FMT_Word " blocks (%6.1lf MB)\n",
retainer_blocks, MB(retainer_blocks));
debugBelch(" arena blocks : %5" FMT_Word " blocks (%6.1lf MB)\n",
arena_blocks, MB(arena_blocks));
debugBelch(" exec : %5" FMT_Word " blocks (%6.1lf MB)\n",
exec_blocks, MB(exec_blocks));
debugBelch(" GC free pool : %5" FMT_Word " blocks (%6.1lf MB)\n",
gc_free_blocks, MB(gc_free_blocks));
debugBelch(" free : %5" FMT_Word " blocks (%6.1lf MB)\n",
free_blocks, MB(free_blocks));
debugBelch(" UpdRemSet : %5" FMT_Word " blocks (%6.1lf MB)\n",
upd_rem_set_blocks, MB(upd_rem_set_blocks));
debugBelch(" total : %5" FMT_Word " blocks (%6.1lf MB)\n",
live_blocks + free_blocks, MB(live_blocks+free_blocks));
if (leak) {
debugBelch("\n in system : %5" FMT_Word " blocks (%" FMT_Word " MB)\n",
(W_)(mblocks_allocated * BLOCKS_PER_MBLOCK), mblocks_allocated);
}
}
if (leak) {
debugBelch("\n");
findMemoryLeak();
}
ASSERT(n_alloc_blocks == live_blocks);
ASSERT(!leak);
}
#endif /* DEBUG */
|