1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
|
/* -----------------------------------------------------------------------------
*
* (c) The GHC Team 1998-2008
*
* Generational garbage collector: scavenging functions
*
* Documentation on the architecture of the Garbage Collector can be
* found in the online commentary:
*
* http://hackage.haskell.org/trac/ghc/wiki/Commentary/Rts/Storage/GC
*
* ---------------------------------------------------------------------------*/
#include "Rts.h"
#include "RtsFlags.h"
#include "Storage.h"
#include "MBlock.h"
#include "GC.h"
#include "GCThread.h"
#include "GCUtils.h"
#include "Compact.h"
#include "Evac.h"
#include "Scav.h"
#include "Apply.h"
#include "Trace.h"
#include "LdvProfile.h"
#include "Sanity.h"
static void scavenge_stack (StgPtr p, StgPtr stack_end);
static void scavenge_large_bitmap (StgPtr p,
StgLargeBitmap *large_bitmap,
nat size );
/* Similar to scavenge_large_bitmap(), but we don't write back the
* pointers we get back from evacuate().
*/
static void
scavenge_large_srt_bitmap( StgLargeSRT *large_srt )
{
nat i, b, size;
StgWord bitmap;
StgClosure **p;
b = 0;
bitmap = large_srt->l.bitmap[b];
size = (nat)large_srt->l.size;
p = (StgClosure **)large_srt->srt;
for (i = 0; i < size; ) {
if ((bitmap & 1) != 0) {
evacuate(p);
}
i++;
p++;
if (i % BITS_IN(W_) == 0) {
b++;
bitmap = large_srt->l.bitmap[b];
} else {
bitmap = bitmap >> 1;
}
}
}
/* evacuate the SRT. If srt_bitmap is zero, then there isn't an
* srt field in the info table. That's ok, because we'll
* never dereference it.
*/
STATIC_INLINE void
scavenge_srt (StgClosure **srt, nat srt_bitmap)
{
nat bitmap;
StgClosure **p;
bitmap = srt_bitmap;
p = srt;
if (bitmap == (StgHalfWord)(-1)) {
scavenge_large_srt_bitmap( (StgLargeSRT *)srt );
return;
}
while (bitmap != 0) {
if ((bitmap & 1) != 0) {
#if defined(__PIC__) && defined(mingw32_TARGET_OS)
// Special-case to handle references to closures hiding out in DLLs, since
// double indirections required to get at those. The code generator knows
// which is which when generating the SRT, so it stores the (indirect)
// reference to the DLL closure in the table by first adding one to it.
// We check for this here, and undo the addition before evacuating it.
//
// If the SRT entry hasn't got bit 0 set, the SRT entry points to a
// closure that's fixed at link-time, and no extra magic is required.
if ( (unsigned long)(*srt) & 0x1 ) {
evacuate(stgCast(StgClosure**,(stgCast(unsigned long, *srt) & ~0x1)));
} else {
evacuate(p);
}
#else
evacuate(p);
#endif
}
p++;
bitmap = bitmap >> 1;
}
}
STATIC_INLINE void
scavenge_thunk_srt(const StgInfoTable *info)
{
StgThunkInfoTable *thunk_info;
if (!major_gc) return;
thunk_info = itbl_to_thunk_itbl(info);
scavenge_srt((StgClosure **)GET_SRT(thunk_info), thunk_info->i.srt_bitmap);
}
STATIC_INLINE void
scavenge_fun_srt(const StgInfoTable *info)
{
StgFunInfoTable *fun_info;
if (!major_gc) return;
fun_info = itbl_to_fun_itbl(info);
scavenge_srt((StgClosure **)GET_FUN_SRT(fun_info), fun_info->i.srt_bitmap);
}
/* -----------------------------------------------------------------------------
Scavenge a TSO.
-------------------------------------------------------------------------- */
STATIC_INLINE void
scavenge_TSO_link (StgTSO *tso)
{
// We don't always chase the link field: TSOs on the blackhole
// queue are not automatically alive, so the link field is a
// "weak" pointer in that case.
if (tso->why_blocked != BlockedOnBlackHole) {
evacuate((StgClosure **)&tso->_link);
}
}
static void
scavengeTSO (StgTSO *tso)
{
rtsBool saved_eager;
if (tso->what_next == ThreadRelocated) {
// the only way this can happen is if the old TSO was on the
// mutable list. We might have other links to this defunct
// TSO, so we must update its link field.
evacuate((StgClosure**)&tso->_link);
return;
}
saved_eager = gct->eager_promotion;
gct->eager_promotion = rtsFalse;
if ( tso->why_blocked == BlockedOnMVar
|| tso->why_blocked == BlockedOnBlackHole
|| tso->why_blocked == BlockedOnException
) {
evacuate(&tso->block_info.closure);
}
evacuate((StgClosure **)&tso->blocked_exceptions);
// scavange current transaction record
evacuate((StgClosure **)&tso->trec);
// scavenge this thread's stack
scavenge_stack(tso->sp, &(tso->stack[tso->stack_size]));
if (gct->failed_to_evac) {
tso->flags |= TSO_DIRTY;
scavenge_TSO_link(tso);
} else {
tso->flags &= ~TSO_DIRTY;
scavenge_TSO_link(tso);
if (gct->failed_to_evac) {
tso->flags |= TSO_LINK_DIRTY;
} else {
tso->flags &= ~TSO_LINK_DIRTY;
}
}
gct->eager_promotion = saved_eager;
}
/* -----------------------------------------------------------------------------
Blocks of function args occur on the stack (at the top) and
in PAPs.
-------------------------------------------------------------------------- */
STATIC_INLINE StgPtr
scavenge_arg_block (StgFunInfoTable *fun_info, StgClosure **args)
{
StgPtr p;
StgWord bitmap;
nat size;
p = (StgPtr)args;
switch (fun_info->f.fun_type) {
case ARG_GEN:
bitmap = BITMAP_BITS(fun_info->f.b.bitmap);
size = BITMAP_SIZE(fun_info->f.b.bitmap);
goto small_bitmap;
case ARG_GEN_BIG:
size = GET_FUN_LARGE_BITMAP(fun_info)->size;
scavenge_large_bitmap(p, GET_FUN_LARGE_BITMAP(fun_info), size);
p += size;
break;
default:
bitmap = BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]);
size = BITMAP_SIZE(stg_arg_bitmaps[fun_info->f.fun_type]);
small_bitmap:
while (size > 0) {
if ((bitmap & 1) == 0) {
evacuate((StgClosure **)p);
}
p++;
bitmap = bitmap >> 1;
size--;
}
break;
}
return p;
}
STATIC_INLINE StgPtr
scavenge_PAP_payload (StgClosure *fun, StgClosure **payload, StgWord size)
{
StgPtr p;
StgWord bitmap;
StgFunInfoTable *fun_info;
fun_info = get_fun_itbl(UNTAG_CLOSURE(fun));
ASSERT(fun_info->i.type != PAP);
p = (StgPtr)payload;
switch (fun_info->f.fun_type) {
case ARG_GEN:
bitmap = BITMAP_BITS(fun_info->f.b.bitmap);
goto small_bitmap;
case ARG_GEN_BIG:
scavenge_large_bitmap(p, GET_FUN_LARGE_BITMAP(fun_info), size);
p += size;
break;
case ARG_BCO:
scavenge_large_bitmap((StgPtr)payload, BCO_BITMAP(fun), size);
p += size;
break;
default:
bitmap = BITMAP_BITS(stg_arg_bitmaps[fun_info->f.fun_type]);
small_bitmap:
while (size > 0) {
if ((bitmap & 1) == 0) {
evacuate((StgClosure **)p);
}
p++;
bitmap = bitmap >> 1;
size--;
}
break;
}
return p;
}
STATIC_INLINE StgPtr
scavenge_PAP (StgPAP *pap)
{
evacuate(&pap->fun);
return scavenge_PAP_payload (pap->fun, pap->payload, pap->n_args);
}
STATIC_INLINE StgPtr
scavenge_AP (StgAP *ap)
{
evacuate(&ap->fun);
return scavenge_PAP_payload (ap->fun, ap->payload, ap->n_args);
}
/* -----------------------------------------------------------------------------
Scavenge everything on the mark stack.
This is slightly different from scavenge():
- we don't walk linearly through the objects, so the scavenger
doesn't need to advance the pointer on to the next object.
-------------------------------------------------------------------------- */
static void
scavenge_mark_stack(void)
{
StgPtr p, q;
StgInfoTable *info;
step *saved_evac_step;
gct->evac_step = &oldest_gen->steps[0];
saved_evac_step = gct->evac_step;
linear_scan:
while (!mark_stack_empty()) {
p = pop_mark_stack();
ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
info = get_itbl((StgClosure *)p);
q = p;
switch (((volatile StgWord *)info)[1] & 0xffff) {
case MVAR_CLEAN:
case MVAR_DIRTY:
{
rtsBool saved_eager_promotion = gct->eager_promotion;
StgMVar *mvar = ((StgMVar *)p);
gct->eager_promotion = rtsFalse;
evacuate((StgClosure **)&mvar->head);
evacuate((StgClosure **)&mvar->tail);
evacuate((StgClosure **)&mvar->value);
gct->eager_promotion = saved_eager_promotion;
if (gct->failed_to_evac) {
mvar->header.info = &stg_MVAR_DIRTY_info;
} else {
mvar->header.info = &stg_MVAR_CLEAN_info;
}
break;
}
case FUN_2_0:
scavenge_fun_srt(info);
evacuate(&((StgClosure *)p)->payload[1]);
evacuate(&((StgClosure *)p)->payload[0]);
break;
case THUNK_2_0:
scavenge_thunk_srt(info);
evacuate(&((StgThunk *)p)->payload[1]);
evacuate(&((StgThunk *)p)->payload[0]);
break;
case CONSTR_2_0:
evacuate(&((StgClosure *)p)->payload[1]);
evacuate(&((StgClosure *)p)->payload[0]);
break;
case FUN_1_0:
case FUN_1_1:
scavenge_fun_srt(info);
evacuate(&((StgClosure *)p)->payload[0]);
break;
case THUNK_1_0:
case THUNK_1_1:
scavenge_thunk_srt(info);
evacuate(&((StgThunk *)p)->payload[0]);
break;
case CONSTR_1_0:
case CONSTR_1_1:
evacuate(&((StgClosure *)p)->payload[0]);
break;
case FUN_0_1:
case FUN_0_2:
scavenge_fun_srt(info);
break;
case THUNK_0_1:
case THUNK_0_2:
scavenge_thunk_srt(info);
break;
case CONSTR_0_1:
case CONSTR_0_2:
break;
case FUN:
scavenge_fun_srt(info);
goto gen_obj;
case THUNK:
{
StgPtr end;
scavenge_thunk_srt(info);
end = (P_)((StgThunk *)p)->payload + info->layout.payload.ptrs;
for (p = (P_)((StgThunk *)p)->payload; p < end; p++) {
evacuate((StgClosure **)p);
}
break;
}
gen_obj:
case CONSTR:
case WEAK:
case STABLE_NAME:
{
StgPtr end;
end = (P_)((StgClosure *)p)->payload + info->layout.payload.ptrs;
for (p = (P_)((StgClosure *)p)->payload; p < end; p++) {
evacuate((StgClosure **)p);
}
break;
}
case BCO: {
StgBCO *bco = (StgBCO *)p;
evacuate((StgClosure **)&bco->instrs);
evacuate((StgClosure **)&bco->literals);
evacuate((StgClosure **)&bco->ptrs);
break;
}
case IND_PERM:
// don't need to do anything here: the only possible case
// is that we're in a 1-space compacting collector, with
// no "old" generation.
break;
case IND_OLDGEN:
case IND_OLDGEN_PERM:
evacuate(&((StgInd *)p)->indirectee);
break;
case MUT_VAR_CLEAN:
case MUT_VAR_DIRTY: {
rtsBool saved_eager_promotion = gct->eager_promotion;
gct->eager_promotion = rtsFalse;
evacuate(&((StgMutVar *)p)->var);
gct->eager_promotion = saved_eager_promotion;
if (gct->failed_to_evac) {
((StgClosure *)q)->header.info = &stg_MUT_VAR_DIRTY_info;
} else {
((StgClosure *)q)->header.info = &stg_MUT_VAR_CLEAN_info;
}
break;
}
case CAF_BLACKHOLE:
case SE_CAF_BLACKHOLE:
case SE_BLACKHOLE:
case BLACKHOLE:
case ARR_WORDS:
break;
case THUNK_SELECTOR:
{
StgSelector *s = (StgSelector *)p;
evacuate(&s->selectee);
break;
}
// A chunk of stack saved in a heap object
case AP_STACK:
{
StgAP_STACK *ap = (StgAP_STACK *)p;
evacuate(&ap->fun);
scavenge_stack((StgPtr)ap->payload, (StgPtr)ap->payload + ap->size);
break;
}
case PAP:
scavenge_PAP((StgPAP *)p);
break;
case AP:
scavenge_AP((StgAP *)p);
break;
case MUT_ARR_PTRS_CLEAN:
case MUT_ARR_PTRS_DIRTY:
// follow everything
{
StgPtr next;
rtsBool saved_eager;
// We don't eagerly promote objects pointed to by a mutable
// array, but if we find the array only points to objects in
// the same or an older generation, we mark it "clean" and
// avoid traversing it during minor GCs.
saved_eager = gct->eager_promotion;
gct->eager_promotion = rtsFalse;
next = p + mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
for (p = (P_)((StgMutArrPtrs *)p)->payload; p < next; p++) {
evacuate((StgClosure **)p);
}
gct->eager_promotion = saved_eager;
if (gct->failed_to_evac) {
((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_DIRTY_info;
} else {
((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_CLEAN_info;
}
gct->failed_to_evac = rtsTrue; // mutable anyhow.
break;
}
case MUT_ARR_PTRS_FROZEN:
case MUT_ARR_PTRS_FROZEN0:
// follow everything
{
StgPtr next, q = p;
next = p + mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
for (p = (P_)((StgMutArrPtrs *)p)->payload; p < next; p++) {
evacuate((StgClosure **)p);
}
// If we're going to put this object on the mutable list, then
// set its info ptr to MUT_ARR_PTRS_FROZEN0 to indicate that.
if (gct->failed_to_evac) {
((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN0_info;
} else {
((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN_info;
}
break;
}
case TSO:
{
scavengeTSO((StgTSO*)p);
break;
}
case TVAR_WATCH_QUEUE:
{
StgTVarWatchQueue *wq = ((StgTVarWatchQueue *) p);
gct->evac_step = 0;
evacuate((StgClosure **)&wq->closure);
evacuate((StgClosure **)&wq->next_queue_entry);
evacuate((StgClosure **)&wq->prev_queue_entry);
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case TVAR:
{
StgTVar *tvar = ((StgTVar *) p);
gct->evac_step = 0;
evacuate((StgClosure **)&tvar->current_value);
evacuate((StgClosure **)&tvar->first_watch_queue_entry);
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case TREC_CHUNK:
{
StgWord i;
StgTRecChunk *tc = ((StgTRecChunk *) p);
TRecEntry *e = &(tc -> entries[0]);
gct->evac_step = 0;
evacuate((StgClosure **)&tc->prev_chunk);
for (i = 0; i < tc -> next_entry_idx; i ++, e++ ) {
evacuate((StgClosure **)&e->tvar);
evacuate((StgClosure **)&e->expected_value);
evacuate((StgClosure **)&e->new_value);
}
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case TREC_HEADER:
{
StgTRecHeader *trec = ((StgTRecHeader *) p);
gct->evac_step = 0;
evacuate((StgClosure **)&trec->enclosing_trec);
evacuate((StgClosure **)&trec->current_chunk);
evacuate((StgClosure **)&trec->invariants_to_check);
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case ATOMIC_INVARIANT:
{
StgAtomicInvariant *invariant = ((StgAtomicInvariant *) p);
gct->evac_step = 0;
evacuate(&invariant->code);
evacuate((StgClosure **)&invariant->last_execution);
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case INVARIANT_CHECK_QUEUE:
{
StgInvariantCheckQueue *queue = ((StgInvariantCheckQueue *) p);
gct->evac_step = 0;
evacuate((StgClosure **)&queue->invariant);
evacuate((StgClosure **)&queue->my_execution);
evacuate((StgClosure **)&queue->next_queue_entry);
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
default:
barf("scavenge_mark_stack: unimplemented/strange closure type %d @ %p",
info->type, p);
}
if (gct->failed_to_evac) {
gct->failed_to_evac = rtsFalse;
if (gct->evac_step) {
recordMutableGen_GC((StgClosure *)q, gct->evac_step->gen);
}
}
// mark the next bit to indicate "scavenged"
mark(q+1, Bdescr(q));
} // while (!mark_stack_empty())
// start a new linear scan if the mark stack overflowed at some point
if (mark_stack_overflowed && oldgen_scan_bd == NULL) {
debugTrace(DEBUG_gc, "scavenge_mark_stack: starting linear scan");
mark_stack_overflowed = rtsFalse;
oldgen_scan_bd = oldest_gen->steps[0].old_blocks;
oldgen_scan = oldgen_scan_bd->start;
}
if (oldgen_scan_bd) {
// push a new thing on the mark stack
loop:
// find a closure that is marked but not scavenged, and start
// from there.
while (oldgen_scan < oldgen_scan_bd->free
&& !is_marked(oldgen_scan,oldgen_scan_bd)) {
oldgen_scan++;
}
if (oldgen_scan < oldgen_scan_bd->free) {
// already scavenged?
if (is_marked(oldgen_scan+1,oldgen_scan_bd)) {
oldgen_scan += sizeofW(StgHeader) + MIN_PAYLOAD_SIZE;
goto loop;
}
push_mark_stack(oldgen_scan);
// ToDo: bump the linear scan by the actual size of the object
oldgen_scan += sizeofW(StgHeader) + MIN_PAYLOAD_SIZE;
goto linear_scan;
}
oldgen_scan_bd = oldgen_scan_bd->link;
if (oldgen_scan_bd != NULL) {
oldgen_scan = oldgen_scan_bd->start;
goto loop;
}
}
}
/* -----------------------------------------------------------------------------
Scavenge one object.
This is used for objects that are temporarily marked as mutable
because they contain old-to-new generation pointers. Only certain
objects can have this property.
-------------------------------------------------------------------------- */
static rtsBool
scavenge_one(StgPtr p)
{
const StgInfoTable *info;
step *saved_evac_step = gct->evac_step;
rtsBool no_luck;
ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
info = get_itbl((StgClosure *)p);
switch (info->type) {
case MVAR_CLEAN:
case MVAR_DIRTY:
{
rtsBool saved_eager_promotion = gct->eager_promotion;
StgMVar *mvar = ((StgMVar *)p);
gct->eager_promotion = rtsFalse;
evacuate((StgClosure **)&mvar->head);
evacuate((StgClosure **)&mvar->tail);
evacuate((StgClosure **)&mvar->value);
gct->eager_promotion = saved_eager_promotion;
if (gct->failed_to_evac) {
mvar->header.info = &stg_MVAR_DIRTY_info;
} else {
mvar->header.info = &stg_MVAR_CLEAN_info;
}
break;
}
case THUNK:
case THUNK_1_0:
case THUNK_0_1:
case THUNK_1_1:
case THUNK_0_2:
case THUNK_2_0:
{
StgPtr q, end;
end = (StgPtr)((StgThunk *)p)->payload + info->layout.payload.ptrs;
for (q = (StgPtr)((StgThunk *)p)->payload; q < end; q++) {
evacuate((StgClosure **)q);
}
break;
}
case FUN:
case FUN_1_0: // hardly worth specialising these guys
case FUN_0_1:
case FUN_1_1:
case FUN_0_2:
case FUN_2_0:
case CONSTR:
case CONSTR_1_0:
case CONSTR_0_1:
case CONSTR_1_1:
case CONSTR_0_2:
case CONSTR_2_0:
case WEAK:
case IND_PERM:
{
StgPtr q, end;
end = (StgPtr)((StgClosure *)p)->payload + info->layout.payload.ptrs;
for (q = (StgPtr)((StgClosure *)p)->payload; q < end; q++) {
evacuate((StgClosure **)q);
}
break;
}
case MUT_VAR_CLEAN:
case MUT_VAR_DIRTY: {
StgPtr q = p;
rtsBool saved_eager_promotion = gct->eager_promotion;
gct->eager_promotion = rtsFalse;
evacuate(&((StgMutVar *)p)->var);
gct->eager_promotion = saved_eager_promotion;
if (gct->failed_to_evac) {
((StgClosure *)q)->header.info = &stg_MUT_VAR_DIRTY_info;
} else {
((StgClosure *)q)->header.info = &stg_MUT_VAR_CLEAN_info;
}
break;
}
case CAF_BLACKHOLE:
case SE_CAF_BLACKHOLE:
case SE_BLACKHOLE:
case BLACKHOLE:
break;
case THUNK_SELECTOR:
{
StgSelector *s = (StgSelector *)p;
evacuate(&s->selectee);
break;
}
case AP_STACK:
{
StgAP_STACK *ap = (StgAP_STACK *)p;
evacuate(&ap->fun);
scavenge_stack((StgPtr)ap->payload, (StgPtr)ap->payload + ap->size);
p = (StgPtr)ap->payload + ap->size;
break;
}
case PAP:
p = scavenge_PAP((StgPAP *)p);
break;
case AP:
p = scavenge_AP((StgAP *)p);
break;
case ARR_WORDS:
// nothing to follow
break;
case MUT_ARR_PTRS_CLEAN:
case MUT_ARR_PTRS_DIRTY:
{
StgPtr next, q;
rtsBool saved_eager;
// We don't eagerly promote objects pointed to by a mutable
// array, but if we find the array only points to objects in
// the same or an older generation, we mark it "clean" and
// avoid traversing it during minor GCs.
saved_eager = gct->eager_promotion;
gct->eager_promotion = rtsFalse;
q = p;
next = p + mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
for (p = (P_)((StgMutArrPtrs *)p)->payload; p < next; p++) {
evacuate((StgClosure **)p);
}
gct->eager_promotion = saved_eager;
if (gct->failed_to_evac) {
((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_DIRTY_info;
} else {
((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_CLEAN_info;
}
gct->failed_to_evac = rtsTrue;
break;
}
case MUT_ARR_PTRS_FROZEN:
case MUT_ARR_PTRS_FROZEN0:
{
// follow everything
StgPtr next, q=p;
next = p + mut_arr_ptrs_sizeW((StgMutArrPtrs*)p);
for (p = (P_)((StgMutArrPtrs *)p)->payload; p < next; p++) {
evacuate((StgClosure **)p);
}
// If we're going to put this object on the mutable list, then
// set its info ptr to MUT_ARR_PTRS_FROZEN0 to indicate that.
if (gct->failed_to_evac) {
((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN0_info;
} else {
((StgClosure *)q)->header.info = &stg_MUT_ARR_PTRS_FROZEN_info;
}
break;
}
case TSO:
{
scavengeTSO((StgTSO*)p);
break;
}
case TVAR_WATCH_QUEUE:
{
StgTVarWatchQueue *wq = ((StgTVarWatchQueue *) p);
gct->evac_step = 0;
evacuate((StgClosure **)&wq->closure);
evacuate((StgClosure **)&wq->next_queue_entry);
evacuate((StgClosure **)&wq->prev_queue_entry);
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case TVAR:
{
StgTVar *tvar = ((StgTVar *) p);
gct->evac_step = 0;
evacuate((StgClosure **)&tvar->current_value);
evacuate((StgClosure **)&tvar->first_watch_queue_entry);
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case TREC_HEADER:
{
StgTRecHeader *trec = ((StgTRecHeader *) p);
gct->evac_step = 0;
evacuate((StgClosure **)&trec->enclosing_trec);
evacuate((StgClosure **)&trec->current_chunk);
evacuate((StgClosure **)&trec->invariants_to_check);
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case TREC_CHUNK:
{
StgWord i;
StgTRecChunk *tc = ((StgTRecChunk *) p);
TRecEntry *e = &(tc -> entries[0]);
gct->evac_step = 0;
evacuate((StgClosure **)&tc->prev_chunk);
for (i = 0; i < tc -> next_entry_idx; i ++, e++ ) {
evacuate((StgClosure **)&e->tvar);
evacuate((StgClosure **)&e->expected_value);
evacuate((StgClosure **)&e->new_value);
}
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case ATOMIC_INVARIANT:
{
StgAtomicInvariant *invariant = ((StgAtomicInvariant *) p);
gct->evac_step = 0;
evacuate(&invariant->code);
evacuate((StgClosure **)&invariant->last_execution);
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case INVARIANT_CHECK_QUEUE:
{
StgInvariantCheckQueue *queue = ((StgInvariantCheckQueue *) p);
gct->evac_step = 0;
evacuate((StgClosure **)&queue->invariant);
evacuate((StgClosure **)&queue->my_execution);
evacuate((StgClosure **)&queue->next_queue_entry);
gct->evac_step = saved_evac_step;
gct->failed_to_evac = rtsTrue; // mutable
break;
}
case IND_OLDGEN:
case IND_OLDGEN_PERM:
case IND_STATIC:
{
/* Careful here: a THUNK can be on the mutable list because
* it contains pointers to young gen objects. If such a thunk
* is updated, the IND_OLDGEN will be added to the mutable
* list again, and we'll scavenge it twice. evacuate()
* doesn't check whether the object has already been
* evacuated, so we perform that check here.
*/
StgClosure *q = ((StgInd *)p)->indirectee;
if (HEAP_ALLOCED(q) && Bdescr((StgPtr)q)->flags & BF_EVACUATED) {
break;
}
evacuate(&((StgInd *)p)->indirectee);
}
#if 0 && defined(DEBUG)
if (RtsFlags.DebugFlags.gc)
/* Debugging code to print out the size of the thing we just
* promoted
*/
{
StgPtr start = gen->steps[0].scan;
bdescr *start_bd = gen->steps[0].scan_bd;
nat size = 0;
scavenge(&gen->steps[0]);
if (start_bd != gen->steps[0].scan_bd) {
size += (P_)BLOCK_ROUND_UP(start) - start;
start_bd = start_bd->link;
while (start_bd != gen->steps[0].scan_bd) {
size += BLOCK_SIZE_W;
start_bd = start_bd->link;
}
size += gen->steps[0].scan -
(P_)BLOCK_ROUND_DOWN(gen->steps[0].scan);
} else {
size = gen->steps[0].scan - start;
}
debugBelch("evac IND_OLDGEN: %ld bytes", size * sizeof(W_));
}
#endif
break;
default:
barf("scavenge_one: strange object %d", (int)(info->type));
}
no_luck = gct->failed_to_evac;
gct->failed_to_evac = rtsFalse;
return (no_luck);
}
/* -----------------------------------------------------------------------------
Scavenging mutable lists.
We treat the mutable list of each generation > N (i.e. all the
generations older than the one being collected) as roots. We also
remove non-mutable objects from the mutable list at this point.
-------------------------------------------------------------------------- */
void
scavenge_mutable_list(generation *gen)
{
bdescr *bd;
StgPtr p, q;
bd = gen->saved_mut_list;
gct->evac_step = &gen->steps[0];
for (; bd != NULL; bd = bd->link) {
for (q = bd->start; q < bd->free; q++) {
p = (StgPtr)*q;
ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
#ifdef DEBUG
switch (get_itbl((StgClosure *)p)->type) {
case MUT_VAR_CLEAN:
barf("MUT_VAR_CLEAN on mutable list");
case MUT_VAR_DIRTY:
mutlist_MUTVARS++; break;
case MUT_ARR_PTRS_CLEAN:
case MUT_ARR_PTRS_DIRTY:
case MUT_ARR_PTRS_FROZEN:
case MUT_ARR_PTRS_FROZEN0:
mutlist_MUTARRS++; break;
case MVAR_CLEAN:
barf("MVAR_CLEAN on mutable list");
case MVAR_DIRTY:
mutlist_MVARS++; break;
default:
mutlist_OTHERS++; break;
}
#endif
// Check whether this object is "clean", that is it
// definitely doesn't point into a young generation.
// Clean objects don't need to be scavenged. Some clean
// objects (MUT_VAR_CLEAN) are not kept on the mutable
// list at all; others, such as MUT_ARR_PTRS_CLEAN and
// TSO, are always on the mutable list.
//
switch (get_itbl((StgClosure *)p)->type) {
case MUT_ARR_PTRS_CLEAN:
recordMutableGen_GC((StgClosure *)p,gen);
continue;
case TSO: {
StgTSO *tso = (StgTSO *)p;
if ((tso->flags & TSO_DIRTY) == 0) {
// Must be on the mutable list because its link
// field is dirty.
ASSERT(tso->flags & TSO_LINK_DIRTY);
scavenge_TSO_link(tso);
if (gct->failed_to_evac) {
recordMutableGen_GC((StgClosure *)p,gen);
gct->failed_to_evac = rtsFalse;
} else {
tso->flags &= ~TSO_LINK_DIRTY;
}
continue;
}
}
default:
;
}
if (scavenge_one(p)) {
// didn't manage to promote everything, so put the
// object back on the list.
recordMutableGen_GC((StgClosure *)p,gen);
}
}
}
// free the old mut_list
freeChain_sync(gen->saved_mut_list);
gen->saved_mut_list = NULL;
}
/* -----------------------------------------------------------------------------
Scavenging the static objects.
We treat the mutable list of each generation > N (i.e. all the
generations older than the one being collected) as roots. We also
remove non-mutable objects from the mutable list at this point.
-------------------------------------------------------------------------- */
static void
scavenge_static(void)
{
StgClosure* p;
const StgInfoTable *info;
debugTrace(DEBUG_gc, "scavenging static objects");
/* Always evacuate straight to the oldest generation for static
* objects */
gct->evac_step = &oldest_gen->steps[0];
/* keep going until we've scavenged all the objects on the linked
list... */
while (1) {
/* get the next static object from the list. Remember, there might
* be more stuff on this list after each evacuation...
* (static_objects is a global)
*/
p = gct->static_objects;
if (p == END_OF_STATIC_LIST) {
break;
}
ASSERT(LOOKS_LIKE_CLOSURE_PTR(p));
info = get_itbl(p);
/*
if (info->type==RBH)
info = REVERT_INFOPTR(info); // if it's an RBH, look at the orig closure
*/
// make sure the info pointer is into text space
/* Take this object *off* the static_objects list,
* and put it on the scavenged_static_objects list.
*/
gct->static_objects = *STATIC_LINK(info,p);
*STATIC_LINK(info,p) = gct->scavenged_static_objects;
gct->scavenged_static_objects = p;
switch (info -> type) {
case IND_STATIC:
{
StgInd *ind = (StgInd *)p;
evacuate(&ind->indirectee);
/* might fail to evacuate it, in which case we have to pop it
* back on the mutable list of the oldest generation. We
* leave it *on* the scavenged_static_objects list, though,
* in case we visit this object again.
*/
if (gct->failed_to_evac) {
gct->failed_to_evac = rtsFalse;
recordMutableGen_GC((StgClosure *)p,oldest_gen);
}
break;
}
case THUNK_STATIC:
scavenge_thunk_srt(info);
break;
case FUN_STATIC:
scavenge_fun_srt(info);
break;
case CONSTR_STATIC:
{
StgPtr q, next;
next = (P_)p->payload + info->layout.payload.ptrs;
// evacuate the pointers
for (q = (P_)p->payload; q < next; q++) {
evacuate((StgClosure **)q);
}
break;
}
default:
barf("scavenge_static: strange closure %d", (int)(info->type));
}
ASSERT(gct->failed_to_evac == rtsFalse);
}
}
/* -----------------------------------------------------------------------------
scavenge a chunk of memory described by a bitmap
-------------------------------------------------------------------------- */
static void
scavenge_large_bitmap( StgPtr p, StgLargeBitmap *large_bitmap, nat size )
{
nat i, b;
StgWord bitmap;
b = 0;
bitmap = large_bitmap->bitmap[b];
for (i = 0; i < size; ) {
if ((bitmap & 1) == 0) {
evacuate((StgClosure **)p);
}
i++;
p++;
if (i % BITS_IN(W_) == 0) {
b++;
bitmap = large_bitmap->bitmap[b];
} else {
bitmap = bitmap >> 1;
}
}
}
STATIC_INLINE StgPtr
scavenge_small_bitmap (StgPtr p, nat size, StgWord bitmap)
{
while (size > 0) {
if ((bitmap & 1) == 0) {
evacuate((StgClosure **)p);
}
p++;
bitmap = bitmap >> 1;
size--;
}
return p;
}
/* -----------------------------------------------------------------------------
scavenge_stack walks over a section of stack and evacuates all the
objects pointed to by it. We can use the same code for walking
AP_STACK_UPDs, since these are just sections of copied stack.
-------------------------------------------------------------------------- */
static void
scavenge_stack(StgPtr p, StgPtr stack_end)
{
const StgRetInfoTable* info;
StgWord bitmap;
nat size;
/*
* Each time around this loop, we are looking at a chunk of stack
* that starts with an activation record.
*/
while (p < stack_end) {
info = get_ret_itbl((StgClosure *)p);
switch (info->i.type) {
case UPDATE_FRAME:
// In SMP, we can get update frames that point to indirections
// when two threads evaluate the same thunk. We do attempt to
// discover this situation in threadPaused(), but it's
// possible that the following sequence occurs:
//
// A B
// enter T
// enter T
// blackhole T
// update T
// GC
//
// Now T is an indirection, and the update frame is already
// marked on A's stack, so we won't traverse it again in
// threadPaused(). We could traverse the whole stack again
// before GC, but that seems like overkill.
//
// Scavenging this update frame as normal would be disastrous;
// the updatee would end up pointing to the value. So we turn
// the indirection into an IND_PERM, so that evacuate will
// copy the indirection into the old generation instead of
// discarding it.
{
nat type;
type = get_itbl(((StgUpdateFrame *)p)->updatee)->type;
if (type == IND) {
((StgUpdateFrame *)p)->updatee->header.info =
(StgInfoTable *)&stg_IND_PERM_info;
} else if (type == IND_OLDGEN) {
((StgUpdateFrame *)p)->updatee->header.info =
(StgInfoTable *)&stg_IND_OLDGEN_PERM_info;
}
evacuate(&((StgUpdateFrame *)p)->updatee);
p += sizeofW(StgUpdateFrame);
continue;
}
// small bitmap (< 32 entries, or 64 on a 64-bit machine)
case CATCH_STM_FRAME:
case CATCH_RETRY_FRAME:
case ATOMICALLY_FRAME:
case STOP_FRAME:
case CATCH_FRAME:
case RET_SMALL:
bitmap = BITMAP_BITS(info->i.layout.bitmap);
size = BITMAP_SIZE(info->i.layout.bitmap);
// NOTE: the payload starts immediately after the info-ptr, we
// don't have an StgHeader in the same sense as a heap closure.
p++;
p = scavenge_small_bitmap(p, size, bitmap);
follow_srt:
if (major_gc)
scavenge_srt((StgClosure **)GET_SRT(info), info->i.srt_bitmap);
continue;
case RET_BCO: {
StgBCO *bco;
nat size;
p++;
evacuate((StgClosure **)p);
bco = (StgBCO *)*p;
p++;
size = BCO_BITMAP_SIZE(bco);
scavenge_large_bitmap(p, BCO_BITMAP(bco), size);
p += size;
continue;
}
// large bitmap (> 32 entries, or > 64 on a 64-bit machine)
case RET_BIG:
{
nat size;
size = GET_LARGE_BITMAP(&info->i)->size;
p++;
scavenge_large_bitmap(p, GET_LARGE_BITMAP(&info->i), size);
p += size;
// and don't forget to follow the SRT
goto follow_srt;
}
// Dynamic bitmap: the mask is stored on the stack, and
// there are a number of non-pointers followed by a number
// of pointers above the bitmapped area. (see StgMacros.h,
// HEAP_CHK_GEN).
case RET_DYN:
{
StgWord dyn;
dyn = ((StgRetDyn *)p)->liveness;
// traverse the bitmap first
bitmap = RET_DYN_LIVENESS(dyn);
p = (P_)&((StgRetDyn *)p)->payload[0];
size = RET_DYN_BITMAP_SIZE;
p = scavenge_small_bitmap(p, size, bitmap);
// skip over the non-ptr words
p += RET_DYN_NONPTRS(dyn) + RET_DYN_NONPTR_REGS_SIZE;
// follow the ptr words
for (size = RET_DYN_PTRS(dyn); size > 0; size--) {
evacuate((StgClosure **)p);
p++;
}
continue;
}
case RET_FUN:
{
StgRetFun *ret_fun = (StgRetFun *)p;
StgFunInfoTable *fun_info;
evacuate(&ret_fun->fun);
fun_info = get_fun_itbl(UNTAG_CLOSURE(ret_fun->fun));
p = scavenge_arg_block(fun_info, ret_fun->payload);
goto follow_srt;
}
default:
barf("scavenge_stack: weird activation record found on stack: %d", (int)(info->i.type));
}
}
}
/*-----------------------------------------------------------------------------
scavenge the large object list.
evac_step set by caller; similar games played with evac_step as with
scavenge() - see comment at the top of scavenge(). Most large
objects are (repeatedly) mutable, so most of the time evac_step will
be zero.
--------------------------------------------------------------------------- */
static void
scavenge_large (step_workspace *ws)
{
bdescr *bd;
StgPtr p;
gct->evac_step = ws->step;
bd = ws->todo_large_objects;
for (; bd != NULL; bd = ws->todo_large_objects) {
// take this object *off* the large objects list and put it on
// the scavenged large objects list. This is so that we can
// treat new_large_objects as a stack and push new objects on
// the front when evacuating.
ws->todo_large_objects = bd->link;
ACQUIRE_SPIN_LOCK(&ws->step->sync_large_objects);
dbl_link_onto(bd, &ws->step->scavenged_large_objects);
ws->step->n_scavenged_large_blocks += bd->blocks;
RELEASE_SPIN_LOCK(&ws->step->sync_large_objects);
p = bd->start;
if (scavenge_one(p)) {
if (ws->step->gen_no > 0) {
recordMutableGen_GC((StgClosure *)p, ws->step->gen);
}
}
// stats
gct->scanned += closure_sizeW((StgClosure*)p);
}
}
/* ----------------------------------------------------------------------------
Scavenge a block
------------------------------------------------------------------------- */
#define PARALLEL_GC
#include "Scav.c-inc"
#undef PARALLEL_GC
#include "Scav.c-inc"
/* ----------------------------------------------------------------------------
Look for work to do.
We look for the oldest step that has either a todo block that can
be scanned, or a block of work on the global queue that we can
scan.
It is important to take work from the *oldest* generation that we
has work available, because that minimizes the likelihood of
evacuating objects into a young generation when they should have
been eagerly promoted. This really does make a difference (the
cacheprof benchmark is one that is affected).
We also want to scan the todo block if possible before grabbing
work from the global queue, the reason being that we don't want to
steal work from the global queue and starve other threads if there
is other work we can usefully be doing.
------------------------------------------------------------------------- */
static rtsBool
scavenge_find_work (void)
{
int s;
step_workspace *ws;
rtsBool did_something, did_anything;
bdescr *bd;
gct->scav_find_work++;
did_anything = rtsFalse;
loop:
did_something = rtsFalse;
for (s = total_steps-1; s >= 0; s--) {
if (s == 0 && RtsFlags.GcFlags.generations > 1) {
continue;
}
ws = &gct->steps[s];
gct->scan_bd = NULL;
// If we have a scan block with some work to do,
// scavenge everything up to the free pointer.
if (ws->todo_bd->u.scan < ws->todo_free)
{
if (n_gc_threads == 1) {
scavenge_block1(ws->todo_bd);
} else {
scavenge_block(ws->todo_bd);
}
did_something = rtsTrue;
break;
}
// If we have any large objects to scavenge, do them now.
if (ws->todo_large_objects) {
scavenge_large(ws);
did_something = rtsTrue;
break;
}
if ((bd = grab_todo_block(ws)) != NULL) {
if (n_gc_threads == 1) {
scavenge_block1(bd);
} else {
scavenge_block(bd);
}
did_something = rtsTrue;
break;
}
}
if (did_something) {
did_anything = rtsTrue;
goto loop;
}
// only return when there is no more work to do
return did_anything;
}
/* ----------------------------------------------------------------------------
Scavenge until we can't find anything more to scavenge.
------------------------------------------------------------------------- */
void
scavenge_loop(void)
{
rtsBool work_to_do;
loop:
work_to_do = rtsFalse;
// scavenge static objects
if (major_gc && gct->static_objects != END_OF_STATIC_LIST) {
IF_DEBUG(sanity, checkStaticObjects(gct->static_objects));
scavenge_static();
}
// scavenge objects in compacted generation
if (mark_stack_overflowed || oldgen_scan_bd != NULL ||
(mark_stack_bdescr != NULL && !mark_stack_empty())) {
scavenge_mark_stack();
work_to_do = rtsTrue;
}
// Order is important here: we want to deal in full blocks as
// much as possible, so go for global work in preference to
// local work. Only if all the global work has been exhausted
// do we start scavenging the fragments of blocks in the local
// workspaces.
if (scavenge_find_work()) goto loop;
if (work_to_do) goto loop;
}
rtsBool
any_work (void)
{
int s;
step_workspace *ws;
gct->any_work++;
write_barrier();
// scavenge objects in compacted generation
if (mark_stack_overflowed || oldgen_scan_bd != NULL ||
(mark_stack_bdescr != NULL && !mark_stack_empty())) {
return rtsTrue;
}
// Check for global work in any step. We don't need to check for
// local work, because we have already exited scavenge_loop(),
// which means there is no local work for this thread.
for (s = total_steps-1; s >= 0; s--) {
if (s == 0 && RtsFlags.GcFlags.generations > 1) {
continue;
}
ws = &gct->steps[s];
if (ws->todo_large_objects) return rtsTrue;
if (ws->step->todos) return rtsTrue;
}
gct->no_work++;
return rtsFalse;
}
|