1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
/* AsyncIO.c
*
* Integrating Win32 asynchronous I/O with the GHC RTS.
*
* (c) sof, 2002-2003.
*/
#if !defined(THREADED_RTS)
#include "Rts.h"
#include "RtsUtils.h"
#include <windows.h>
#include <stdio.h>
#include "Schedule.h"
#include "Capability.h"
#include "win32/AsyncIO.h"
#include "win32/IOManager.h"
/*
* Overview:
*
* Haskell code issue asynchronous I/O requests via the
* async{Read,Write,DoOp}# primops. These cause addIORequest()
* to be invoked, which forwards the request to the underlying
* asynchronous I/O subsystem. Each request is tagged with a unique
* ID.
*
* addIORequest() returns this ID, so that when the blocked CH
* thread is added onto blocked_queue, its TSO is annotated with
* it. Upon completion of an I/O request, the async I/O handling
* code makes a back-call to signal its completion; the local
* onIOComplete() routine. It adds the IO request ID (along with
* its result data) to a queue of completed requests before returning.
*
* The queue of completed IO request is read by the thread operating
* the RTS scheduler. It de-queues the CH threads corresponding
* to the request IDs, making them runnable again.
*
*/
typedef struct CompletedReq {
unsigned int reqID;
HsInt len;
HsInt errCode;
} CompletedReq;
#define MAX_REQUESTS 200
static CRITICAL_SECTION queue_lock;
static HANDLE completed_req_event = INVALID_HANDLE_VALUE;
static HANDLE abandon_req_wait = INVALID_HANDLE_VALUE;
static HANDLE wait_handles[2];
static CompletedReq completedTable[MAX_REQUESTS];
static int completed_hw;
static HANDLE completed_table_sema;
static int issued_reqs;
static void
onIOComplete(unsigned int reqID,
int fd STG_UNUSED,
HsInt len,
void* buf STG_UNUSED,
HsInt errCode)
{
DWORD dwRes;
/* Deposit result of request in queue/table..when there's room. */
dwRes = WaitForSingleObject(completed_table_sema, INFINITE);
switch (dwRes) {
case WAIT_OBJECT_0:
break;
default:
/* Not likely */
fprintf(stderr,
"onIOComplete: failed to grab table semaphore, "
"dropping request 0x%x\n", reqID);
fflush(stderr);
return;
}
EnterCriticalSection(&queue_lock);
if (completed_hw == MAX_REQUESTS) {
/* Shouldn't happen */
fprintf(stderr, "onIOComplete: ERROR -- Request table overflow (%d); "
"dropping.\n", reqID);
fflush(stderr);
} else {
#if 0
fprintf(stderr, "onCompl: %d %d %d %d %d\n",
reqID, len, errCode, issued_reqs, completed_hw);
fflush(stderr);
#endif
completedTable[completed_hw].reqID = reqID;
completedTable[completed_hw].len = len;
completedTable[completed_hw].errCode = errCode;
completed_hw++;
issued_reqs--;
if (completed_hw == 1) {
/* The event is used to wake up the scheduler thread should it
* be blocked waiting for requests to complete. The event resets
* once that thread has cleared out the request queue/table.
*/
SetEvent(completed_req_event);
}
}
LeaveCriticalSection(&queue_lock);
}
unsigned int
addIORequest(int fd,
bool forWriting,
bool isSock,
HsInt len,
char* buf)
{
EnterCriticalSection(&queue_lock);
issued_reqs++;
LeaveCriticalSection(&queue_lock);
#if 0
fprintf(stderr, "addIOReq: %d %d %d\n", fd, forWriting, len);
fflush(stderr);
#endif
return AddIORequest(fd,forWriting,isSock,len,buf,onIOComplete);
}
unsigned int
addDelayRequest(HsInt usecs)
{
EnterCriticalSection(&queue_lock);
issued_reqs++;
LeaveCriticalSection(&queue_lock);
#if 0
fprintf(stderr, "addDelayReq: %d\n", usecs); fflush(stderr);
#endif
return AddDelayRequest(usecs,onIOComplete);
}
unsigned int
addDoProcRequest(void* proc, void* param)
{
EnterCriticalSection(&queue_lock);
issued_reqs++;
LeaveCriticalSection(&queue_lock);
#if 0
fprintf(stderr, "addProcReq: %p %p\n", proc, param); fflush(stderr);
#endif
return AddProcRequest(proc,param,onIOComplete);
}
int
startupAsyncIO()
{
if (!StartIOManager()) {
return 0;
}
InitializeCriticalSection(&queue_lock);
/* Create a pair of events:
*
* - completed_req_event -- signals the deposit of request result;
* manual reset.
* - abandon_req_wait -- external OS thread tells current
* RTS/Scheduler thread to abandon wait
* for IO request completion.
* Auto reset.
*/
completed_req_event = CreateEvent (NULL, TRUE, FALSE, NULL);
abandon_req_wait = CreateEvent (NULL, FALSE, FALSE, NULL);
wait_handles[0] = completed_req_event;
wait_handles[1] = abandon_req_wait;
completed_hw = 0;
if ( !(completed_table_sema = CreateSemaphore(NULL, MAX_REQUESTS,
MAX_REQUESTS, NULL)) ) {
DWORD rc = GetLastError();
fprintf(stderr, "startupAsyncIO: CreateSemaphore failed 0x%x\n",
(int)rc);
fflush(stderr);
}
return ( completed_req_event != INVALID_HANDLE_VALUE &&
abandon_req_wait != INVALID_HANDLE_VALUE &&
completed_table_sema != NULL );
}
void
shutdownAsyncIO(bool wait_threads)
{
ShutdownIOManager(wait_threads);
if (completed_req_event != INVALID_HANDLE_VALUE) {
CloseHandle(completed_req_event);
completed_req_event = INVALID_HANDLE_VALUE;
}
if (abandon_req_wait != INVALID_HANDLE_VALUE) {
CloseHandle(abandon_req_wait);
abandon_req_wait = INVALID_HANDLE_VALUE;
}
if (completed_table_sema != NULL) {
CloseHandle(completed_table_sema);
completed_table_sema = NULL;
}
DeleteCriticalSection(&queue_lock);
}
/*
* Function: awaitRequests(wait)
*
* Check for the completion of external IO work requests. Worker
* threads signal completion of IO requests by depositing them
* in a table (completedTable). awaitRequests() matches up
* requests in that table with threads on the blocked_queue,
* making the threads whose IO requests have completed runnable
* again.
*
* awaitRequests() is called by the scheduler periodically _or_ if
* it is out of work, and need to wait for the completion of IO
* requests to make further progress. In the latter scenario,
* awaitRequests() will simply block waiting for worker threads
* to complete if the 'completedTable' is empty.
*/
int
awaitRequests(bool wait)
{
#if !defined(THREADED_RTS)
// none of this is actually used in the threaded RTS
start:
#if 0
fprintf(stderr, "awaitRequests(): %d %d %d\n",
issued_reqs, completed_hw, wait);
fflush(stderr);
#endif
EnterCriticalSection(&queue_lock);
// Nothing immediately available & we won't wait
if ((!wait && completed_hw == 0)
#if 0
// If we just return when wait==false, we'll go into a busy
// wait loop, so I disabled this condition --SDM 18/12/2003
(issued_reqs == 0 && completed_hw == 0)
#endif
) {
LeaveCriticalSection(&queue_lock);
return 0;
}
if (completed_hw == 0) {
// empty table, drop lock and wait
LeaveCriticalSection(&queue_lock);
if ( wait && sched_state == SCHED_RUNNING ) {
DWORD dwRes = WaitForMultipleObjects(2, wait_handles,
FALSE, INFINITE);
switch (dwRes) {
case WAIT_OBJECT_0:
// a request was completed
break;
case WAIT_OBJECT_0 + 1:
case WAIT_TIMEOUT:
// timeout (unlikely) or told to abandon waiting
return 0;
case WAIT_FAILED: {
DWORD dw = GetLastError();
fprintf(stderr, "awaitRequests: wait failed -- "
"error code: %lu\n", dw); fflush(stderr);
return 0;
}
default:
fprintf(stderr, "awaitRequests: unexpected wait return "
"code %lu\n", dwRes); fflush(stderr);
return 0;
}
} else {
return 0;
}
goto start;
} else {
int i;
StgTSO *tso, *prev;
for (i=0; i < completed_hw; i++) {
/* For each of the completed requests, match up their Ids
* with those of the threads on the blocked_queue. If the
* thread that made the IO request has been subsequently
* killed (and removed from blocked_queue), no match will
* be found for that request Id.
*
* i.e., killing a Haskell thread doesn't attempt to cancel
* the IO request it is blocked on.
*
*/
unsigned int rID = completedTable[i].reqID;
prev = NULL;
for(tso = blocked_queue_hd; tso != END_TSO_QUEUE;
tso = tso->_link) {
switch(tso->why_blocked) {
case BlockedOnRead:
case BlockedOnWrite:
case BlockedOnDoProc:
if (tso->block_info.async_result->reqID == rID) {
// Found the thread blocked waiting on request;
// stodgily fill
// in its result block.
tso->block_info.async_result->len =
completedTable[i].len;
tso->block_info.async_result->errCode =
completedTable[i].errCode;
// Drop the matched TSO from blocked_queue
if (prev) {
setTSOLink(&MainCapability, prev, tso->_link);
} else {
blocked_queue_hd = tso->_link;
}
if (blocked_queue_tl == tso) {
blocked_queue_tl = prev ? prev : END_TSO_QUEUE;
}
// Terminates the run queue + this inner for-loop.
tso->_link = END_TSO_QUEUE;
tso->why_blocked = NotBlocked;
// save the StgAsyncIOResult in the
// stg_block_async_info stack frame, because
// the block_info field will be overwritten by
// pushOnRunQueue().
tso->stackobj->sp[1] = (W_)tso->block_info.async_result;
pushOnRunQueue(&MainCapability, tso);
break;
}
break;
default:
if (tso->why_blocked != NotBlocked) {
barf("awaitRequests: odd thread state");
}
break;
}
prev = tso;
}
/* Signal that there's completed table slots available */
if ( !ReleaseSemaphore(completed_table_sema, 1, NULL) ) {
DWORD dw = GetLastError();
fprintf(stderr, "awaitRequests: failed to signal semaphore "
"(error code=0x%x)\n", (int)dw);
fflush(stderr);
}
}
completed_hw = 0;
ResetEvent(completed_req_event);
LeaveCriticalSection(&queue_lock);
return 1;
}
#endif /* !THREADED_RTS */
}
/*
* Function: abandonRequestWait()
*
* Wake up a thread that's blocked waiting for new IO requests
* to complete (via awaitRequests().)
*/
void
abandonRequestWait( void )
{
/* the event is auto-reset, but in case there's no thread
* already waiting on the event, we want to return it to
* a non-signalled state.
*
* Careful! There is no synchronisation between
* abandonRequestWait and awaitRequest, which means that
* abandonRequestWait might be called just before a thread
* goes into a wait, and we miss the abandon signal. So we
* must SetEvent() here rather than PulseEvent() to ensure
* that the event isn't lost. We can re-optimise by resetting
* the event somewhere safe if we know the event has been
* properly serviced (see resetAbandon() below). --SDM 18/12/2003
*/
SetEvent(abandon_req_wait);
}
void
resetAbandonRequestWait( void )
{
ResetEvent(abandon_req_wait);
}
#endif /* !defined(THREADED_RTS) */
|